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Development of a biomechanical model for dynamic occlusal
stress analysis
Zheng Duanmu1, Lu Liu2, Qi Deng2, Yuanyuan Ren2 and Meiqing Wang 2✉

The use of traditional finite element method (FEM) in occlusal stress analysis is limited due to the complexity of musculature
simulation. The present purpose was to develop a displacement boundary condition (DBC)-FEM, which evaded the muscle factor, to
predict the dynamic occlusal stress. The geometry of the DBC-FEM was developed based on the scanned plastic casts obtained
from a volunteer. The electrognathographic and video recorded jaw positional messages were adopted to analyze the dynamic
occlusal stress. The volunteer exhibited asymmetrical lateral movements, so that the occlusal stress was further analyzed by using
the parameters obtained from the right-side eccentric movement, which was 6.9 mm long, in the stress task of the left-side
eccentric movement, which was 4.1 mm long. Further, virtual occlusion modification was performed by using the carving tool
software aiming to improve the occlusal morphology at the loading sites. T-Scan Occlusal System was used as a control of the
in vivo detection for the location and strength of the occlusal contacts. Data obtained from the calculation using the present
developed DBC-FEM indicated that the stress distribution on the dental surface changed dynamically with the occlusal contacts.
Consistent with the T-Scan recordings, the right-side molars always showed contacts and higher levels of stress. Replacing the left-
side eccentric movement trace by the right-side one enhanced the simulated stress on the right-side molars while modification of
the right-side molars reduced the simulated stress. The present DBC-FEM offers a creative approach for pragmatic occlusion stress
prediction.
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INTRODUCTION
Occlusion is defined as: (i) the act or process of closure or of being
closed or shut off; (ii) the static relationship between the incising,
masticating surfaces of the maxillary or mandibular teeth or tooth
analogues.1 The primary function of occlusion is to chew up foods
with exact tooth contacts and large forces of food-crushing.2

Overloading may lead to tooth wear,3–5 fatigue,6–9 cervical
lesions,10–12 and cracks from the contact zone at the occlusal
surface of the nature teeth.13,14 Hence, dental stress under
occlusal loading has been largely reported, especially in the field
of restorations’ design.15–17 Researches indicated that food
stiffness has a slight impact on the stress distribution of the
restored and sound teeth because the stress distribution does not
differ particularly in the same geometrical configuration of cavity
with varying stiffness of food.18 The impact of dental geometry is
then of significance because it determines the occlusion contact
areas where the mastication force is focused.19,20 The contact
between tooth surface and food bolus alter dynamically during
chewing, meaning that the masticatory forces on dentition
constantly change in direction, intensity, and point of applica-
tion.21 The uneven occlusal contact surface divides the loading
following the principles of force decomposition that can be
transferred to roots and then the periodontal tissues.22 The
loading messages are picked up by periodontal mechanorecep-
tors. By activating the periodontal-trigeminal mesencephalic
nucleus-trigeminal motor nucleus circuit, occlusion modifies the

jaw muscles’ activity.23 About 85% of the muscular activity
necessary to chew is peripherally induced, that means, the
contact stress message of the uneven occlusion takes a pivotal
role in feedback controlling of the jaw muscles activity during
chewing function.24 Obviously, dental stress during simulated
centric and eccentric clenching is meaningful in view of function
and dysfunction of masticatory system, yet the stressing regularity
during centric and eccentric clenching remains undetermined.
There are the largest contacts in the maximum intercuspal

occlusion situation, while there are fewer contacts in the
protrusion and lateral excursive occlusion.25 Dynamic occlusal
contacts had been discussed greatly in literatures for its
interferential role.26–28 The posterior contacts during protrusion
and the balancing side contacts during lateral excursion had
been proposed as the interferences because they might be the
causes of temporomandibular disorders (TMD).28 However,
diverse reports are documented regarding the view point that
the balancing interferences are harmful to oral function. Some
researchers indicated no differences in the frequency of the
interferences between the TMD patients and healthy peo-
ples.29–31 The limited strength information of the interferential
contacts might be one of the explanations for that incon-
sistency. In literature, efforts had made to describe the contact
features of the occlusion with strength message. For example,
T-Scan system provides locational loading information with
time-dependent strength relative values. An inserted transducer
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recorded the detection procedure of dentitions. Even though thin
to 60 μm, the transducer affects the test accuracy.32 Further, the
uniformity of the transducer thickness prevents the T-scan from a
real contact provider.
Direct measurements of tooth contacts and forces are difficult.

Biomechanical models are better for understanding the relation-
ship between occlusion and function.2 In literature, the virtual
simulation tool of finite element method has been widely used in
mandibular lever analysis, most often on tooth or TMJ con-
dyles.19,33–36 In the reported finite element models (FEM), the
stress analysis based on the muscle force simulation is often
simplified as specific concentrate forces at particular bite
locations. The jaw movements are relatively small and directional
perplexing that are under fine neural control.37 For example,
muscles with a generally vertical orientation are responsible for
fine horizontal regulation of movement and stabilization.38 That
means each muscle can influence more than one degree of
freedom. The schematic representation of a single line of action is
incomplete, so more realistic loadings are then required for bite
simulation.39

It is indicated that stress analysis can be performed based on
muscle liked concentrated force and the defined displacement
boundary condition.40 Using the recorded mandibular displace-
ment as the boundary condition, a reformative FEM, termed the
displacement boundary condition finite element model (DBC-
FEM)41 could be developed where the muscular forces are no
longer necessary to analyze occlusal stress. The DBC-FEM model is
an explicit scheme that efficiently solves highly nonlinear
problems, especially when dealing with complex contacts and
large deformations.42 Giving a uniform linear motion, the larger a
contact size is, the smaller the contact stress will be. When a tooth
exposes its different sites to have occlusal contacts with the
opposing tooth, various stresses came out according to the
contact size of the sites. Then, the stress at the contact sites could
be obtained based on the contact size following the penalty
algorithms43,44 as DBC-FEM provides.
This paper developed a DBC-FEM by using the jaw kinematic

three-dimensional movement recordings. The location and size of
the dynamic occlusion contact were computed, and the derived
occlusal stress was analyzed. The purpose was to explore a
creative approach for occlusion stress prediction without either
interrupting nature behaviors of dental occlusion or simulation of
muscles force.

RESULTS
The data from EGN recordings are presented in Fig. 4c and
Supplemental Tables 1–4. The volunteer showed asymmetrical
lateral excursive movements, more prominent on the right side
than the left side, which were 6.9 and 4.1 mm, respectively.

Occlusion stress in the simulated centric and eccentric movements
—obtaining from the tasks in section 1
The DBC-FEM model successfully revealed the shear and vertical
stress at different stages of each task. Generally, the stress value
changed when the contact size increased or decreased in the
dynamic tasks. Three images representing the occlusal maximum
stress value at the lowest, middle, and largest level in each task are
presented in Fig. 1.

The centric closing task (Fig. 1a). The highest maximum stress
value was 117 GPa, located at the right-side second molar. All
the maximum stress values were increased when the mandib-
ular dentition was simulated closing to the maxillary dentition
from the early to the later closing stage. Similarity was noticed
when the red and blue articulating papers (Tianjin Shengshili
Dental Materials Factory, Tianjin, China) were used separately
during the maximal voluntary biting in centric occlusion.

The two records merged well (Fig. 1b), although no speckle
occlusal imprints were obtained after several times attempts.
The T-Scan graph presented the contacts that were located at
the bilateral molar regions, coincidental with the simulation in
the DBC-FEM model.

The centric to protrusion task (Fig. 1c). The maximum stress was
initially located at the bilateral molar regions but gradually at the
region of the central incisors during the protruding task. In the
end stage of protrusion, the stress concentration was noticed at
the right-side third molar. The highest value of the maximum
stress was 110 GPa, which appeared at the end stage of
protrusion, located at the incisors. The T-Scan graph showed
similarities and the contacts displayed at bilateral incisor and
molar regions. The contact at higher level strength appeared at
the right-side third molar in T-Scan, identical with simulation in
the DBC-FEM model.

The centric to lateral extension task (Fig. 1d, e). When simulating
the mandible to excurse to the right side, the maximum stress was
observed on not only the right-side canine, the premolars, and the
first molar, but also on the left-side first and second molars at the
late stage of the task. The highest value of the maximum stress
was 53.3 GPa, which appeared at the end stage of the right-side
lateral excursion, located at the left-side second molar. The T-Scan
graph showed quite a similarity. The contacts appeared at the
canine, premolar, and molar region of the right side and the molar
region of the left side. When the mandible was simulated to
excurse to the left side, the maximum stress was observed only at
the right-side second molar. No maximum stress was observable
at the left-side arch. The highest value of the maximum stress was
5.48 GPa, which appeared at the end stage of the left-side
excursion, located at the right-side second molar. However, the
T-Scan graph showed contacts at the left-side arch and at
the right-side molar.

Occlusion stress in the simulated symmetrical lateral excursive
movements—obtaining from the tasks in section 2
Recordings from EGN demonstrated that the volunteer had a
shorter left-side excursive range, which was 4.1 mm leftward and
1.9 mm downward, than the right-side excursive range, which was
6.9 mm rightward and 6.6 mm downward. When simulating the
left-side excursion task according to the right-side lateral
excursion recordings, the maximum stress on the right-side first
and second molars turned more significant (Fig. 2a). There was
maximum stress on the left-side first molar at the middle stage.
The maximum stress happened on the left-side canine and the
first premolar at the end stage. The values of the maximum
stress from the initial stage to the end stage are shown in Fig. 2b.
The highest value of the maximum stress was on the right-side
second molar, which was 40.7 GPa. The normal and shear stress of
that site were 5 and 0.5 GPa, respectively (Fig. 2c, d). When
simulating the right-side excursion task according to the left-side
lateral excursion recordings, no maximum stress showed on the
whole arch.

Occlusion stress after the virtual tooth morphological modification
—obtaining from the tasks in section 3
Virtual teeth morphological modification was performed on
the lingual ridge of the distal buccal cusps of the right-side
mandibular first molar and second molar (Fig. 3c). There
were contacts during the left-side lateral excursion (Fig. 1) and
the simulated symmetrical left-side lateral excursion (Fig. 2). After
the virtual morphological modification, the maximum stress in the
simulated centric task was distributed with more symmetry, wider,
and broader on the arch (Fig. 3c). There was maximum stress
located at the premolar region, which was not the case before
modification (Figs. 3d, 1a). The highest value of the maximum
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stress was 66.8 GPa, located at the left second molar after virtual
modification.
In the centric to protrusion task, there was still maximum stress

at the central incisors region and the right third molars.
Unexpectedly, there appeared contact on the left-side third molar
at the end stage of the task (Fig. 3e). In the centric to right-side
lateral extension task, there was still maximum stress on the right-
side canine and the first and second premolars, and also on the
left-side first and second molars, but no more on the right-side
first molar (Fig. 3e). However, in the centric to left-side lateral
extension task, no maximum stress was observed (Fig. 3f). When
simulating the left-side excursion task according to the right-side
lateral excursion recordings, the maximum stress occurred on the
left-side canine and the first premolar region (Fig. 3g).

DISCUSSION
Biomechanics analysis helps understand the structure and function
of biological systems and the forces on and displacements of the
dental occlusion.2 In this work, we developed a method to create a
DBC-FEM that makes it possible to analyze the dynamic occlusal
stress at the real sense contact sites according to the EGN and video
recordings. Taking the recorded kinematical data as the boundary
condition makes it unnecessary to simulate the complex muscular
forces. The penalty formulation with finite sliding could prevent the
unlimited permeated contacts, which is impossible in real condi-
tions. With this DBC-FEM, we analyzed occlusion stress on the
fluctuation surface of the mandibular dentition during nature
closing, protrusive, and eccentric movements. In line with the lateral

literature,36,45 the highest maximum value of stress was in terms of
GPa unit. Our present DBC-FEM model provides a new approach to
evaluate occlusal stress and virtual occlusal correction in daily
clinical practices or research, which helps correct clinical mis-
perceptions and hopefully inform better patient care.
Functional studies considering the kinematics of teeth are

essential to understand biomechanics and interpret morphologi-
cal adaptation of teeth.35 The present volunteer did not know that
she has a problem excursing her mandible to the left side as
precisely as what she did for the right side until she attended the
present test. In the test process of the left-side excursion task, she
tried her best to make the left-side teeth in contact with
experimental requirements. By using her DBC-FEM for analyzing
the occlusal stress, we revealed that the highest value of the
maximum stress was located on her right-side molars when
performing the left-side lateral excursion. It should be those right-
side contacts, or the balance side interference, that prevented the
teeth of the left side or the working side from contact. We
performed the left-side lateral excursive movement simulation
with the mirror trace of the right side. The result showed that the
right-side interference contacts got heavier (Fig. 2). Such heavy
contacts should be harmful to the masticatory organs. The
potential harmfulness of the serious contacts should be why she
moved to the left side with a larger vertical dimension but shorter
lateral extension than moving to the right side. Such a successful
protective compensation in the mandibular movement explains,
at least partially, her free of disordered symptoms. Avoidance of
heavy occlusion contact via alteration of mandibular movement
pattern is, thus, an important design of the masticatory system.

Before
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Fig. 3 The geometry of the right-side molars (M1-3) before (a) and after (b) the virtual tooth morphological modification, and the occlusion
stress distributions after in the virtual tooth modification in the tasks of Section 1, i.e., centric closing (c), the protrusion (d), the right-side
excursion (e) and left-side excursion (f), and in the task of Section 2 (g)
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With such mechanisms, the masticatory system is adapted to
complex changes in the dental occlusion and exhibits a high level
of damage tolerance.2

The biomechanical effects of occlusal loads on teeth during
clenching and mastication and the transfer of occlusal forces have
been primarily reported in the literature.46,47 In a chewing
simulation study, occlusal contact stiffness was the key point
substantially affecting maximum contact force.48 Clenching of
molars and masticating morsels of high elastic moduli evoke
considerable stress concentrations in the occlusal enamel of these
teeth. While masticating a morsel of low elastic modulus, which
conforms to the occlusal surfaces of teeth, creates considerable
stresses in the cervical portion of the lingual wall of the
mandibular molar.47 Even though, the dental stress distribution
patterns are more likely to be affected by loading direction and
position.35 Loads oriented normal to the tooth axis, such as that in
subjects with balanced occlusion, are better distributed to the
supporting tissues, thus was believed capable of avoiding tooth
bending and stress concentrations.12 Instable occlusion, on the
other hand, is linked with tooth-damage-inducible occlusal forces.
With many masticatory cycles, the unstable occlusion could be
damage-inducible and cause tooth fracture.49 A compelling
feature of the splitting load relation is its explicit dependence
on key geometrical dimensions.50 Some anatomic occlusion forms
have a higher fracture potential, such as the nonfunctional cusps
versus functional cusps due to the wedging effect of the
cusp–fossa.13 Grooves and fissures on the occlusal surface had
been taken as critical locations of cracks because tensile stresses
on a FEM model were concentrated at these features.35 It is then
essential in clinical practice to identify the contact areas to
estimate how the chewing force is distributed in the tooth and in
the supporting structure51 to provide an optimal occlusion load to
ensure the long-term success of dental treatment.
In addition to dental healthy, occlusion has an impact on

temporomandibular joints (TMJs), jaw muscles2 and even cervical
and trunk muscles.52 Experimental occlusal interference in animals
could cause jaw muscle damage, fatigue, and pain.53–55 During the
mastication process, the occlusion and the TMJs suffer the loading
from jaw muscles’ contraction, which is originally active to chew
up foods. The periodontal proprioceptors will pick up the message
of occlusion loadings and then modify the jaw muscles activity via
periodontal-muscle reflex mechanisms. The dynamic occlusal
stress is then worth recording and measuring. However, as far
as our extension, in literature, there are still no dynamic occlusal
stress evaluation devices or systems in view of oral function and
dysfunction.56 Clinical measurements like laser scanner, occlusal
stress detector, electromyograph, and mandibular movement
recorder are generally used in an independent pattern for
diagnosing occlusal functions.57 None of them directly provide
the stress information. The clinical loading assessment relies
primarily on the doctor’s personal experience and strong empirical
operation by using a single bite size evaluation to the stress tester,
which lacks quantitative indicators.58 Our DBC-FEM method brings
about a new insight for dynamic occlusion stress assessment. With
our developed method, the occlusion stress can be analyzed, and
the virtual occlusion modification could be performed to achieve
satisfactory occlusion function.
As far as our extension, this work is the first one in the literature

that describes the movements setting in three directions and
combined using dimensions and rotations based on the EGN and
video recordings. The EGN and videos were not synchronously
recorded due to the limitations of the recording technique. We
segmented the EGN and videos recordings by time so that the
video angle measurements could match the ENG displacement
measurements. Even though the system errors existed, which
contributed, at least partially, to the minor differences of the
present DBC-FEM data from T-Scan recordings. However, the
minor differences may also come from the T-Scan transducer’s

obstacle interferences, which were more predominant during
protrusion and lateral excursions. The even thickness of the
transducer prevented the freedom of the dynamic tasks and
increased the possibility of systemic errors. The system errors have
to be taken into account, especially when aiming for occlusal
correction. More complex composite three-dimensional solid
structure and nonlinear material models are expected to develop.
The high simulation model studies are expected to be conducted,
for example, the kinematics of the simulated chewing tasks and
linear shell element structure for occlusal simulation.

CONCLUSION
In summary, taking the mandibular kinematical parameters as the
boundary condition, the present contact derived from DBC-FEM
brings about a creative approach for occlusion stress prediction.
Importantly, our DBC-FEM makes it practical to correct occlusion
biomechanics through virtual morphological modification. It will
be helpful in occlusion-related operations such as computer
aided design and computer aided manufacturing (CAD/CAM) for
denture processing.

MATERIALS AND METHODS
This study collected information from a 32-years-old Chinese
female volunteer. She had no symptoms of oral dysfunction, such
as that observed in patients with temporomandibular disorders
(TMDs). She declared no known bruxism. She had no tooth surface
lesions such as severe tooth wear, cervical lesions, and caries,
and her periodontal condition was healthy as examined by one of
the authors (MQ). She understood the task well because she is a
dental nurse. She had 30 permanent teeth arranged in
morphological normal. The measurements were performed by
one of the authors (DQ). All the procedures were conducted
according to established ethical guidelines with written consent.
This study was approved by the Human Experiment Committee,
College of Stomatology, the Fourth Military Medical University
(Ethics Certificate No: IRB-REV-2015031).

Dentition reconstruction
Plastic casts were obtained and then scanned using a dental
scanner (3Shape R750, 3Shape, Denmark). The 3D digital model
was created using 3Shape software (3Shape ScanItManagerTM,
1.7.1.0, 3Shape, Denmark) and smoothed by using Model
Preparation software (3Shape OrthoAnalyzerTM, 1.7.1.0, 3Shape,
Denmark). The static and dynamic noises were removed through
mean filtering from raw data. The noise was further removed
utilizing the gray histogram analysis and the threshold value. The
entire dentition models were reconstructed with upper 589 and
lower 509 pieces curved surfaces after smoothing (Fig. 4a).

Electrognathograph (EGN)
The volunteer was trained before testing. The mandibular
movements were recorded by EGN and BioPAK system software
(both by Bioresearch Associates, Inc., Milwaukee, WI, USA).41

Briefly, a magnet was attached to the labial surface of the
mandibular central incisors without interfering with any move-
ments of the mandible. The sensor array was fixed on the subject’s
head, as we previously reported.36 The measurements recorded
the nature close from the rest position to the centric occlusion
position in three dimensions. Followed by protrusion and the
right- and left-side lateral excursion movement. All of the
movements were started from the intercuspal position (ICP).
During the processes of the movements, the maxillary and
mandibular teeth were required to be kept in touch. The sampling
frequency was 1 000 Hz. The displacing amplitudes were
automatically calculated and displayed by the software (BioPAK
software Version 8.1, BioResearch Associates, Inc., Milwaukee,
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WI, USA). During the whole testing process, the subject sat upright
in a chair, keeping the eyes on a point at eye level two meters
away as required.

Video of the jaw rotation movements
The rotation of the jaw during centric and eccentric movements
were recorded by a video camera (Canon EOS 6D, Canon Inc., USA).
The locations of the osteological landmarks were pogonion,
gonion, nasion, hyoid bone, and root of the zygomatic process
(RZP) (Fig. 4b). When the mandibular rotational messages were
extracted from the video recordings for the 3D motion coordinates
deposition, different pairs of markers were used. One of the
markers in each pair was fixed and the other was movable. RZP was
taken as the fixed and gonion as the movable for saggital view,
nasion as fixed and pogonion as movable for frontal view, and
hyoid bone as fixed and pogonion as movable for horizontal view.
By taking the video of the centric and eccentric movements, the 3D
motion coordinates can be deposited into sagittal (with RZP and
gonion), frontal (with nasion and pogonion), and horizontal (with
hyoid bone and pogonion) planes, each with two directions
displacements and one rotation. The displacement curves of
different occlusions are shown in Fig. 4c. The rotated angles of each
plane are shown in Table 1.

DBC-FEM modeling
The material property of this research was assumed to be
homogeneous, isotropic, and linear elastic. The whole dentition
is processing as enamel shell elements. The elastic modulus for
enamel was defined as 84 GPa with a Poisson’s ratio of 0.3.36 The
total 3D occlusion model was meshed in Abaqus software (Version

14.0, Dassault Systemes, Co., Velizy-Villacoublay, FRANCE) with 60
345 nodes and 60,309 elements, which include 943 linear triangles
and 59 336 linear quadrilaterals (Fig. 4d). The displacement and
angle recordings were used as merged data by taking the initial
centric occlusion position as the common reference frames. The
accuracy of the two recordings were different, more precise in
ENG recordings than video recordings. We segmented the
recordings by time scales, and the data from the same segment
was merged. The merged datasets, containing 18, 61, 29, and
35 segments separately for the four tasks of the centric closing,
protrusion and left-side and right-side lateral excursion, were
delivered to the DBC-FEM model for dynamic stress analysis.

The boundary condition for the stress analysis using DBC-FEM
The mandibular dentition was simulated to move under the fixed
maxillary dentition. The movement was set as three directional
displacements and rotations based on the EGN and video

Table 1. The rotated angles of each plane

Recording plane Centric task Eccentric tasks

Nature closing Protrusion Right-side
lateral
excursion

Left-side
lateral
excursion

Sagittal 0.104 0.111 0.084 0.052

Frontal 0.001 0.002 0.001 0.002

Horizontal 0.003 0.001 0.471 0.179
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Fig. 4 Development and application of the displacement boundary condition finite element model (DBC-FEM) and the jaw rotation
movements recording methods. a The full reconstructed 3D dentition surface models positioned at centric occlusion. b Diagram for jaw
rotation video recording. The pogonion, gonion, nasion, hyoid bone, and root of zygomatic process (RZP), as indicated by red spots, were
taken as the osteological landmarks. Video of the jaw rotation movements was recorded in sagittal (x- and y-axis), frontal (y- and z-axis), and
horizontal (x- and z-axis) planes, separately. c The mandibular movements of three plane decomposition originated from ENG recordings.
d The dentitions mesh elements. e The displacement boundary conditions. The blue arrows represent rotational loadings, and the orange
ones represent displacement loadings
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recordings (Fig. 4e). The displacements can be captured by tracing
a magnetic point in the ENG, and the rotational angles can be
captured by tracing the markers in the video recordings. The
volunteer first kept in the initial occlusal gesture with mouth
closed, and then was required to start the four moving tasks.
The displacements data from EGN and video derived from the
same task were matched by time scales. The displacement and
angle data were merging analyzed by taking the initial gesture as
the common reference frames. The accuracy of ENG was higher
than video, but with the time scales as labels, the system errors
were diminished to minimal. The contacts between the pairs of
the maxillary and mandibular dentitions were set with friction
coefficient 0.1 and no elastic slip on the interactions.59 The contact
stress was calculated proportionally according to the occlusal
contact areas at each material point of the model following
penalty algorithms.

The simulated tasks
In total three sets of tasks were simulated.
Section 1: Four simulated tasks were centric movement, which

was the nature closing to the centric occlusion position, and
eccentric movement, which included protrusion from the centric
position to the edge-to-edge relation, and lateral excursion from
the centric position to the right and left side, separately, with the
mandibular buccal cusps directly under the maxillary buccal cusps
of the molars.
Section 2: Applying the mirror trace of the right-side lateral

excursion movement to the left-side lateral excursion movement
to achieve complete symmetrical lateral tasks. The left-side lateral
excursion movement was also applied to the right side for
reference.
Section 3: Applying a virtual removal of the lateral balance

interferential contacts on the right-side first and second molars.
Then the rehabilitated model was applied with the four simulated
tasks as that in section 1 and the mirror simulated task as in
section 2.

Stress analysis
The dynamic contact sizes were calculated to obtain the contact
derived from maximum principal stress on the mandibular
dentition. The stress was analyzed based on the decomposed
normal and shear components in the environment of the Abaqus
software (Version 14.0, Dassault Systemes, Co., Velizy-Villacoublay,
FRANCE). The locations and the values of the maximum stress in
each task were presented.

T-can
The location and strength of the occlusion contacts recorded with
the T-Scan III occlusion analysis system (Tekscan, Inc., Boston, MA,
USA)34 were taken as contrasts. The thickness of the sensor was
60 μm. The time-dependent number and relative strength level of
occlusal contacts were displayed as color contour images. The
system set the force threshold before testing according to the
instrumental introduction.
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