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Abstract

Endoplasmic reticulum oxidoreductin-1 alpha (ERO1α) was originally shown to be an 

endoplasmic reticulum (ER) resident protein undergoing oxidative cycles in concert with protein 

disulfide isomerase (PDI) to promote proper protein folding and to maintain homeostasis within 

the ER. ERO1α belongs to the flavoprotein family containing a flavin adenine dinucleotide 

utilized in transferring of electrons during oxidation-reduction cycles. This family is used to 

maintain redox potentials and protein homeostasis within the ER. ERO1α’s location and function 

has since been shown to exist beyond the ER. Originally thought to exist solely in the ER, it has 

since been found to exist in the golgi apparatus, as well as in exosomes purified from patient 

samples. Besides aiding in protein folding of transmembrane and secretory proteins in conjunction 

with PDI, ERO1α is also known for formation of de novo disulfide bridges. Public databases, such 

as the Cancer Genome Atlas (TCGA) and The Protein Atlas, reveal ERO1α as a poor prognostic 

marker in multiple disease settings. Recent evidence indicates that ERO1α expression in tumor 

cells is a critical determinant of metastasis. However, the impact of increased ERO1α expression 

in tumor cells extends into the tumor microenvironment. Secretory proteins requiring ERO1α 
expression for proper folding have been implicated as being involved in immune escape through 

promotion of upregulation of programmed death ligand-1 (PD-L1) and stimulation of 

polymorphonuclear myeloid derived suppressor cells (PMN-MDSC’s) via secretion of 

granulocytic colony stimulating factor (G-CSF). Hereby, ERO1α plays a pivotal role in cancer 

progression and potentially immune escape; making ERO1α an emerging attractive putative target 

for the treatment of cancer.
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Introduction

The failure to eradicate minimal residual disease often located at metastatic sites and/or the 

bone marrow niche continues to be a clinical barrier for successful treatments in cancer [1–

4]. Unfortunately, in some tumor’s disease relapse is associated with a multi-drug resistant 

phenotype that corresponds to resistance to structurally and functionally divergent agents. 

Similar to conventional therapies the success of immune-oncology is limited to the 

occurrence of primary resistance in some patients, as well as emergence of acquired 

resistance [5]. Accumulating experimental evidence indicates that the tumor 

microenvironment plays a critical role in mediating sensitivity to targeted agents as well as 

immunotherapy [6,7]. Thus, to improve the gap in patient outcomes new targets need to be 

validated in the context of the metastatic phenotype and the tumor microenvironment. This 

review will discuss the potential of ERO1α as target for the treatment of cancer. Despite the 

endoplasmic reticulum being one of the largest cellular organelles, it was one of the last ones 

discovered [8]. Originally described by Emilio Veratti in 1902, it was not until the electron 

microscope was available that George Palade and Keith Porter made the rediscovery [9–11] 

capturing the structural complexities and tubular structure existing in the cytoplasm [12]. 

Since the re-discovery, the ER has been identified to be a continuous membranous organelle 

essential for protein folding, calcium storage, lipid metabolism, protein transport, post-

translational modifications, and protein transport via vesicles [13]. It is composed of two 

main parts; smooth ER and rough ER. The rough ER is composed of ribosomes and 

continuous cisternae that have an important role in protein folding and storage, while the 

smooth ER is void of ribosomes and composed mainly of microtubules, and is critical for 

synthesis and storage of lipids. Maintaining homeostasis within the ER is essential for 

proper formation of desulphated bridges and ultimately, protein folding [14]. A major 

determinant of homeostasis occurs through oxidative enzymes of the flavin dependent 

endoplasmic reticulum oxidoreductin-1 (ERO1α) family [15–19] and by the buffering 

capacity of reduced glutathione (GSH) and oxidized glutathione (GSSG) in a 3:1–6:1 molar 

ratio in favor of reduced glutathione [20–22]. ERO1α is known to oxidize protein disulfide 

isomerase (PDI) in order to form de novo disulfide bridges [16]. The crucial function of 

disulfide bridging occurring in the ER between ERO1α and PDI have been well-established 

[23]. Briefly, the target unfolded protein within the ER can be oxidized by PDI resulting in 

the reduction of PDI. Oxidized ERO1α can in turn lead to the recycling of PDI to the 

oxidized from. Reduced ERO1α can be oxidized and form de-novo disulfide bridge utilizing 

FAD as a cofactor leading to FADH and reduction of molecular oxygen to ROS (See Figure 

1).

Cancer cells typically are under increased levels of ER stress. ER stress is most evident in 

secretory tumors such as multiple myeloma, breast, lung and pancreatic. However, other 

inducers of ER stress include hypoxia and chemotherapy. Given the importance of ER 

homeostasis, ERO1α-PDI interaction, and formation of de novo disulfide bridges ERO1α 
has emerged as a player in the regulation and tolerance of cancer cells to ER stress [24]. An 

increase in ER-stress can lead to two possible outcomes: 1.) unfolded protein response 

(UPR) once activated ultimately brings ER stress back to homeostasis via inhibition of 

translation and inducing cell cycle arrest, or 2.) if ER stress is not resolved than apoptosis 
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occurs through release of cytochrome C and caspase activation, ultimately protecting the 

organism from rogue cells that display misfolded proteins [25]. Despite UPR being the main 

pathway to ER stress resolution; UPR has also been linked to autophagic flux. Autophagy 

can either be inhibited or activated upon ER stress [26]. Though autophagy is related to ER 

stress it is not always activated under ER stress conditions. Autophagy is an orchestrated 

process by which misfolded proteins, damaged or aged organelles, or even mutated proteins 

are sequestered in an autophagosome that ultimately fuses to the lysosome leading to 

degradation of sequestered components [27]. Reports recently have showed that withanolide 

E in combination with ER stress inducers enhance apoptosis synergistically in pancreatic 

cancer models [28]. Multiple cancer types have been reported to have increased ER stress 

including multiple myeloma, lung, breast, and pancreatic [29–31]. Differences in ER stress 

can be driven by genetic, epigenetic, and microenvironmental heterogeneity that likely result 

in a range of pro-survival and anti-apoptotic responses [32]. Anticancer interventions such as 

chemotherapy has also been shown to modulate UPR (Unfolded protein response) though 

clinical implications are only starting to be understood [33,34]. Recent studies have showed 

that depending on the context cancer cells can utilize UPR as a resistance mechanism [35].

Interestingly, overexpression of ERO1α tends to have a worse prognosis in multiple cancer 

indications; multiple myeloma [36], breast [37–39] and hepatocellular carcinoma [40], as 

well as lung, esophageal, diffuse B-cell lymphoma, and others according to The Cancer 

Genome Atlas (TCGA) and The Protein Atlas. These data indicate that expression is 

increased in aggressive and/or drug resistant disease and support the premise the ERO1α is a 

tractable target for the treatment of cancer. Below, we will delve into four specific topics that 

will reveal and shed light onto 1.) the structure, function, localization, and characterization 

of flavin containing ERO1α, 2.) Disease indications, 3.) immune surveillance, and immune 

evasion and how they are related to ERO1α and 4) chemical probes currently available to 

test the ERO1α-PDI pathway.

Structure, Function, Localization, and Characterization of Flavin Containing 

ERO1α

Flavoenzymes are an important classification of enzymes that utilize FAD in redox reactions 

to maintain enzymatic function. Specifically, ERO1α promotes oxidative protein folding 

through PDI, producing hydrogen peroxide as a by-product and is tightly regulated to avoid 

futile oxidation cycles occurring in the ER [41]. There are many secretory and membrane 

proteins under the assistance of thiol-disulfide oxidoreductases helping form disulfide bonds 

in the ER [42–46]. The major players in ER oxidative reactions are ERO1α and PDI; both 

which are conserved from yeast to mammals [16,17,47,48]. Humans contain two ERO1 

isoforms; ERO1α that is expressed in almost all cell types and ERO1β that is only expressed 

in select tissues. The oxidative reaction occurring between ERO1α and PDI produces 

hydrogen peroxide, a reactive oxygen species (ROS) [43]. Although a cell can cope with 

peroxides formed during basal oxidative protein folding, sometimes using them as secondary 

messengers in cell-signaling cascades [49] and possibly as a direct protein disulfide 

introducer [50,51]. If ROS production exceeds cellular capacity of antioxidants defense 

systems this can be harmful via introduction of ER oxidative stress [41]. ERO1α is tightly 
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regulated not only through phosphorylation state [52], but also through regulatory disulfide 

bridging. When disulfide bridges are formed between cysteine 94 and cysteine 99 ERO1α 
activity exceeds WT ERO1α (known as hyperactive ERO1α), whereas if cysteine 94 is 

bridged with cysteine 131 it leads to complete inactivity of ERO1α (Inactive ERO1α) [41]. 

This was shown using biochemical approaches through site-directed mutagenesis in yeast. 

However, this provides a potential regulatory or even compensatory mechanism that ERO1α 
can exploit when the ER is under extreme stress conditions. Hyperactive, inactive, and WT 

are the three forms of ERO1α that have been shown to exist in yeast. In yeast, cysteine 100, 

cysteine 105, cysteine 352, and cysteine 355 are required for oxidative reactions, whereas 

cysteines 90, 208, and 349 are dispensable for these functions [17]. Providing a mechanism 

by which cysteine 100-cysteine 105 directly engage in oxidative reactions; whereas cysteine 

352-cysteine 355 serve directly to re-oxidize cysteine 100-cysteine 105. Allowing for 

ERO1p to undergo another oxidative reaction [16,17,41]. In humans, ERO1α catalyzes the 

formation of a cysteine disulfide bond as part of the FAD containing enzyme. As can be seen 

in Figure 2, the cysteine 397 forms a transition complex with FAD, after which cysteine 94 

attacks via a nucleophilic C-S bond to form the disulfide bond, with FAD reduced to the 

FADH2. Cysteine 352-Cysteine 355 bridge in yeast are equivalent to Cysteine 394-Cysteine 

397 in humans and undergo the same reaction process with the cofactor FAD. The regulatory 

cysteine bridges in yeasts (Cys100-Cys105), is also conserved in humans, and is the 

disulfide bridge occurring between cysteine 94-cysteine 99. This disulfide bridge in humans 

are responsible for accepting electrons from PDI and transferring them to the disulfide 

bridge between cysteine 394-cysteine 397; ultimately allowing for cysteine 397 to perform 

the nucleophilic attack onto bound FAD (see Figure 1 and Figure 2).

Upon successful oxidative protein folding, basal ERO1α can be shuttled into the golgi 

apparatus, where an interaction with FAM20C kinase occurs [52]. FAM20C is a secretory 

kinase founded in 2012 known for phosphorylation of the secretory protein Casein. 

Interestingly FAM20C prefers to use Manganese (Mn2+) instead of Magnesium (Mg2+) as 

compared to other kinases and is known for recognizing S-x-E/pS motif of secretory 

proteins [53,54]. It has also been shown to be insensitive to staurosporine, a known broad-

spectrum kinase inhibitor. Recently, FAM20C was shown to phosphorylate ERO1α at serine 

residue 145 (S145). This phosphorylation state allows for 1 of 2 scenarios to take place; 1.) 

ERO1α can be sent extracellularly through packaging into exosomes, or 2.) Is sequestered 

by ERp44 (an ER transporter and chaperone protein primarily located in the endoplasmic 

reticulum-golgi intermediate compartment (ER-GIC) to be transferred back into the ER to 

undergo another oxidation cycle with PDI [55]. Zhang et al. was also able to conclude from 

their study that ERO1α activity was increased upon phosphorylation of residue S145, and 

that this reaction takes place during mammalian lactation, under hypoxia, and reductive 

stress conditions. Originally reported to co-localize with PDI in the ER lumen [16], ERO1α 
has more recently been shown to localize in the golgi apparatus [52], in proximity to the 

mitochondrial associated Endoplasmic Reticulum membranes (MAM), but only under 

oxidizing and normoxic conditions [56], and was identified from purified exosomes from 

bladder cancer cells, liver cancer cells, and squamous cell carcinoma cells (exocarto and 

protein atlas). More intriguing, ERO1α under basal conditions is still found to be localized 

in the ER despite not having a peptide signal sequence such as the C-terminus KDEL like 
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other ER-resident proteins [57]. The absence of an ER localization signal suggests that 

ERO1α functions may extend beyond the ER and these additional functions based on 

localization of the enzyme need to be discovered in order to fully understand role of ERO1α 
in the progression of cancer. Questions still needing to be answered are 1.) What function 

does ERO1α provide by being packaged into exosomes or by remaining in the golgi 

apparatus, and 2.) What function does ERO1α have when localized to the MAM region? 

Though these questions have not been answered yet fully, there has been some insight onto 

the function of ERO1α when localized near the MAM region. This function is to regulate 

Ca2+ flux. Downregulation of ERO1α via RNAi was found to inhibit mitochondrial Ca2+ 

fluxes and modified mitochondrial Ca2+ uniporters. However, upon overexpression of redox 

active ERO1α increased passive Ca2+ efflux from the ER was observed [58]. Calcium flux is 

an essential ER regulated process that is used in signaling, activation of apoptosis, and even 

used in cellular movement. Calcium is stored in the ER but released into the mitochondria 

for activation of apoptosis. Calcium can be transferred from the ER into the mitochondria 

via the MAM region and is required to maintain cellular homeostasis [59]. Thus, ERO1α 
functionality beyond the scope of just protein folding in the ER as localization can play 

pivotal roles in regulating protein function.

Disease Indications

Recently, ERO1α has been reported as a poor prognostic indicator in multiple cancer 

indications. Yang et al, showed using genetic shRNA strategies for reducing the expression 

of Ero1α, in HepG2 and Hep3B cells that high ERO1α expression correlated with increased 

migration and invasion. Moreover, these same investigators showed that in primary patient 

specimens high ERO1α expression was associated with poor clinicopathology of vascular 

invasion, metastasis, advanced Edmondson grade, and TNM stage [40]. Yang et al. were also 

able to conclude from their in vivo studies using HepG2 cells ectopically expressing ERO1α 
that an increase in metastatic burden and poor survival in vivo correlated with increased 

ERO1α expression and S1PR1, p-STAT3, and VEGF-A levels. However, upon depletion of 

ERO1α using shRNA strategies, S1PR1, p-STAT3, and VEGF-A were also reduced.

In support of clinical data indicating that ERO1α expression is a poor prognostic indicator, 

we probed the GEPIA database that utilizes samples from TCGA and GTEX database and 

compiles the data into a Kaplan-Meyer plot based on a single gene of interest. Using 

GEPIA, we determined that that ERO1α is considered a bad prognostic indicator in multiple 

cancer indications including Lung Adenocarcinoma, Hepatocellular Carcinoma, Esophageal 

Carcinoma, and Diffuse B-Cell Lymphoma (see Figure 3 and Table 1). Moreover, genetic 

and pharmacological studies in cell lines has indicated that ERO1α expression and function 

contributes to an aggressive cancer phenotype (see Table 1).

The GEPIA was able to confirm that high ERO1α transcript levels correlate with worse 

prognosis in multiple cancer indications. As mentioned previously ERO1α is responsible for 

protein folding. More specifically, ERO1α is directly involved in folding of membrane and 

secretory proteins [64]. Recently, ERO1α has also been shown to have a role in post-

translational modification of β1 integrin in colorectal cancer cell when under hypoxic 

conditions. When ERO1α is knocked out using CRISPR Cas9 in HCT116 colorectal cancer 
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cells and placed under hypoxic conditions it was found that the glycosylation state of 

integrin β1 was changed and thus an attenuation of integrin β1 on the cell membrane 

occurred; ultimately leading to contact-inhibited morphology [57]. These are just a few 

examples of many that ERO1α is associated with cancer indications.

Immune Surveillance and Immune Evasion Correlate with ERO1α 

Expression

Recently, immuno-oncology (IO) has demonstrated to be a tractable strategy for achieving 

durable responses. Targets and delivery approaches which may enhance IO response with 

respect to percentage of patients that respond remains an active area of research (rev in [65]). 

As IO approaches move toward combination strategies, it is essential to determine the effect 

of modulating novel targets such as Ero1α on the immune tumor microenvironment. 

Immunotherapies have previously failed in lung cancer but has recently emerged as very 

effective new therapy [66], with the emergence of immune checkpoint blockade such as anti-

PD-1 (programmed cell death-1) antibodies and anti PD-L1 (programmed cell death-ligand 

1) antibodies [67]. ERO1α is thought to be responsible for the processing and folding of PD-

L1 and PD-1. PD-L1 is a transmembrane protein located on the cell surface of placental, 

vascular endothelium, pancreatic islet, muscle, and mesenchymal stem cells [68], and PD-1 

is a receptor belonging to the CD28 family of receptors that is only expressed on the surface 

of activated T-cells, B-cells, and myeloid cells [69]. The binding of PD-L1 to PD-1 is an 

immune suppressive signal that inhibits autoimmunity through induction of T-cell apoptosis 

[70] and induces tolerance [71]. Recently, a study has shown that ERO1α promotes immune 

escape through up-regulation of PD-L1 in breast cancer [60]. This connection is due to the 

intramolecular disulfide bond that exist in PD-L1 [72] and ERO1α is a known contributor to 

folding of membrane proteins as well as introduction of disulfide bonds [16]. In this recent 

finding, Tanaka et al. [60], was able to demonstrate that ERO1α up-regulates PD-L1 surface 

expression not only through oxidative folding, but also unexpectedly up-regulated PD-L1 

mRNA expression through augmentation of hypoxia inducible factor-1alpha (HIF-1α) in 

human triple negative breast cancer cell lines. Although this occurrence could be diminished 

upon knockdown of ERO1α using RNA Interference (RNAi), as it led to significant 

attenuation of PD-L1 mediated T-cell apoptosis [60]. This provides insight towards hypoxia 

mediated immune resistance; specifically, in triple negative breast cancer cell lines. As 

shown previously in Figure 2, increased expression of ERO1α is a poor prognostic indicator 

in lung adenocarcinoma, hepatocellular carcinoma, esophageal carcinoma, and diffuse B-cell 

lymphoma; However, ERO1α has also be found to be a poor prognostic indicator in breast 

cancer by multiple researchers [37,38].

Alongside the discovery of PD-L1 and PD-1, of which Dr. Allison and Dr. Honjo won the 

2018 Nobel Prize for the discovery of checkpoint blockades PD-1, PD-L1, and CTLA-4, the 

discovery of myeloid derived suppressor cells (MDSC’s) has also had an outstanding impact 

clinically. Reports of MDSC’s associated with tumor progression go back to the 1970’s [73]. 

However, during the 1980’s and early 1990’s, laboratories of Diana Lopez, Jim Talmadge, 

M. Rita Young, and Hans Schreiber, demonstrated various types of myeloid cells could 

inhibit immune functions in cancer [74]. There are two main groups of MDSC’s; 
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Polymorphonuclear MDSC’s (PMN-MDSC’s), and monocytic MDSC’s (M-MDSC’s). In 

recent years it has become clear that these two groups function differently in terms of 

immune suppression during tumorigenesis. M-MDSC’s suppress the immune system in both 

antigen-specific and non-specific manners utilizing mechanisms associated with production 

of NO and cytokines [75]. PMN-MDSC’s on the other hand can suppress immune responses 

primarily in an antigen-specific manner, inducing antigen specific T-cell tolerance is a major 

characteristic of these cells [76,77]. Recently it has been shown that tumor cells are a source 

of granulocytic colony stimulating factor (G-CSF) [78–81], and that production of G-CSF 

by tumors are responsible for recruitment of immunosuppressive PMN-MDSC’s, which 

promote tumor growth via inhibition of antitumor immune responses [82,83]. G-CSF is a 

glycoprotein that functions as a hematopoietic cytokine that is secreted from immune, 

endothelial and bone marrow stroma cells leading to production of granulocytes 

(granulopoiesis), as well as contributes to mobilization of stem cells [84]. Amongst G-CSF’s 

many functions, it is a secretory protein that’s folding cycle is predicted to occur through 

ERO1α. In a recent publication; Tanaka et al. [37] demonstrated that ERO1α plays a pivotal 

role in PMN-MDSC induction via up-regulation of G-CSF production from cancer cells in 

collaboration with PDI. Tanaka et al. [37] were also able to demonstrate that reduced 

expression of ERO1α through shRNA strategies reduced tumor growth by restoration of 

antitumor T-cell-mediated immunity, and ERO1α overexpression promoted tumor growth in 
vivo via suppression of antitumor immunity.

Immune system functionality has been well defined for quite some time. Despite immune 

system functionality being well described, cancer researchers are still discovering resistance 

mechanisms to cancer therapies that are utilizing the host immune system. Recently, it was 

found that hypoxia augmented the endogenous major histocompatibility complex I (MHC 

Class I) presentation in murine tumor cells [85]. MHC Class I molecules are responsible for 

presentation of endogenous antigens, expressed on all nucleated cells, and present protein 

fragment of cytosolic or nucleic nature to CD8+ T-cells on the cell membrane. [86]. These 

antigens are peptide fragments that are intracellular and obtained from multiple pathways 

being approximately 8–10 amino acids long [87]. MHC Class I molecules are stabilized by 

ER chaperones such as ERp57, PDI, and tapasin [86]. Upon binding of the designated 

peptide antigen to the MHC Class I molecule, the chaperones are released and fully 

assembled, peptide-MHC Class I complexes leave the ER for presentation of the cell 

membrane [87]. Conversely, the MHC-Class I peptide complexes that fail to associate in the 

ER are sent to the cytosol to undergo proteasomal mediated degradation [88,89]. Though the 

function of MHC Class 1 is clear, it is not clear if this function is augmented in tumors or 

during hypoxic conditions. HIF-1α is known to be induced under hypoxic conditions and 

more recently has been shown to regulate expression of ERO1α [90,91]. More specifically, 

ERO1α was induced in hypoxic conditions in a HIF-1α dependent manner [91]. May et al. 

[91] were also able to demonstrate that ERO1α was not induced under hypoxic conditions in 

fibroblast cell lines derived from HIF-1α knockout mice, revealing ERO1α as a 

transcriptional target of HIF-1α. To induce an effective antitumor immunity using cancer 

antigen peptide-based immunotherapy, a cancer antigen must be appropriately presented on 

MHC Class I molecules [37]. Kukita et al. [37] were able to determine three distinct effects 

that hypoxia had on MHC Class 1 presentation; 1.) expression of MHC Class I peptide 
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complex on the cell surface was augmented, 2.) activation of antigen specific CD8+ T-cells 

was augmented, and 3.) specific cytotoxic T-lymphocytes were capable of killing tumor cells 

under hypoxic conditions. They were also able to determine that ERO1α was responsible for 

the hypoxia driven antigen presentation by MHC Class I molecules. ERO1α is responsible 

for the disulfide bond formation of MHC Class I heavy chains. Upon depletion of ERO1α, 

MHC Class I expression on the cell surface was also shown to be decreased, resulting in 

decreased cytotoxic T-lymphocyte reactivity [37]. Thus, Kukita et al [37] were able to 

demonstrate that ERO1α plays a crucial role in hypoxia-induced oxidative folding of MHC 

Class I heavy chain, leading to augmentation of MHC Class I-peptide complex on the tumor 

cell surface and enhanced recognition by antigen specific cytotoxic T-lymphocytes. 

Functional MHC Class I expression is needed to induce cell death via induction of CD8+, T-

lymphocytes. Despite increased MHC Class I expression in hypoxic conditions, the 

increased and chronic presence of cancer associated antigens may lead to T-cell exhaustion 

in hypoxic regions of the tumor, albeit further work is required to fully determine whether 

increased Ero1α expression leads to T-cell exhaustion in vivo [92, 93]. Because inhibiting 

Ero1α is likely to change the cytokine and chemokine profile of the tumor 

microenvironment, further studies are required to fully understand the effect of inhibiting 

Ero1α on tumor mediated immune suppression.

Inhibitors of the ERO1 Pathway

Currently pharmacologic inhibitors that target ERO1α are limited. The first inhibitor of 

ERO1α, known as EN460, and was identified through a screen of 210,960 natural 

compounds [94]. EN460 is specific for the reduced active form of ERO1α and prevents re-

oxidation [94]. Our laboratory recently demonstrated that EN460 could potentially be used 

to treat cancers with high ER-stress such as multiple myeloma [36]. It was also confirmed 

during this study that EN460 had multiple off targets; all being flavoenzymes, or enzymes 

that contain flavin adenine dinucleotide (FAD). Our laboratory was also able to develop an 

azide derivative of EN-460, PB-EN-10, that showed similar effects [36]. The tool compound 

EN460 and its azide derivative PB-EN-10 are shown below in Figure 4. Having direct 

interactions with PDI during oxidative protein folding it seems feasible that PDI could also 

be targeted to inhibited ERO1α mediated biological functions. PDI has also been shown to 

be a potential target in multiple myeloma. Targeting PDI provides its’ own challenges as it 

has multiple isoforms being a family with greater than 20 members, and due to the multiple 

redox active cysteine residues present [95–98]. PDI inhibition currently via small molecules 

occurs through covalent catalysis and includes the following tool set 16F16, PACMA31, 

KSC-34, E61, and E64FC26 [99–102]. Despite multiple known inhibitors against PDI, none 

have entered clinical trials for the treatment of cancer at this time. ERO1α and PDI could be 

good targets in cancer indications if specificity could be achieved toward both enzymes, as 

PDI inhibitors tend to hit all PDI family members and ERO1α inhibitors have the tendency 

to target other flavoenzymes. In conclusion ERO1α is emerging as an attractive target for the 

treatment of cancer. Supporting evidence that credentials the target described above includes 

i) clinical data indicating that increased expression of the enzyme is a poor prognostic 

indicator in multiple cancer indications and ii) genetic strategies utilizing shRNA indicate 

that reducing the expression of ERO1Lα inhibits growth and metastasis using both in vitro 
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and in vivo model systems. However, delineation of the therapeutic window will require a 

drug discovery campaign to elucidate more specific and potent inhibitors to allow for further 

validation of the target.
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Figure 1: 
Upon Phosphorylation of Serine 145 by FAM20C Kinase, ERO1α can return to the 

endoplasmic reticulum (ER). Above is an illustration of the interaction occurring between 

active site of ERO1α, PDI, and Glutathione (GSH). This reaction is also capable of 

occurring in the reverse direction resulting in redox equilibrium inside the ER. (Red circle is 

the phosphorylation site of ERO1α at serine 145 via FAM20C kinase, Black squares 

connected by blue lines are active disulfide bridges required for redox to occur, and black 

arrows are representative of electron flow when ERO1α is being reduced.
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Figure 2: 
A) The structure of ERO1a (3AHQ.pdb) with the FAD binding site shown; B) the 

orientation of the Cys394-Cys397 with FAD; C) the proposed catalytic scheme of FAD and 

disulfide bond formation.

Johnson et al. Page 16

J Cancer Immunol (Wilmington). Author manuscript; available in PMC 2021 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Top Left Panel represents survival data for Lung Adenocarcinoma in respect to ERO1α, Top 

Right Panel represents Esophageal Carcinoma, Bottom Left Panel represents survival data 

for hepatocellular carcinoma, and Bottom Right Panel represents survival data for diffuse B-

cell lymphoma. Kaplan-Meyer Plots above were plotted using ERO1α gene filter in GEPIA, 

which obtains data from TCGA and GTEx databases.
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Figure 4: 
Structure of EN460, the first ERO1α inhibitor, and the azide derivative PB-EN-10.
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