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Abstract
Dopamine	(DA)	signaling	via	G	protein-	coupled	receptors	is	a	multifunctional	neuro-
transmitter	and	neuroendocrine–	immune	modulator.	The	DA	nigrostriatal	pathway,	
which	 controls	 the	 motor	 coordination,	 progressively	 degenerates	 in	 Parkinson's	
disease	 (PD),	 a	most	 common	neurodegenerative	 disorder	 (ND)	 characterized	 by	 a	
selective,	 age-	dependent	 loss	 of	 substantia	 nigra	 pars	 compacta	 (SNpc)	 neurons,	
where	DA	itself	is	a	primary	source	of	oxidative	stress	and	mitochondrial	impairment,	
intersecting	 astrocyte	 and	microglial	 inflammatory	networks.	 Importantly,	 glia	 acts	
as	a	preferential	neuroendocrine–	immune	DA	target,	in	turn,	counter-	modulating	in-
flammatory	processes.	With	a	major	focus	on	DA	intersection	within	the	astrocyte–	
microglial	 inflammatory	network	 in	PD	vulnerability,	we	herein	 first	 summarize	 the	
characteristics	of	DA	signaling	systems,	 the	propensity	of	DA	neurons	 to	oxidative	
stress,	and	glial	inflammatory	triggers	dictating	the	vulnerability	to	PD.	Reciprocally,	
DA	modulation	of	astrocytes	and	microglial	reactivity,	coupled	to	the	synergic	impact	
of	gene–	environment	interactions,	then	constitute	a	further	level	of	control	regulat-
ing	midbrain	DA	neuron	(mDAn)	survival/death.	Not	surprisingly,	within	this	circuitry,	
DA	converges	to	modulate	nuclear factor erythroid 2- like 2	(Nrf2),	the	master	regulator	
of	cellular	defense	against	oxidative	stress	and	inflammation,	and	Wingless	 (Wnt)/β- 
catenin	 signaling,	 a	 key	 pathway	 for	 mDAn	 neurogenesis,	 neuroprotection,	 and	
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1  |  INTRODUC TION

Dopamine	(DA)	is	a	central	player	in	movement	regulation,	reward,	
and neuroendocrine– immune homeostasis. In the nigrostriatal path-
way,	the	substantia	nigra	(SN,	A9)	cell	bodies	are	responsible	for	the	
production	and	release	of	DA	into	the	corpus	striatum	(Str),	which	
governs	 motor	 coordination.	 In	 Parkinson's	 disease	 (PD),	 a	 most	
prevalent age- dependent movement disorder and the second most 
common	neurodegenerative	 disease	 (ND)	 affecting	 2%–	3%	of	 the	
population >65	years	of	age,	a	selective	and	progressive	loss	of	SN	
pars	compacta	(SNpc)	neurons,	associated	with	a	slow	degeneration	
of	their	terminals	in	the	Str,	gradually	impairs	motor	function	leading	
to	the	classical	motor	features	of	PD	(i.e.,	bradykinesia,	rest	tremor,	
rigidity,	and	postural	instability)	(Obeso	et	al.,	2017).	A	major	patho-
logical	 feature	of	PD	 is	 the	presence	of	aggregates	that	 localize	 in	
neuronal	cytoplasm	as	Lewy	bodies,	mainly	composed	of	α- synuclein 
(α-	syn)	and	ubiquitin	(Chu	et	al.,	2019;	Killinger	&	Kordower,	2019;	
Litvan	et	al.,	2007;	Ulusoy	&	Monte,	2013).

Remarkably,	 Parkinson's	 disease	 is	 the	 fastest	 growing	 neuro-
logical	disorder	in	the	world,	with	the	number	of	patients	affected	
expected	 to	 grow	 exponentially	 from	 almost	 7	million	 in	 2015	 to	
>14.2	million	in	2040.	Such	a	Parkinson	“pandemic”	facing,	now,	the	
coronavirus	disease	2019	(COVID-	19)	pandemic	is	expected	to	cause	
a	most	severe	health	care,	and	social	and	economic	burden	(Dorsey	
et	al.,	2018;	Helmich	&	Bloem,	2020).	Particularly,	COVID-	19	infec-
tion	 (Huang	et	al.,	2020)	 intersects	the	pivotal	environmental	hall-
marks	 for	 PD	 and	 other	NDs,	 namely	 aging	 (Gerashchenko	 et	 al.,	
2020),	chronic	stress,	and	exacerbated	inflammatory	response	(the	
so-	called	“cytokine	storm”)	(Delgado-	Roche	&	Mesta,	2020;	Huang	
et	 al.,	 2020),	 representing	 conditions	 recognized	 to	 drive	 and/or	
worsen	Parkinson's	symptoms.

Indeed,	 aging,	 a	 most	 dangerous	 vulnerability	 factor	 for	 PD,	
by promoting a sustained inflammatory activation of the glial cell 
compartment,	for	example,	astrocytes	and	microglia,	acts	as	critical	
“vicious”	mechanism	 contributing	 to	 the	 onset	 and/or	 progression	
of	the	disease	(Betarbet	et	al.,	2002;	Di	Monte	et	al.,	2002;	Gao	&	
Hong,	2011;	Gao	et	al.,	2011;	Hirsch	&	Hunot,	2009;	Marchetti	&	
Abbracchio,	2005;	McGeer	&	McGeer,	2008;	Przedborski,	2010;	Tu	
et	al.,	2019;	Tu	et	al.,	2019;	Whitton,	2010;	Zhu	et	al.,	2021).

Regrettably,	 the	 underlying	 causes	 linking	 these	 pathological	
hallmarks	with	neurodegeneration	 still	 remain	unclear,	 and	by	 the	
time	clinical	manifestations	appear,	about	70%	of	the	dopamine	(DA)	

fibers	in	the	caudate	putamen	(CPu)	and	almost	50%	of	the	midbrain	
dopaminergic	neurons	(mDAns)	in	SNpc	are	already	lost	(Litvan	et	al.,	
2007;	Obeso	 et	 al.,	 2017).	 The	 progression	 of	 the	 disease	 is	 slow	
in	most	 cases,	 but	 irreversible,	with	 current	 therapies	 (e.g.,	 L-	3,4-	
dihydroxyphenylalanine,	 L-	DOPA,	 the	 mainstay	 in	 PD	 treatment),	
being	directed	toward	the	replacement	of	DA	levels	in	the	brain,	and,	
as	such,	provided	only	symptomatic	relief	(Jankovic,	2019;	Schapira	
et	 al.,	 2014).	Of	 note,	 these	 drugs	 do	 not	modify	 the	 progressive	
neurodegenerative	cell	loss	associated	with	PD	that,	in	many	cases,	
results	in	debilitating	side	effects	(see	Obeso	et	al.,	2017).

Because	 DA	 has	 a	 multifunctional	 role	 as	 neurotransmitter	 and	
neuroendocrine–	immune	modulator,	 along	with	SNpc-	mDAns,	other	
neural	populations	of	 the	central	 (CNS)	and	peripheral	nervous	 sys-
tems	 (PNS)	are	affected	 in	PD	(Braak	et	al.,	2004;	Garrido-	Gil	et	al.,	
2018;	Ulusoy	et	al.,	2017).	Aside	 the	DA	nigrostriatal	pathway,	con-
trolling	motor	coordination,	in	the	ventral	tegmental	area	(VTA,	A10),	
DA-	containing	cell	bodies	release	DA	into	major	brain	 limbic	regions	
including	 the	 nucleus	 accumbens,	 the	 amygdala,	 the	 hippocampus,	
and	 the	prefrontal	 cortex,	 constituting	 the	mesolimbic–	mesocortical	
reward	pathway	(Klein	et	al.,	2019)	(Figure	1).	Within	the	arcuate	nu-
clei	of	the	mediobasal	hypothalamus,	the	so-	called	“tuberoinfundibular	
DA	(TIDA)”	system	modulates	the	output	of	releasing	factors	within	
the	 hypothalamic	 median	 eminence	 (ME),	 thereby	 regulating	 neu-
roendocrine	 axes,	 such	 as	 the	 hypothalamic–	hypophyseal–	gonadal	
(HPG)	 and	 hypothalamic–	hypophyseal–	adrenocortical	 (HPA)	 axes,	
neurotransmitters,	neuropeptides,	and	hormones,	including	luteinizing	
hormone-	releasing	hormone	(LHRH)	and	prolactin	 (PRL),	 in	turn	piv-
otally	involved	in	immunomodulation	(Hodo	et	al.,	2020;	Illiano	et	al.,	
2020;	Maatouk	et	al.,	2019;	Marchetti	et	al.,	1990,	2001;	Morale	et	al.,	
2004;	Sarkar	et	al.,	2010)	(Figure	1).	Accordingly,	thanks	to	the	expres-
sion	of	neurotransmitter,	peptidergic,	hormonal,	and	cytokine	regula-
tory	receptors,	glia	acts	as	a	preferential	neuroendocrine–	immune	DA	
target,	with	DA	signaling	pathways	in	turn	counter-	modulating	inflam-
matory	processes,	both	at	central	and	at	peripheral	 levels	 (Figure	1).	
Importantly,	DA	contributes	to	bidirectional	neuroendocrine–	immune	
crosstalk,	also	within	the	brain–	gut	axis,	with	critical	 implications	for	
PD	(Chow	&	Gulbransen,	2017;	Garrido-	Gil	et	al.,	2018;	Sampson	et	al.,	
2016).	Remarkably,	emerging	functions	are	being	also	increasingly	re-
ported for the renin– angiotensin system in the regulation of central 
and	peripheral	inflammation,	collaborating	in	the	complex	integration	
of	immune	responses	(Dang	et	al.,	2021;	Gong	et	al.,	2019;	Mowry	&	
Biancardi,	2019).

immunomodulation,	adding	to	the	already	complex	“signaling	puzzle,”	a	novel	actor	
in	mDAn–	glial	regulatory	machinery.	Here,	we	propose	an	autoregulatory	feedback	
system	allowing	DA	to	act	as	an	endogenous	Nrf2/Wnt innate modulator and trace the 
importance	of	DA	receptor	agonists	applied	to	the	clinic	as	immune	modifiers.

K E Y W O R D S
dopamine	signaling,	glial–	neuron	crosstalk,	inflammation,	Nrf2/Wnt	signaling,	oxidative	stress,	
Parkinson's	disease
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Not	 surprisingly,	 within	 this	 frame,	 alterations	 in	 a	 number	 of	
non-	motor	 (including,	autonomic,	gastric,	hormonal,	and	cognitive)	
symptoms	may	both	precede	and	accompany	PD	onset	and	progres-
sion	(Chen,	Burton,	et	al.,	2013;	Chen,	Ni,	et	al.,	2013;	Matsumoto,	
2015;	Tibar	et	al.,	2018).

A	number	of	 genes	 that	 cause	 certain	 forms	of	 inherited	PD	
(<10%	 cases)	 have	 been	 identified,	 but	 the	 majority	 of	 cases	
(>90%)	 appear	 to	 be	 sporadic	 and	 likely	 represent	 an	 interplay	
between	 genetic	 and	 environmental	 influences,	 with	 the	 aging	

process	and	 inflammation,	as	main	players	both	 in	 the	brain	and	
in	 the	 periphery	 (Bae	 et	 al.,	 2018;	 Campos-	Acuña	 et	 al.,	 2019;	
Cannon	&	Greenamyre,	2013;	Di	Monte,	2003;	Duffy	et	al.,	2018;	
Gao	&	Hong,	2011;	Gao	et	al.,	2011;	Harms	et	al.,	2021;	Langston,	
2017;	Marchetti	 &	 Abbracchio,	 2005;	 Tansey	&	 Romero-	Ramos,	
2019;	Vance	et	al.,	2010).	Notably,	multiple	lines	of	evidence	sug-
gest an interactive network between innate immune cells and 
the	 integrity	 and	 function	 of	 mitochondria,	 the	 key	 organelles	
maintaining	 homeostatic	 cellular	 balance,	 critically	 involved	 in	

F I G U R E  1 Dopamine	as	a	neuroendocrine–	immunomodulator.	Schematic	representation	of	DA	pathways	in	CNS	and	bidirectional	DA	
crosstalk	at	central	and	peripheral	levels	orchestrating	the	regulation	of	neuroendocrine,	autonomic,	lymphoid,	and	gut	axes.	Bidirectional	
circuits	linking	brain	DA	to	astrocyte	and	microglial	crosstalk	are	schematically	represented.	There	are	three	major	DA	pathways	in	the	brain.	
The	nigrostriatal	DA	pathway	originating	in	the	substantia	nigra	pars	compacta	(SNpc,	A9)	releases	DA	into	the	corpus	striatum	(Str),	which	
governs	motor	coordination.	The	mesocortical	and	mesolimbic	DA	pathways	arise	from	the	ventral	tegmental	area	(VTA,	A10),	releasing	DA	
into	major	brain	limbic	regions,	including	the	nucleus	accumbens	(Ac),	the	amygdala	(Am),	the	hippocampus	(Hip),	and	the	prefrontal	cortex,	
constituting	the	mesolimbic–	mesocortical	reward	pathway.	Within	the	hypothalamus	(HYP),	the	tuberoinfundibular	DA	system	modulates	
the	output	of	releasing	factors	regulating	the	hypothalamic–	hypophyseal–	gonadal	(HPG)	and	hypothalamic–	hypophyseal–	adrenocortical	
(HPA)	axes,	neuropeptides,	and	hormones,	including	luteinizing	hormone-	releasing	hormone	(LHRH)	and	prolactin	(PRL),	in	turn	involved	
in	immunomodulation.	At	peripheral	level,	DA	can	communicate	with	the	immune	system	to	modulate	its	activity,	directly	through	specific	
receptors	in	immune	organs	and	cells	or	indirectly	through	the	peripheral	nervous	system	(PNS),	via	sympathetic	and	parasympathetic	
innervation,	neuropeptides,	and	hormone	release.	Bidirectional	DA	crosstalk	between	CNS	and	gastrointestinal	DA,	within	the	brain–	gut	
axis,	also	plays	roles	in	modulating	microenvironmental	cues,	including	the	inflammatory	milieu	and	microbiome	homeostasis
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mDAn	health	 (Schapira	et	al.,	1990,	2014;	Vizioli	et	al.,	2020).	A	
compelling	 link	between	glial	physiopathology	and	PD	genes	has	
been	the	identification	of	a	panel	of	mutated	genes,	 including	α- 
synuclein	 (SNCA),	 parkin	 (PRKN),	 PINK1,	 PTEN-	induced	 putative	
kinase (DJ1),	 and	 leucine-	rich	 repeat	 kinase	 2	 (LRRK2) in astro-
cytes	 and/or	microglial	 cells	 (Ashley	 et	 al.,	 2016;	 Barodia	 et	 al.,	
2019;	Booth	et	al.,	2017;	Choi	et	al.,	2016;	Dzamko	et	al.,	2015).	
Particularly,	the	pathways	regulated	by	these	genes	intersect	DA	
signaling	 and	mDAn	health	 at	 the	 interface	of	 key	 cellular	 func-
tions	affected	in	both	aging	and	Parkinson's	disease,	namely,	the	
inflammatory	 response,	 endoplasmic	 reticulum	 (ER)	 stress,	 and	
mitochondrial,	lysosomal,	proteasomal,	autophagic,	and	Wingless- 
type mouse mammary tumor virus integration site (Wnt)/β- catenin 
signaling	functions	 (Arias,	2017;	Awad	et	al.,	2017;	Bektas	et	al.,	
2019;	 Belenkaya	 et	 al.,	 2008;	 Berwick	 &	 Harvey,	 2012,	 2014;	
Berwick	et	al.,	2017;	Cuervo,	2008;	Cuervo	&	Macian,	2014;	Kim	
et	al.,	2013;	Marchetti,	2018;	Schmidt	et	al.,	2011).	On	 the	con-
trary,	potential	neuroprotective	and	neuroreparative	functions	of	
astrocytes	and	microglia	are	being	increasingly	reported,	thereby	
supporting	 the	 initial	 claim	 “To	be	or	 not	 to	be	 inflamed:	 is	 that	
the	question	in	anti-	inflammatory	drug	therapy	of	neurodegener-
ative	diseases?”	(Marchetti	&	Abbracchio,	2005),	underscoring	“Dr 
Jekyll/Mr Hyde”	 sides	 of	 glia,	 yet	 the	 crucial	 mechanisms/condi-
tions	 driving	 a	 “beneficial	 glial	 switch,”	 whereby	 astrocytes	 and	
microglia	can	exert	neuroprotective	and/or	proregenerative	prop-
erties	upon	injury,	remain	ill-	defined.

One critical feature of astrocytes is to protect the vulnerable 
mDAns.	Research	of	the	 last	decade	from	our	 laboratory	centered	
on Nuclear factor erythroid 2- like 2	 (NFE2L2/Nrf2),	 the	master	 reg-
ulator	 of	 cellular	 defense	 against	 oxidative	 stress	 and	 inflamma-
tion,	and	a	critical	modulator	of	the	life	span	(Ammal	Kaidery	et	al.,	
2019;	 Cuadrado	 et	 al.,	 2019;	 Dinkova-	Kostova	 &	 Abramov,	 2015;	
Holmström	et	al.,	2016;	Johnson	&	Johnson,	2015;	Lastres-	Becker,	
2021;	 Ryoo	 &	 Kwak,	 2018;	 Strong	 et	 al.,	 2016),	 and	 the	Wnt/β- 
catenin	signaling	cascade,	a	vital	pathway	for	mDAn	neurogenesis,	
neuroprotection,	and	immunomodulation,	and	key	interactor	of	the	
aging	 process	 (Arias,	 2017;	 Awad	 et	 al.,	 2017;	 Berwick	&	Harvey,	
2012,	2014;	Berwick	et	al.,	2017;	Galli	et	al.,	2014;	Hofmann	et	al.,	
2014;	Harvey	&	Marchetti,	 2014;	Knotek	 et	 al.,	 2020;	 L’Episcopo,	
Tirolo,	 et	 al.,	 2011;	 L’Episcopo,	 Serapide,	 et	 al.,	 2011;	 L’Episcopo,	
et	al.,	2013;	Marchetti	&	Pluchino,	2013;	Marchetti	et	al.,	2020).

Notably,	 it	 should	 be	 emphasized	 that	 being	 a	 critical	 neuro-
pathological	 hallmark	 of	 aging	 and	 aging-	dependent	 diseases,	 es-
pecially	 PD,	 inflammatory	 response	 regulation	 is	multifaceted	 and	
integrated by a wide panel of crucial intermingled pathways to in-
clude,	 besides	 others,	 the	 renin–	angiotensin	 system	 and	 a	 wide	
panel	of	neurotransmitters,	and	hormonal	and	peripheral	 immuno-
regulatory	networks,	recently	summarized	in	excellent	reviews	and	
original	contributions	(Dang	et	al.,	2021;	Hodo	et	al.,	2020).

Considering	 the	 complexity	 of	 the	 mutual	 interplay	 of	 glial-	
derived factors in vivo,	 coupled	 to	 the	 influence	 of	 different	 risk	
factors	in	mDAn	vulnerability,	it	is	conceivable	that	DA	signaling	at	
the astrocyte– microglial interface will have a prominent impact for 

mDAn	survival	and	health,	especially	in	light	of	the	intrinsic	charac-
teristics	of	mDAns,	the	interplay	between	DA	signaling	mechanisms,	
coupled to the region- specific properties of nigrostriatal glial cells 
(Asanuma	et	al.,	2019;	Kostuk	et	al.,	2019;	Sofroniew,	2015;	Wang	
et	al.,	2020;	Yao	et	al.,	2021).

With	 a	 major	 focus	 on	 DA	 intersection	 within	 the	 astrocyte–	
microglial	 inflammatory	 network	 in	 PD	 vulnerability	 with	 age,	 we	
herein	 first	 summarize	 the	 characteristics	 of	DA	 receptor	 signaling	
systems,	 the	 propensity	 of	DA	 neurons	 to	 oxidative	 stress/glial	 in-
flammatory	 triggers	 dictating	 the	 vulnerability	 to	 PD.	 Reciprocally,	
DA	modulation	of	astrocytes	and	microglial	reactivity,	coupled	to	the	
convergent	impact	of	gene–	environment	interactions,	then	constitute	
a	further	level	of	control	impacting	on	mDAn	survival/death.	Not	sur-
prisingly,	within	this	circuitry,	DA	acting	as	a	neuroendocrine–	immune	
modulator converges to modulate the Nrf2/Wnt	signalosome,	adding	
to	the	already	complex	“signaling	puzzle,”	a	novel	actor	in	mDAn–	glial	
regulatory	 machinery.	 Here,	 an	 autoregulatory	 feedback	 system	 is	
proposed	allowing	DA	to	act	as	an	endogenous	Nrf2/Wnt innate mod-
ulator,	thereby	linking	DA-	induced	oxidative	stress	to	most	important	
neuroprotective	pathways	in	PD,	then	tracing	the	importance	of	DA	
receptor agonists applied to the clinic as immune modifiers.

1.1  |  DA receptor signaling and oxidative 
stress: a unique link for mDAn vulnerability in 
Parkinson's disease

Five	 subtypes	 known	 as	 “D1-	like	 (DRD1	 and	DRD5)	 and	 “D2-	like”	
(DRD3	 and	 DRD4)	 receptors,	 belonging	 to	 the	 superfamily	 of	 G	
protein-	coupled	 receptors	 (GPCRs),	 mediate	 all	 physiological	 func-
tions	 of	 DA,	 as	 expanded	 in	 comprehensive	 reviews	 of	 the	 field	
(Beaulieu	et	al.,	2015;	Beaulieu	&	Gainetdinov,	2011;	Gurevich	et	al.,	
2016).	Upon	DA	binding,	DRD1-	like	 receptor	 subtypes,	 coupled	 to	
Gαs/olf,	drive	adenylyl	cyclase	and	thus	cyclic	adenosine	monophos-
phate	(cAMP)	activity,	then	promoting	cAMP-	dependent	protein	ki-
nase	A	activation	engendering	phosphorylating	cascades	(Figure	2).	
In	 addition	 to	 DRD1	 effects	 on	 cAMP-	regulated	 signaling	 and	 Src	
family	 kinase	 (SFK)	 pathway,	 DRD1/DRD2	 heterodimers	 or	 DRD5	
can	couple	to	Gαq	to	modulate	phospholipase	C	(PLC),	 in	turn	acti-
vating	phospholipid	turnover	and	diacylglycerol	(DAG),	releasing	Ca2+ 
from	internal	stores,	and	activating	protein	kinase	C	(PKC)	(Figure	2).

On	 the	 contrary,	D2-	like	 receptor	 subtypes,	 coupled	 to	Gαi/o,	
suppress	 cAMP	 activity,	 thereby	 producing	 an	 inhibitory	 effect	
upon	 DA	 binding.	 In	 addition,	 DRD2-	mediated	 activation	 of	 Gβγ 
subunits	 also	 participates	 in	 the	 modulation	 of	 ion	 channels,	 in-
cluding	G	 protein-	coupled	 inwardly	 rectifying	 potassium	 channels	
(GIRKs)	and	L-	type	calcium	channels	(Beaulieu	et	al.,	2015;	Beaulieu	
&	Gainetdinov,	 2011).	 The	G	protein-	independent	DRD2	 signaling	
is represented by β-	arrestin-	2	(βArr2)-	mediated	signaling	(Figure	2).	
The	mechanism	underlying	the	regulation	of	Akt	by	βArr2	has	shown	
that activation of the D2- like receptors contributes to the consti-
tution	of	 a	protein	 complex	 composed	of	protein	phosphatase	2A	
(PP2A),	Akt,	and	βArr2	involved	in	a	panel	of	intermingled	signaling	
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pathways	 (reviewed	 by	 Beaulieu	 et	 al.,	 2015),	 including	 the	mod-
ulation	 of	 glycogen	 synthase	 kinase-	3	 (GSK-	3),	 a	 multifunctional	
enzyme	intersecting	a	wide	variety	of	survival	and	immunomodula-
tory	pathways	(see	Beurel	et	al.,	2015,	and	details	in	next	sections)	
(Figure	2).

1.1.1  |  Aging,	dopamine	transporter	(DAT),	and	the	
vulnerability	to	PD

In	 the	 presynaptic	 terminal,	 the	 reuptake	 of	 DA	 through	 the	 ac-
tions	 of	 the	 high-	affinity	 DA	 transporter	 (DAT)	 represents	 a	 key	

step	 whereby	 DA	 is	 repackaged	 into	 the	 storage	 vesicles	 by	 the	
action	 of	 the	 vesicular	 monoamine	 transporter,	 VMAT.	 DAT	 is	 a	
sodium- coupled symporter protein belonging to the superfamily 
of	SLC	 transporters,	 responsible	 for	modulating	 the	concentration	
of	extraneuronal	DA	 in	 the	brain	 (Amara	&	Kuhar,	1993).	Notably,	
association	 of	 a	 polymorphism	 in	 the	 DAT	 gene	 with	 Parkinson's	
disease	 (Le	Couteur	et	al.,	1997;	Wang	et	al.,	2000)	underlines	 its	
potential	role	in	PD	vulnerability	(Schmitt	et	al.,	2013).	Specifically,	
age-	dependent	 changes	 in	 DAT	 and	 accumulation	 of	 nitrosylated	
tyrosine	 (3-	nitrotyrosine,	 3-	NT)	 in	 rhesus	 monkey	 (Kanaan	 et	 al.,	
2008)	and	rodent	mDAns	(Marchetti	et	al.,	2013)	support	dysfunc-
tional	DAT	 as	 a	 vulnerability	 factor	 for	 nigrostriatal	 degeneration.	

F I G U R E  2 Dopamine	receptors	and	signaling	pathways	in	neuroimmune	network.	Simplified	schematic	representation	of	DA	acting	via	
DRD1-		and	DRD2-	like	receptors	by	G	protein-	dependent,	by	stimulatory	(Gαs)	or	inhibitory	Gαi/o	subunits,	or	by	G	protein-	independent	
β-	arrestin-	2	(βArr2)-	dependent	pathway	(for	details,	see	the	text).	DA	binding	to	DRD1-	like	receptor	subtypes	can	elicit	two	transduction	
pathways,	of	which	one	is	coupled	to	Gαs/olf,	driving	adenylyl	cyclase	increasing	cyclic	adenosine	monophosphate	(cAMP)	activity.	In	
addition	to	DRD1	effects	on	cAMP-	regulated	signaling,	DRD1Rs	couple	to	Gαq	to	modulate	phospholipase	C	(PLC)	pathway,	in	turn	
activating	phospholipid	turnover	and	increasing	diacylglycerol	(DAG),	releasing	Ca2+	from	internal	stores,	and	activating	protein	kinase	C	
(PKC).	D2-	like	receptor	subtypes,	coupled	to	Gαi/o,	suppress	cAMP	activity,	thereby	producing	an	inhibitory	effect	upon	DA	binding.	The	
G	protein-	independent	D2R	signaling	is	represented	by	βArr2-	mediated	signaling.	The	activation	of	the	D2-	like	receptors	contributes	to	
the	constitution	of	a	protein	complex	composed	of	protein	phosphatase	2A	(PP2A),	serine/threonine	kinase	(Akt),	and	βArr2,	where	PP2A	
increases	the	dephosphorylation	and	inactivation	of	Akt,	leading	to	the	modulation	of	glycogen	synthase	kinase-	3	(GSK-	3)	activation
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Particularly,	recent	studies	of	Illiano	et	al.	(2020)	showed	that	in	ro-
dents,	the	lack	of	DAT	results	in	increased	vulnerability	and	aberrant	
autonomic	response	to	acute	stress.	In	particular,	DAT	represents	a	
preferential	 target	 for	parkinsonian	neurotoxins,	as	 the	active	me-
tabolite	 of	 1-	methyl-	4-	phenyl-	1,2,3,6-	tetrahydropyridine	 (MPTP),	
MPP+,	 is	 specifically	 transported	by	DAT	and	concentrated	within	
the	nigral	DA	neurons	where	it	inhibits	complex	I	of	the	mitochon-
drial	 electron	 transport	 chain	 (METC),	 resulting	 in	 ATP	 depletion	
and	 subsequent	 neuronal	 cell	 death	 (Di	Monte	&	 Langston,	 1995;	
Langston,	2017;	Schildknecht	et	al.,	2017)	(Figure	3).	The	induction	
of	oxidative	 stress	 results	 in	 the	opening	of	mitochondrial	perme-
ability	transition	pore	(mPTP),	the	release	of	cytochrome	C,	and	the	
activation of caspases. It seems important to recall that mitochon-
dria	 represent	 the	 primary	 energy-	generating	 system,	 involved	 in	
multiple	 processes,	 including	 energy	metabolism,	 reactive	 oxygen	
(ROS)	 generation,	mitochondrial	 dynamics,	 and	 distribution	 (Blesa	

et	al.,	2015;	Bose	&	Beal,	2016;	Schildknecht	et	al.,	2017).	Of	specific	
mention,	mitochondrial	damage	due	to	Ca2+ overload- induced open-
ing	of	mPTP	is	believed	to	play	a	key	role	in	selective	degeneration	
of	nigrostriatal	DAns	in	PD.	Hence,	endoplasmic	reticulum	(ER)	acts	
as a reservoir of Ca2+	ions,	and	increased	Ca2+	released	from	the	ER	
further	enhances	mitochondrial	oxidative	stress	of	mDAns	in	SNpc	
(Blesa	et	al.,	2015;	Schildknecht	et	al.,	2017).	Reportedly,	reduction	
in	complex	I	activity	 in	the	SNpc	of	patients	with	sporadic	PD	has	
been	well	described,	being	considered	as	one	of	the	primary	sources	
of	ROS	in	PD,	and	accounting	for	the	majority	of	mDAn	cell	death	
(Hattori	et	al.,	1991;	Hattingen	et	al.,	2009;	Schapira	et	al.,	1990).	
Of	note,	in	Str,	DA	terminals	actively	degenerated	proportionally	to	
increased	 levels	of	DA	oxidation	following	a	single	 injection	of	DA	
into	the	striatum	(Rabinovic	et	al.,	2000).

Not	 only	 too	 little	 but	 also	 too	much	 of	DAT-	mediated	mech-
anisms	 may	 have	 harmful	 consequences,	 since	 increased	 uptake	

F I G U R E  3 Dopamine	metabolic	pathways	and	astrocyte–	microglial	oxidative/inflammatory	network.	A	schematic	view	of	DA	pre/
postsynaptic	regulatory	functions.	DA	biosynthetic	steps	start	with	the	action	of	the	enzyme	tyrosine	hydroxylase	(TH),	the	rate-	limiting	
step	in	the	biosynthesis	of	DA	in	the	presynaptic	terminals	to	form	the	DA	precursor,	L-	DOPA,	the	principal	drug	in	the	therapeutic	
management	of	PD.	Next,	L-	DOPA	is	decarboxylated	to	form	DA.	DA	is	next	incorporated	into	synaptic	vesicles,	via	the	vesicular	
monoamine	transporter	2	(VMAT2),	permitting	its	protection	from	metabolic	inactivation,	and	its	storage	until	stimulation,	when	DA	
released	by	exocytosis	then	reaches	postsynaptic	neurons	and	binds	to	cognate	D1-		and	D2-	like	receptors.	D2	presynaptic	(inhibitory)	
receptor	can	stop	the	further	production	and	release	of	DA.	The	reuptake	of	DA	by	presynaptic	terminals	through	the	actions	of	the	high-	
affinity	DA	transporter	(DT)	represents	another	key	step	whereby	DA	is	recycled	back	into	the	storage	vesicles,	responsible	for	modulating	
the	concentration	of	extraneuronal	DA	in	the	brain.	Two	enzymes	are	responsible	for	DA	inactivation,	monoamine	oxidases	(MAOs)	and	
catechol- O-	methyl	transferase	(COMT),	predominantly	expressed	by	astrocytes.	During	DA	metabolic	steps,	reactive	oxygen	(ROS)	and	
nitrogen	(RNS)	species	can	be	produced,	which	may	further	engender	a	neurotoxic	cycle	capable	of	causing	cell	death	(for	details,	see	
the	text).	Astrocyte–	neuron	dialogue	may	be	harmful	upon	exposure	to	1-	methyl-	4-	phenyl-	1,2,3,6-		tetrahydropyridine	(MPTP),	as	the	
neurotoxin	is	converted	to	its	active	metabolite	in	astrocytes,	MPP+,	then	specifically	transported	by	DAT	and	concentrated	within	the	
nigral	DA	neurons	where	it	inhibits	complex	I	of	the	mitochondrial	electron	transport	chain,	resulting	in	ATP	depletion	and	subsequent	
neuronal	cell	death.	This	process	associated	with	a	robust	microgliosis	and	proinflammatory	cytokines,	tumor	necrosis	factor	α	(TNF-	α),	
and interleukin- 1β	(IL-	1	β)	production	can	be	counter-	modulated	by	DA	anti-	inflammatory	effects	via	D1/D2-	like	receptors	in	glial	cells,	as	
discussed	in	Sections	1.3–	1.5
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of	DA	through	DAT	in	transgenic	 (Tg)	mice	overexpressing	the	DA	
transporter	 results	 in	 oxidative	 damage,	 neuronal	 loss,	 and	motor	
deficits	 (Masoud	et	 al.,	 2015).	Here,	 the	effects	of	 increased	DAT	
expression	on	DA	homeostasis,	neuronal	survival,	oxidative	stress,	
and	motor	behavior	of	DAT-	Tg	mice	were	evaluated	 together	with	
the	nigrostriatal	response	to	MPTP	(Masoud	et	al.,	2015).	Hence,	an	
almost	30%–	36%	loss	of	mDAns	and	fine	motor	deficits	were	asso-
ciated	with	an	increased	vulnerability	to	MPTP-	induced	mDAn	loss,	
indicating	that	overactivation	of	DAT-	mediated	uptake	of	dopamine	
leads	to	basal	neurotoxicity	and	heightened	sensitivity	to	exogenous	
insults	(Masoud	et	al.,	2015).

Together,	the	presynaptic	transporter	DAT	in	nigral	dopaminer-
gic neurons confers susceptibility and represents a principal age- 
dependent	vulnerability	factor	for	PD.

1.1.2  |  Aging,	DA	oxidative	metabolism,	and	
nigrostriatal	neuron	vulnerability	in	PD

Given	 the	high	metabolic	activity	 that	 is	 required	 to	support	 their	
extensive	axonal	arborization,	mDAns	are	physiologically	subjected	
to	various	levels	of	oxidative	stress,	and	reciprocally,	among	a	num-
ber	of	brain	regions	studied,	the	SNpc,	where	A9	DA	cell	bodies	are	
located,	is	the	more	vulnerable	region,	as	DA	metabolism	constantly	
generates	ROS	(Chinta	&	Andersen,	2008).	Notably,	the	aging	pro-
cess,	 associated	with	a	progressive	mDAn	dysfunction,	may	add	a	
further	oxidative	load	to	the	system,	with	harmful	consequences	for	
nigrostriatal	 neuron	 integrity	 (as	 summarized	 in	 Section	 1.2).	 Two	
enzymes	 are	 primarily	 responsible	 for	 DA	 inactivation,	 monoam-
ine	oxidase	 isoforms	 (MAO-	A	and	MAO-	B)	and	catechol-	O- methyl 
transferase	 (COMT),	predominantly	expressed	by	glial	 cells.	MAO,	
a	flavin-	containing	enzyme	is	located	on	the	outer	membrane	of	the	
mitochondria.	This	enzyme	oxidatively	deaminates	catecholamines	
to their corresponding aldehydes; these can be in turn converted 
either by aldehyde dehydrogenase to acids or by aldehyde reduc-
tase	to	form	glycols.	Due	to	its	intracellular	localization,	MAO	has	a	
strategic	role	in	the	inactivation	of	DA	when	the	amine	is	not	pro-
tected	by	the	storage	vesicles	in	presynaptic	terminal.	MAO	breaks	
down	DA	 to	3,4-	dihydroxyphenylacetaldehyde	 (DOPAL),	which,	 in	
turn,	is	degraded	to	form	3,4-	dihydroxyphenylacetic	acid	(DOPAC)	
by	the	action	of	the	enzyme	aldehyde	dehydrogenase.	COMT	con-
verts	DA	 to	3-	methoxytyramine	 (3-	MT),	which	 is	 further	 reduced	
by	 MAO	 to	 homovanillic	 acid	 (HVA)	 and	 then	 eliminated	 in	 the	
urine.	During	DA	metabolic	 steps,	ROS	and	RNS	can	be	produced	
(Afanas,	2005).	These	may	 include	hydrogen	peroxide	 (H2O2),	 sin-
glet	 oxygen	 (1O2),	 hydroxyl	 (OH),	 and	 superoxide	 (O2)	 radicals	
(Halliwell	&	Gutteridge,	1984;	Kumar	et	al.,	2012;	Sies	et	al.,	2017).	
RNS	are	produced	 in	neuronal	cells	 from	arginine	by	 the	neuronal	
nitric	 oxide	 synthase	 (nNOS)	 and	 include	 nitric	 oxide	 (NO),	 nitrite	
(NO2),	and	S-	nitrosothiols	and	peroxynitrite	(OONO)	(Adams	et	al.,	
2015).	Additionally,	DA	metabolites	and	certain	derivatives	such	as	
N-	methyl-	(R)-	salsolinol	 (NMSAL)	 (Naoi	 et	 al.,	 2002)	 are	 prone	 to	

oxidation,	generating	reactive	quinones,	which	may	further	engen-
der	a	neurotoxic	cycle	able	to	readily	modify	proteins	and	potentially	
cause	protein	aggregation	(Sulzer	&	Zecca,	2000;	Zucca	et	al.,	2014).

Overall,	age-		and	PD-	dependent	chronic	DA	neuronal	dysfunc-
tion,	 altered	 DA	 metabolism,	 and	 dysregulated	 reactive	 species	
production	 then	have	 to	 face	 the	harmful	 gene	x	environment	 in-
teractions	promoting	 a	 feedforward	oxidative/inflammatory	 cycle,	
contributing to progressive neuronal deterioration and motor defi-
ciency	of	PD.

1.2  |  The vicious cycle of aging, genes, and mDAn 
mitochondrial dysfunction

1.2.1  |  Aging	and	the	glial	inflammatory	network	
in	PD

A	critical	hallmark	of	aging	is	the	progressive	decline	in	nigrostriatal	
DA	neurons	(Bezard	&	Gross,	1998;	Boger	et	al.,	2010;	Collier	et	al.,	
2007;	de	la	Fuente-	Fernández	et	al.,	2011;	Hindle,	2010)	associated	
with	the	failure	of	the	adaptive/compensatory	potential	of	mDAns,	
recognized	 to	 be	 implicated	 in	 the	 slow	but	 progressive	 nigrostri-
atal	degeneration	of	PD,	with	 the	 late	appearance	of	clinical	 signs	
(Bezard	&	Gross,	1998;	Hornykiewicz,	1993;	Kanaan	et	 al.,	 2008).	
Here,	a	crucial	causative	role	is	represented	by	the	exacerbation	of	
the	astroglial	microenvironment,	as	a	result	of	a	dysfunctional	gene–	
environment	crosstalk.	Reportedly,	the	major	aging	culprits,	namely	
oxidative	stress	and	low-	grade	inflammation,	may	further	be	exac-
erbated	under	basal	ganglia	injury,	neurotoxin	exposure,	male	gen-
der,	and	PD	genetic	mutations	(Gao	&	Hong,	2011;	Gao	et	al.,	2003,	
2011;	Hu	et	al.,	2008;	Marchetti	&	Abbracchio,	2005).	Notably,	with	
age,	 defective	 mitochondrial	 turnover	 by	 autophagy	 may	 trigger	
chronic inflammation and critically contribute to the impairment of 
immune	defense,	in	as	much	as	malfunctioning	autophagy	has	been	
reported	in	several	diseases	NDs,	including	PD,	with	its	consequent	
toxicity	considered	to	be	a	main	cause	of	the	disease	(Bektas	et	al.,	
2019;	Cuervo,	2008;	Cuervo	&	Macian,	2014;	Scrivo	et	al.,	2018).	
Recently,	 the	pentose	phosphate	pathway	 (PPP,	 a	metabolic	path-
way	parallel	to	glycolysis),	which	converts	glucose-	6-	phosphate	into	
pentoses	 and	 generates	 ribose-	5-	phosphate	 and	 NADPH	 thereby	
governing	anabolic	biosynthesis	and	redox	homeostasis,	has	gained	
a	critical	attention	(Tu	et	al.,	2019).	Hence,	expression	and	activity	
of	G6PD	were	elevated	in	an	in	vitro	model	of	PD	(e.g.,	LPS-	treated	
midbrain	neuron–	glial	cultures)	and	the	SN	of	vivo	PD	models,	as-
sociating	with	microglial	 activation	and	mDAn	neurodegeneration,	
whereas	 inhibition	 of	G6PD	 elevation	 or	 knockdown	of	microglial	
G6PD	attenuated	LPS-	elicited	chronic	mDAn	neurodegeneration	(Tu	
et	al.,	2019).	Further,	microglia	with	elevated	G6PD	activity/expres-
sion	produced	excessive	NADPH	and	provided	abundant	substrate	
to	overactivated	NADPH	oxidase	 (NOX2)	 resulting	 in	exacerbated	
ROS,	which	suggests	that	G6PD	and	NOX2	are	potential	therapeutic	
targets	for	PD	(Tu	et	al.,	2019).
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In	glial	cells,	mutated	genes	then	cooperate	with	environmental	
influences to impair mitochondrial homeostasis and the autophagy– 
lysosomal	pathways,	all	implicated	in	mDAn	dysfunction	observed	in	
PD	(Ashley	et	al.,	2016;	Barodia	et	al.,	2019;	Booth	et	al.,	2017;	Choi	
et	al.,	2016;	Cuervo	&	Macian,	2014;	Dzamko	et	al.,	2015;	Gillardon	
et	al.,	2012;	Kim	et	al.,	2013;	Kline	et	al.,	2021;	Lastres-	Becker	et	al.,	
2012;	Marchetti,	2020;	Schmidt	et	al.,	2011).	While	this	topic	is	out-
side	 the	 scope	of	 the	present	work,	 it	 seems	 important	 to	 under-
score	that	all	major	human	PD-	linked	mutations	(i.e.,	SNCA,	LRRK2,	
PINK1,	and	DJ1)	induce	complex	I	inhibition,	and	synergism	with	the	
age-	dependent	oxidative	stress	and	inflammation	further	promotes	
increased	generation	of	oxidative	and	nitrosative	stress	mediators,	
in	 turn	 exacerbating	 the	 proinflammatory	 microglial	 “M1”	 pheno-
type,	 then	promoting	progression	of	mDAn	death	 (Lastres-	Becker	
et	al.,	2012).	Notably,	with	age,	progressive	acquisition	by	glial	cells	
of the capacity to produce greater levels of a set of proinflamma-
tory	mediators	both	 in	physiological	conditions,	and	more	actively	
under	 immune	 or	 neurotoxic	 stimuli	 on	 the	 one	 hand,	 coupled	 to	
the	failure	of	host	surveillance	systems,	on	the	other,	can	translate	
into	harmful	consequences	both	at	central	and	at	peripheral	 levels	
(Boche	et	al.,	2013;	De	Cecco	et	al.,	2019;	Perry	&	Teeling,	2013;	
Tansey	&	Romero-	Ramos,	2019).	This	so-	called	“microglial	cell	shift”	
to	the	“harmful,”	M1	phenotype	promoting	the	release	of	an	array	
of	factors	that	are	detrimental	 for	the	vulnerable	mDAns	depends	
upon inflammasome activation.

1.2.2  |  Aging,	inflammasome	activation,	and	
mitochondrial	dysfunction	in	PD

Significantly,	nuclear	factor	kappa-	light-	chain-	enhancer	of	activated	
B	cells	(NF-	ĸB,	a	protein	complex	that	controls	cytokine	production	
and	cell	survival)	is	the	first	signal	for	inflammasome	induction	and	
a	 key	 interactor	 of	 DA	 signaling	 (as	 detailed	 in	 the	 next	 section).	
Among	the	numerous	inflammatory	cytokines,	interleukin-	1β	(IL-	1β)	
produced	 by	 glial	 cell	Nod-	like	 receptor	 protein	 (NLRP)	 inflamma-
some	exerts	a	central	role	in	regulating	neuroinflammation	(Codolo	
et	al.,	2013;	Haque	et	al.,	2020;	Heneka	et	al.,	2014).	Upon	stimu-
lation	 by	 adenosine	 triphosphate	 (ATP),	 reactive	 oxygen	 species,	
lysosomal	 contents,	 or	 other	 factors,	 NLRP3	 recruits	 the	 adapter	
molecule	apoptosis-	related	speck-	like	protein	(ASC)	and	procaspase-
	1	 to	 promote	 caspase-	1	 activation	 (Dinarello,	 2007).	 This	 process	
leads	to	the	maturation	of	the	proinflammatory	cytokines	(IL-	1β,	IL-	
18).	The	secretion	of	IL-	1β by glial cells contributes toward the de-
struction	of	mDAns	in	the	brain	of	PD	patients	and	the	initiation	of	
cell	death	(McGeer	&	McGeer,	2008).	Hence,	MPTP-	driven	NLRP3	
inflammasome	activation	in	microglia	plays	a	central	role	in	mDAns	
demise	 (Gordon	et	 al.,	 2018;	 Lee,	 2018),	 in	 as	much	as	 aging	 rep-
resents	a	synergic	trigger	directing	microglia	toward	the	M1	proin-
flammatory	phenotype	(L’Episcopo,	Tirolo,	Testa,	Canigilia,	Morale,	
Impagnatiello,	et	al.,	2011).	Additionally,	mitochondrial	 impairment	
in	microglia	amplifies	NLRP3	inflammasome	proinflammatory	sign-
aling	 in	 cell	 culture	 and	 animal	models	 of	 PD	 (Sarkar	 et	 al.,	 2017;	

Zhu	et	al.,	2021),	whereas	the	suppression	of	NLRP3	inflammasome-	
derived	 proinflammatory	 cytokines	 mitigates	 mDAn	 degeneration	
and	may	be	beneficial	to	PD	patients	(Ahmed	et	al.,	2021;	Gordon	
et	al.,	2018;	Haque	et	al.,	2020;	Zhu	et	al.,	2018).	Interestingly,	the	
vicious crosstalk between the impaired mitochondrial signaling and 
NLRP3	 machinery	 can	 contribute	 to	 amplify	 further	 the	 noxious	
mDAns	outcome,	as	NLRP3/caspase-	1	activation	under	toxic	expo-
sure	 is	mediated	by	mitochondrial	ROS	generation	 (Afonina	 et	 al.,	
2017;	Sarkar	et	al.,	2017).

Altogether,	glia	acts	as	a	common	final	pathway	of	gene	x	envi-
ronment	interactions	in	PD,	playing	critical	roles	in	the	exacerbation	
of	age-	dependent	mDAn	degeneration,	and	intersecting	the	harmful	
DA	oxidative	metabolism.	As	a	result,	the	modulatory	role	of	DA	sig-
naling	in	glial	cell	networks	appears	decisive,	since	they	might	either	
help	the	imperiled	mDAns	to	combat	oxidative	stress	and	inflamma-
tion through a wide variety of mechanisms addressed in the follow-
ing sections.

1.3  |  Dopamine signaling strategy to combat 
oxidative stress and inflammation in PD

Indeed,	 within	 this	 scenario,	 DA	 emerges	 as	 a	 pivotal	 regulator	
of	 inflammation,	 thanks	 to	 its	 dual	 facet	 of	 immunosuppressor/
activator relying on its receptor subtypes coupled to stimulatory/
inhibitory	 signal	 transduction	 pathways.	 Reportedly,	 exposure	
to	DA	or	DA	receptor	agonists	decreases	detrimental	actions	of	
immune	 cells	 (Table	 1).	 In	 contrast,	 a	 reduction	 in	 DA	 signaling	
perpetuates a proinflammatory state associated with increased 
release	of	proinflammatory	molecules.	Here,	DA	dialogue	with	mi-
croglia	and	astrocytes	together	with	the	proposed	DA-	mediated	
intersection at the Nrf2/Wnt/β- catenin/GSK- 3β signalosome is 
presented.

1.3.1  |  DA	signaling	intersects	harmful	microglial	
inflammatory	networks	in	PD:	DA/NF-	ĸB	/
NLRP3	crosstalk

A	most	robust	evidence	linking	DA	to	inflammation	is	the	recognized	
notion	that	DA	deficit	within	the	nigrostriatal	system,	as	observed	in	
preclinical	and	clinical	models	of	PD,	strongly	associates	with	exag-
gerated	inflammation	both	at	central	and	at	peripheral	levels.	Studies	
conducted	 in	 the	MPTP	 model	 of	 PD,	 including	 our	 own	 results,	
clearly showed an inverse relationship between microglial inflam-
matory	activation	and	 the	 sharp	 inhibition	of	DA,	DRD2	and	DAT	
in	striatum	of	basal	ganglia-	injured	mice	(Serapide	et	al.,	2020).	The	
greatest	effects	were	observed	in	aged	mice,	coincident	with	a	ro-
bust	activation	of	major	proinflammatory	transcripts,	including	NF-	
ĸB,	IL-	1β,	TNF-	α,	and	IL-	6,	as	well	as	oxidative	and	nitrosative	stress	
markers	such	as	ROS,	RNS,	and	3-	NT.	Likewise,	at	the	midbrain	level,	
progressive	decline	in	DA	resulting	from	the	aging	process	associates	
with	increased	reactivity	of	the	microglial	cell	compartment,	further	
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amplified	after	basal	ganglia	injury,	in	the	face	of	downregulation	of	
major	DA	transcripts,	including	DRD2	and	protein	levels	in	the	mid-
brain	(L’Episcopo	et	al.,	2018).	Such	a	dramatic	loss	of	DA	inhibitory	
tonus onto nigrostriatal astrocytes and microglia likely contributes 
to	 the	 observed	 exacerbated	 neuroinflammation	 during	 aging	 and	
PD	(Serapide	et	al.,	2020).

Reportedly,	 microglia	 harbor	 DA	 receptor	 subfamilies	 (Pocock	
&	 Kettenmann,	 2007).	 Studies	 of	Mastroeni	 et	 al.	 (2009)	 showed	
that	cultured	human	elderly	microglia	expressed	mRNAs	for	DRD1-	
DRD4	 but	 not	DRD5	 receptors	 (Table	 1).	 In	 addition,	 PD	microg-
lia in situ	 were	 also	 immunoreactive	 for	 DRD1-	DRD4	 but	 not	 for	
DRD5	receptors,	suggesting	that	activated	PD	microglia	expressing	
DA	 receptors	might	play	 roles	 in	 the	 selective	vulnerability	of	DA	

neurons	in	PD	(Mastroeni	et	al.,	2009).	In	PD	rats,	DRD1	activated	
by	acetyl-	L-	carnitine	attenuates	microglial	activation	and	the	release	
of	 proinflammatory	 mediators,	 a	 phenomenon	 potentially	 linked	
to the amelioration of cognitive deficits and neurodegeneration 
(Singh,	 Mishra,	 Mohanbhai,	 et	 al.,	 2018).	 Here,	 acetyl-	L-	carnitine	
inhibited microglial activation- mediated inflammatory response 
and	 weakened	 TNF-	α levels by increasing the production of the 
anti-	inflammatory	cytokine,	 IL-	10,	which	 led	 to	 improved	neuronal	
survival	 (Singh,	 Mishra,	 Mohanbhai,	 et	 al.,	 2018),	 implicating	 DA	
regulation	of	 inflammasome/NF-	ĸB	pathway	(recently	reviewed	by	
Feng	&	Lu,	2021).	Within	this	context,	emerging	evidence	also	indi-
cates	that	microglial	polarization	and	generation	of	ROS	are	tightly	
related	to	the	DA-	targeted	brain	intrinsic	renin–	angiotensin	system	

TA B L E  1 Dopamine	signaling	at	the	microglial-	astrocyte	interface

Da receptor subtypes and functions References

ASTROCYTES AND MICROGLIA

Cultured	human	elderly	microglia	expressed	mRNAs	for	DRD1-	D4	but	not	DRD5.	The	microglia,	as	well	as	PD	
microglia in situ,	were	also	immunoreactive	for	DRD1-	D4	but	not	DRD5.

Mastroeni	et	al.	(2009)

DA	has	a	differential	role	in	resting	and	activated	microglia,	as	phagocytosis	and	adhesion	depend	on	the	
activation states of microglia.

Fan	et	al.	(2018)

DA	prevents	microglial	glutamate	release	evoked	by	α-	synuclein	aggregates	by	an	antioxidant	effect	requiring	
DRD1	activation	and	PI3K	inhibition.

Dos-	Santos-	Pereira	et	al.	(2018)

In	PD	rats	DRD1	activated	by	acetyl-	L-	carnitine	attenuates	microglial	activation	and	the	release	of	pro-	
inflammatory	mediators,	preventing	neuronal	death	and	improving	memory	functions.

Singh	et	al.	(2018a)

In	ageing	mice,	progressive	decline	of	DA-	activating	DR2R	associates	with	increased	reactivity	of	microglia,	
further	amplified	after	basal	ganglia	injury,	in	the	face	of	downregulation	of	major	DRD2,	anti-	oxidant	and	
neuroprotective astrocyte transcripts and protein levels.

L’Episcopo	et	al.	(2018)
Serapide	et	al	(2020)

DRD1	are	present	on	fine	processes	of	GFAP+ astrocytes in the substantia nigra pars reticulata being a major 
candidate	to	receive	DA	released	dendritically.

Nagatomo	et	al.	(2017)

DRD3	are	selectively	expressed	in	astrocytes	but	not	in	microglia.	DRD3	selective	antagonist	PG01037	
reduces	the	acquisition	and	activation	of	M1	microglia,	and	contributes	to	anti-	inflammatory	effects,	with	
therapeutic	effects	in	PD	mice	model.

DRD3	deficiency	resulted	in	exacerbated	expression	of	the	anti-	inflammatory	protein	“found	in	inflammatory	
zone	1”	(Fizz1)	in	glial	cells	both	in vitro and in vivo.

Elgueta	et	al	(2017)
Montoya	et	al.	(2019)

DRD2	agonists	suppress	the	upregulation	of	caspase-	1	and	IL-	1β	expression	in	primary	cultured	mouse	
astrocytes	in	response	to	LPS	plus	ATP-	induced	NLRP3	inflammasome	activation.	Astrocyte	DRD2	
receptor	restricts	astrocytic	NLRP3	inflammasome	activation	via	enhancing	the	interaction	of	βArr2	
and	NLRP3.

Zhu	et	al.	(2018)

DRD2	agonists	significantly	mitigate	LPS-	induced	inflammatory	response	in	astrocytes,	while	α-	Syn	disrupts	
the anti- inflammatory role of DRD2 interfering with β-	arrestin2-	TAB1	interaction	in	astrocytes.

Du	et	al.	(2018)

DA	downregulates	astrocyte-	derived	angiotensin	I	and	regulates	microglial	angiotensin	receptors,	with	
inhibition	of	proinflammatory	microglia	phenotype	under	LPS	activation.

Dominguez-	Meijide	et	al.	(2017)

There is an inverse relationship between microglia inflammatory activation and the sharp inhibition of 
DA,	DRD2	and	DAT	in	striatum	during	ageing	and	basal	ganglia-	injury.	Robust	activation	of	major	
proinflammatory	transcripts,	including	Nfkb,	IL-	1α,	TNF-	α,	and	IL-	6,	as	well	as	oxidative	and	nitrosative	
stress	markers	such	as	ROS,	RNS,	and	3-	NT	coinciding	maximal	glial	activation.

L’Episcopo	et	al	(2012;	2013)

Astrocytic	DA	modulation	carried	out	by	DRD2	can	suppress	neuroinflammation	through	CRYAB-		dependent	
mechanism,	whereas	DRD2	knockout	mice	showed	robust	inflammatory	responses	and	increased	
vulnerability	of	mDAns	to	MPTP.

Shao	et	al.	(2013)

DRD2	receptor	activation	by	Sinomenine	in	astrocytes	alleviates	neuroinflammatory	injury	via	the	CRYAB/
STAT3	pathway.

Qiu	et	al	(2016)

Abbreviations:	3-	NT,	3-	nitrotyrosine;	CRYAB,	α-	beta-	cristallin;	DA,	dopamine;	DRD1-	DRD5,	dopamine	receptor	1-	5;	Fizz1,	found	in	inflammatory	
zone	1;	IL-	1	β,	interleukin-	1β;	IL-	6,	interleukin-	6;	iNOS,	inducible	nitric	oxide;	NF-	ĸB,	nuclear	factor	kappa-	light-	chain-	enhancer	of	activated	B	cells;	
NLRP3,	Nod-	like	receptor	protein	3;	reactive	nitrogen	species,	RNS;	reactive	oxygen	species,	ROS;	TAB1,	transforming	growth	factor	beta	1;	TNF-	α,	
tumor necrosis factor α; α-	Syn,	α-	Synuclein;	βArr2,	β-	Arrestin	2.
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(RAS),	a	 local/paracrine	modulatory	mechanism	playing	an	 import-
ant	role	in	inflammatory	processes	(Dang	et	al.,	2021;	Dominguez-	
Meijide	et	al.,	2017;	Gong	et	al.,	2019;	Mowry	&	Biancardi,	2019;	Xia	
et	al.,	2019).

The	roles	of	DA	signaling	 in	 regulating	these	key	 inflammatory	
pathways stem from the transduction machinery of DRD1/DRD2- 
like	receptor	subtypes.	In	DRD1-	like	receptors,	the	elevated	cAMP	
induced	by	DA	directly	binds	 to	NLRP3	 (Figure	4).	Here,	 elevated	
cAMP	activates	PKA	and	phosphorylates	cAMP-	response	element	
binding	 protein	 (CREB),	 thus	 disrupting	 NF-	ĸB	 homeostasis	 and	
resulting	 in	the	 inhibition	of	the	 inflammatory	response	(Neumann	
et	 al.,	 1995;	Xia	 et	 al.,	 2019	and	Refs	herein).	Also,	 via	DRD5	 sig-
naling,	DA	 can	block	NF-	kB	pathway,	 thus	 suppressing	 proinflam-
matory	mediators	 (Wu	et	al.,	2020;	Zhang	et	al.,	2015).	DRD2-	like	
receptor signaling may involve either a GPC- dependent or a β- 
arrestin- dependent GPC- independent pathway to modulate glial in-
flammatory	 activation,	 with	 the	 β- arrestin- dependent mechanism 
playing	a	critical	role	(Fan,	2014)	(Figure	4).

Interestingly,	DA	receptor	expression	is	induced	by	the	activated	
microglial	phenotype,	as	cerebral	ischemia	induced	the	expression	of	

DRD2 on Iba1- immunoreactive inflammatory cells in the infarct core 
and	penumbra	(Huck	et	al.,	2015).	Similarly,	DA	has	a	differential	role	
in	 influencing	cellular	 functions	of	 resting	and	activated	microglia,	
such	 as	 phagocytosis	 and	 adhesion,	 depending	 on	 the	 activation	
states	 of	 microglia	 (Fan	 et	 al.,	 2018).	 Notably,	 while	 DRD3	 were	
reported	 not	 to	 be	 expressed	 in	microglial	 cells,	DRD3	deficiency	
results	in	attenuated	microglial	activation	upon	systemic	LPS	treat-
ment	 (Montoya	et	al.,	2019).	Hence,	 the	 role	of	DRD3	signaling	 in	
the	acquisition	of	inflammatory	phenotype	by	microglial	cells	was	re-
cently	further	studied	by	the	determination	of	the	M1	and	M2	phe-
notypes	acquired	by	microglia	24	h	after	LPS	treatment	in	WT	and	
DRD3-	KO	mice	(Montoya	et	al.,	2019).	Interestingly,	the	percentage	
of	M1	microglia	was	not	affected	by	genetic	deficiency	or	pharma-
cological	antagonism	of	DRD3	signaling,	but	the	percentage	of	M2	
phenotype in microglial cells was significantly reduced upon DRD3 
antagonism	in	LPS-	treated	WT	mice	(Montoya	et	al.,	2019).	On	the	
bases	of	these	and	other	results	(Elgueta	et	al.,	2017;	Montoya	et	al.,	
2019),	DRD3	has	been	indicated	to	be	expressed	selectively	 in	as-
trocytes,	 but	 not	 in	microglial	 cells,	 thereby	 implicating	 astrocyte	
intermediacy	in	M1-	M2	microglial	switch.

F I G U R E  4 Dopamine	signaling	pathways	modulate	inflammasome	activation	in	microglia.	Immune	activation	is	schematically	represented.	
LPS	via	Toll-	like	receptors	(TLRs)	activates	Nod-	like	receptor	protein	3	(NLRP3)	inflammasome	and	nuclear	factor	kappa-	light-	chain-	
enhancer	of	activated	B	cell	(NF-	ĸB)	signaling	pathways	promoting	proinflammatory	cytokine	(IL-	1β,	TNF-	α,	IL-	6)	release	(detailed	in	Section	
1.2).	DA	and	DA	agonist	activation	of	D1-	like	receptors	(D1	and	D5)	results	in	a	downmodulation	of	immune	response.	D1	activation	via	
Gαsolf	increases	cAMP,	which	binds	directly	to	NLRP3	triggering	its	ubiquitination	via	an	autophagy-	mediated	degradation.	Activated	cAMP	
signaling	also	inhibits	p65/RelA	and	p50	activation.	D5R	activation	directly	recruits	a	multiprotein	complex,	impairing	activation	of	NF-	kB.	
Activation	of	D2R-	b-	arrestin-	2	complex	also	results	in	D2R	binding	to	NLRP3	to	repress	its	activation.	D2R	signaling	can	negatively	regulate	
the	NF-	kB	signaling	pathway,	thereby	inhibiting	major	proinflammatory	cytokine	release.	The	hypothetical	role	of	neuroinflammation,	aging,	
and	brain	injury,	as	a	counter-	regulatory	mechanism,	via	upregulation	of	DA	receptor	expression	is	illustrated
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1.3.2  |  DA	intersect	astrocyte's	harmful	signaling	in	
PD:	DA/αβ-	crystallin	/STAT3	crosstalk

Astrocytic	 DA	 modulation	 carried	 out	 by	 DRD2	 can	 suppress	
neuroinflammation through αB-	crystallin-	dependent	 mechanism	
(Figure	 5).	 Hence,	 DRD2	 agonist	 quinpirole	 increased	 resistance	
of	 the	 nigral	 dopaminergic	 neurons	 to	MPTP	 through	 partial	 sup-
pression	of	 inflammation	 (Shao	et	al.,	2013).	Conversely,	knockout	
mice lacking DRD2 showed robust inflammatory responses in dif-
ferent	brain	regions.	Additionally,	DRD2	knockout	increased	the	vul-
nerability	 of	mDAns	 to	MPTP-	induced	 neurotoxicity.	 Interestingly	
enough,	 DRD2-	deficient	 astrocytes	 became	 hyper-	responsive	 to	
immune stimuli in the face of a significant decrease in the level of 
αB-	crystallin	 (Shao	et	al.,	2013).	Further	evidence	comes	 from	ex-
periments carried out after ablation of DRD2 in astrocytes result-
ing	in	a	robust	activation	of	astrocytes	in	SNpc	(Shao	et	al.,	2013).	
Using gain- of function or loss- of- function settings and pharmaco-
logical	 treatments	 with	 the	 selective	 DRD2	 agonist,	 quinpirole,	
increased	 resistance	of	 the	SNpc	DA	neurons	 to	MPTP,	 through	a	
partial	suppression	of	inflammation.	Overall,	these	studies	indicated	

that astrocytic DRD2 activation physiologically downregulates neu-
roinflammation	 in	 the	 studied	 model,	 via	 αB-	crystallin-	dependent	
mechanism,	suggesting	a	potential	novel	approach	aimed	at	target-
ing	 the	 astrocyte-	mediated	 innate	 immune	 response	 (Shao	 et	 al.,	
2013).	 Likewise,	 in	 the	 study	of	Qiu	et	 al.	 (2016),	 sinomenine	was	
shown	 to	 activate	 astrocytic	 DRD2	 receptors,	 thereby	 alleviating	
neuroinflammatory injury via the αβ-	crystallin	/STAT3	pathway	after	
ischemic stroke in mice.

A	novel	 interaction	between	DA	and	α-	Syn	was	 recently	 stud-
ied	by	Du	et	al.	(2018).	Here,	the	authors	showed	that	the	selective	
DRD2	agonist	quinpirole	can	suppress	inflammation	in	the	midbrain	
of	wild-	type	mice,	but	not	in	α-	Syn-	overexpressing	mice.	DRD2	ago-
nists	were	also	capable	to	significantly	mitigate	LPS-	induced	inflam-
matory	response	in	astrocytes	(Du	et	al.,	2018).

Interestingly,	 such	 DRD2-	mediated	 anti-	inflammatory	 effect	
was dependent on β-	arrestin-	2-	mediated	 signaling,	but	not	on	clas-
sical	G	protein	pathway.	Additionally,	α-	Syn	 reduced	 the	expression	
of β-	arrestin-	2	 in	 astrocytes,	 whereas	 it	 increased	 the	 β- arrestin- 2 
expression	and	restored	the	anti-	inflammatory	effect	of	DRD2	 in	α- 
Syn-	induced	inflammation.	Such	α-	Syn-	mediated	disruption	of	DRD2	

F I G U R E  5 Dopamine	signaling	pathways	intersect	oxidative/inflammatory	cascades	in	astrocytes.	Schematic	representation	of	DA	
modulation	of	astrocyte	harmful	phenotype	during	inflammation	and	oxidative	stress.	DA	crosstalk	with	Nrf2-	ARE	induced	targeting	
of	antioxidant	response	elements	(ARE)	is	highlighted.	Upon	DA	binding	to	DRD2,	neuroinflammation	can	be	mitigated	by	different	
mechanisms. αB-	Crystallin	(αBC)-	dependent	mechanism	can	be	elicited	by	DRD2	agonists	alleviating	neuroinflammatory	injury	via	the	αβC/
STAT3	pathway.	DRD2	agonists	can	also	mitigate	LPS-	induced	proinflammatory	cytokine	response,	via	a	β- arrestin- 2- mediated signaling 
inhibiting	NLRP3	inflammasome	activation.	On	the	contrary,	α-	Syn	reduced	the	expression	of	β-	arrestin-	2	in	astrocytes,	whereas	it	increased	
the β-	arrestin-	2	and	can	restore	the	anti-	inflammatory	effect	of	DRD2	(detailed	in	the	text).	A	critical	loop	is	represented	by	the	ability	of	
DRD	signaling	to	upregulate	the	master	regulator	of	oxidative	stress	and	inflammation,	Nrf2	in	astrocytes,	via	ARE	stimulation	of	a	panel	
antioxidant/anti-	inflammatory	proteins,	such	as	heme	oxygenase	(HO1),	superoxide	dismutases	(SODs),	glutathione	S-	transferase	(GST),	and	
catalase	(CAT)	besides	others,	regulating	the	cellular	redox	state	by	decreasing	oxidative	stress	and	inflammation	(detailed	in	Section	1.4)
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anti- inflammatory effect was carried out by inhibiting the association 
of β- arrestin- 2 with transforming growth factor- beta- activated kinase 
1	(TAK1)-	binding	protein	1	 (TAB1)	and	promoting	TAK1-	TAB1	inter-
action	in	astrocytes,	underscoring	the	ability	α-	Syn	disrupts	the	func-
tion of β- arrestin- 2 and inflammatory pathways in the pathogenesis 
of	PD	(Du	et	al.,	2018).	DRD2	agonists	were	also	found	to	suppress	
the	upregulation	of	caspase-	1	and	IL-	1β	expression	in	primary	cultured	
mouse	astrocytes	in	response	to	LPS	plus	ATP-	induced	NLRP3	inflam-
masome	activation	 (Zhu	et	al.,	2018).	Furthermore,	using	 the	MPTP	
mouse	model	of	PD,	the	authors	found	that	DRD2	agonists	inhibited	
NLRP3	inflammasome	activation,	evidenced	by	decreased	caspase-	1	
expression	 and	 reduced	 IL-	1β release in the midbrain of wild- type 
mice.	 Such	 anti-	inflammasome	 effect	 of	 DRD2	was	 abolished	 in	 β- 
arrestin- 2 knockout and β-	arrestin-	2	 small	 interfering	 RNA-	injected	
mice,	 suggesting	 a	 critical	 role	 of	 β- arrestin- 2 in DRD2- regulated 
NLRP3	inflammasome	activation	(Zhu	et	al.,	2018).

On	 the	contrary,	 the	studies	of	Elgueta	et	al.	 (2017)	 showed	a	
selective DRD3 transcription in astrocytes but not in microglia. 
Interestingly,	 D3R	 selective	 antagonist	 PG01037	 reduces	 the	 ac-
quisition	and	activation	of	M1	phenotype	microglia,	contributing	to	
an anti- inflammatory effect and displaying a significant therapeutic 
effect	in	PD	mouse	model	(Elgueta	et	al.,	2017).

Of	note,	 the	DRD3	 immunoreactivity	 in	astrocytes	 is	associated	
with	a	clustered	pattern,	resembling	the	expression	pattern	observed	
for	those	proteins	contained	in	lipid	rafts	(see	Montoya	et	al.,	2019).

Altogether,	 DA	 powerfully	 modulates	 glial	 inflammatory	 re-
sponses	 via	 both	 D1	 and	 D2	 receptor	 subtypes,	 via	 its	 inter-
section	 within	 the	 major	 proinflammatory	 circuits.	 Moreover,	
DA-	mediated	counter-	regulation	of	immune	response	may	change	
according to the activation stage and/or the severity of the proin-
flammatory	 glial	 phenotype,	 thus	 suggesting	 that	 DA-	mediated	
immunomodulation	not	only	varies	according	to	the	DA	receptor	
subtype and operated transduction pathway but also depends on 
the severity of inflammation and the counter- modulatory effects 
elicited	by	DA	crosstalk	with	key	antioxidant/anti-	inflammatory/
cytoprotective Nrf2/Wnt	pathways,	as	discussed	below	inthe	next	
sections).

1.4  |  DA signaling intersects the Nrf2/Wnt/β- 
catenin/GSK- 3β protective axis

1.4.1  |  DA-	Nrf2	crosstalk

Nrf2	 activation-	induced	 targeting	 of	 antioxidant	 response	 ele-
ments	 (AREs)	 in	 the	 promoter	 region	 of	 several	 hundred	 genes	
results	 in	 the	 promotion	 of	 a	wide	 panel	 of	 cytoprotective,	 anti-	
inflammatory	and	phase	2	proteins,	such	as	heme	oxygenase	(HO1),	
NAD(P)H	quinone	oxidoreductase	 (NQO1),	superoxide	dismutases	
(SOD1,	 SOD2),	 glutathione	 S-	transferase	 (GST),	 glutathione	 per-
oxidase	 (GPx),	 glutathione	 reductase	 (GR),	 and	 catalase	 (CAT),	
which	 together	 are	 capable	 of	 regulating	 the	 cellular	 redox	 state	
by	 decreasing	 ROS.	 Specifically,	 Nrf2	 has	 a	 multifaceted	 role	 in	

mitochondrial	 function	 and	 inflammatory	 networks	 (Blackwell	
et	al.,	2015;	Dinkova-	Kostova	&	Abramov,	2015;	Holmström	et	al.,	
2016;	Ryoo	&	Kwak,	2018).	Of	major	 importance,	Nrf2	 induction	
is	primarily	observed	 in	non-	neuronal	 cells.	 In	 astrocytes,	 this	 in-
ducible	mechanism	 coordinates	 expression	 of	 several	 cellular	 de-
fense	pathways	 including	 the	 following:	detoxification	of	 reactive	
oxygen/nitrogen	species	and	xenobiotics,	GSH	synthesis,	and	gen-
eration	of	NADPH	(see	Vargas	&	Johnson,	2009).	Notably,	Nrf2	is	
an important player in the pathogenesis of cancer and common in-
flammatory,	age-	dependent,	and	most	neurodegenerative	diseases,	
and	its	multifunctional	role	has	been	emphasized	in	several	earlier	
and	more	recent	studies	and	reviews	(Abdalkader	et	al.,	2018;	Cano	
et	 al.,	 2021;	Cuadrado	et	 al.,	 2019;	Dinkova-	Kostova	&	Abramov,	
2015;	 Johnson	et	al.,	2008;	Lastres-	Becker,	2021;	Lastres-	Becker	
et	al.,	2016;	Marchetti,	2020;	Strong	et	al.,	2016;	Vargas	&	Johnson,	
2009).	 Activation	 of	 Nrf2	 in	 astrocytes	 protects	 neurons	 from	
a wide array of insults in different in vitro and in vivo	 paradigms,	
including	MPTP-	induced	mDAn	neurotoxicity,	whereas	Nrf2	defi-
ciency	contributes	to	neuronal	death,	supporting	the	role	of	astro-
cytes	in	determining	the	vulnerability	of	neurons	to	noxious	stimuli,	
in	particular	mDAns	(Calkins	et	al.,	2010;	Chen	et	al.,	2009;	Copple	
et	 al.,	 2010;	Gan	et	 al.,	 2012;	Vargas	&	 Johnson,	2009)	 (Figure	5	
and	Table	2).	Of	note,	loss	of	Nrf2	in	the	presence	of	α-	syn	expres-
sion	cooperates	to	aggravate	protein	aggregation,	neuronal	death,	
and	 inflammation	 in	 early-	stage	 PD	 (Lastres-	Becker	 et	 al.,	 2012),	
further highlighting the critical role of gene– environment harmful 
interactions	in	PD.

Also,	 in	aged	MPTP	mice,	the	old	parenchymal	astrocytes	in	VM	
loose	both	DRD2	and	Nrf2	transcriptional	activity,	whereas	grafting	
young	 astrocytes	 rejuvenates	 the	 microenvironment,	 resulting	 in	 a	
gain	of	Nrf2	function,	as	ARE	transcriptional	activity	and	mitochondrial	
beneficial	 effects	 are	 associated	with	mDAn	 neurorescue	 (Serapide	
et	al.,	2020).	In	particular,	in vivo and ex vivo	experiments	carried	out	in	
astrocyte-	grafted	aged	MPTP	mice	underscored	the	ability	of	“young”	
astrocyte's	grafts	to	reprogram	the	aged	parenchymal	astrocyte	meta-
bolic	activity,	switching	mitochondrial	dysfunction,	in	turn	resulting	in	
mitigation	of	ROS,	RNS,	and	inflammatory	mediators,	compared	with	
aged	MPTP	 control	 astrocytes	 transplanted	with	 a	 non-	specific	 cell	
type	(Serapide	et	al.,	2020).

Further,	the	activation	of	Nrf2	enables	protection	against	6-	hydr
oxydopamine-	(6-	OHDA)-	induced	ferroptosis,	a	form	of	cell	death	in-
volving	the	iron-	dependent	accumulation	of	GSH	depletion	and	lipid	
peroxide	in	DA	cells	(Sun	et	al.,	2020;	Wei	et	al.,	2020).	By	contrast,	
Nrf2	 deficiency	 was	 associated	 with	 exaggerated	 mitochondrial	
dysfunction	 and	 blockade	 of	 Nrf2’s	 mitochondrial	 protective	 re-
sponse,	as	recently	reported	by	Cano	et	al.	(2021)	in	Nrf2-	deficient	
retinal	 pigmented	 epithelium.	 The	 pivotal	 function	 of	 Nrf2	 stems	
from	its	modulatory	role	on	key	aspects	of	mitochondrial	health	(see	
Ammal	Kaidery	et	al.,	2019;	Cano	et	al.,	2021;	Ryoo	&	Kwak,	2018).	
Interestingly,	in	Caenorhabditis	elegans,	where	the	Nrf	proteins	are	
represented	by	their	ortholog	SKN-	1,	recent	studies	implicate	Nrf/
SKN-	1	 in	 a	wide	 range	 of	 homeostatic	 functions	 (Blackwell	 et	 al.,	
2015).	Reportedly,	as	underscored	by	Blackwell	et	al.	(2015),	“SKN-	1	



    |  13 of 25MARCHETTI ET Al.

plays a central role in diverse genetic and pharmacological inter-
ventions	that	promote	C.	elegans	longevity,	suggesting	that	mecha-
nisms	regulated	by	SKN-	1	may	be	of	conserved	importance	in	aging”	
(Blackwell	et	al.,	2015).	Accordingly,	a	number	of	experimental	ap-
proaches evaluating the potential regulation of the transcription fac-
tor	Nrf2	to	enhance	the	expression	of	genes	that	contrast	oxidative	
stress	and	promote	healthy	aging	have	been	provided,	particularly	
with	Nrf2	activators	described	to	expand	the	life	span,	contrasting	

oxidative	 stress	 and	 inflammation	 (Liu	 et	 al.,	 2009;	 Nelson	 et	 al.,	
2006;	Strong	et	al.,	2016;	Velmurugan	et	al.,	2009).

Against	 this	 background,	 a	 direct	 DA-	Nrf2	 crosstalk	 may	 repre-
sent	 a	 further	 protective	mechanism	whereby	DA	 activation	 triggers	
Nrf2-	regulated	 pathways	 (Figure	 5).	 Hence,	 in	 astrocytes,	 excessive	
extracellular	DA	itself	likely	served	as	an	endogenous	signal	to	activate	
Nrf2-	dependent	neuroprotective	pathways	(Shih	et	al.,	2007).	Indeed,	
the	ability	of	Nrf2	activation	in	protecting	cells	from	DA	toxicity	has	long	

TA B L E  2 Dopamine	signaling	at	the	NRf2/Wnt/β-	catenin/GSK-	3β	interface	in	PD
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Serapide	et	al.	(2020)
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been	recognized,	and	in	part	attributable	to	enhanced	H2O2 scavenging 
by	the	GSH	system,	and	detoxification	of	reactive	quinones	by	NAD(P)
H:	NQO1	(Duffy	et	al.,	2018).	Particularly,	physiological	oxidative	stress-
ors	or	subthreshold	concentrations	of	neurotoxins	support	DA	neuron	
survival	and	neural	stem	progenitor	cell	 (NSC)	differentiation	via	acti-
vation	of	Nrf2/Wnt	signaling	in	glial	cells	(Marchetti	et	al.,	2020;	Wang	
et	al.,	2020).	Notably,	DA	activation	of	DRD1-	like	receptor,	DRD5,	was	
recognized	as	a	necessary	trigger	for	the	normal	expression	of	Nrf2	and	
inhibition	of	harmful	oxidative	cascades,	as	DRD5	deficiency	causes	an	
increase	in	NADPH	oxidase	activity	and	prevents	the	translocation	of	
Nrf2	nuclear	(Jiang	et	al.,	2018).	Then,	DA	activation	of	D1-	like	recep-
tors in astrocytes might further contribute to an autoregulatory feed-
back	triggered	by	endogenous	DA	and	DA	agonists	(Figure	5,	Table	2).

Together,	 DA-	Nrf2	 crosstalk	 appears	 a	 feasible	 counter-	
regulatory	mechanism	 triggered	by	DA	 to	prevent	 the	deleterious	
effects	of	exacerbated	oxidative	stress	and	inflammation.

1.4.2  |  DA-	Wnt/β-	catenin	crosstalk

Earlier	studies	on	functional	 interactions	between	DA	and	Wnt/β- 
catenin signaling focused on DRD2 under long- term treatment 
with	antipsychotic	drugs,	which	are	the	blockers	of	D2-	like	recep-
tors	 (Alimohamad	et	al.,	2005;	Freyberg	et	al.,	2010),	supporting	a	
functional	interaction	between	Wnt	pathway	and	DRD2/DRD3.	The	
chief	 role	of	Wnt	signaling	 for	neurogenesis	 in	 the	adult	and	aged	
PD	brain	has	been	recently	reviewed	(Marchetti	et	al.,	2020).	During	
age	and	basal	ganglia	injury,	the	progressive	decline	in	DA	targeting	
glial	cells	via	DRD2	 in	VM	and	Str	of	aged	MPTP-	treated	PD	mice	
was	associated	with	decreased	Wnt/β- catenin signaling genes and 
proteins,	 in	 turn	affecting	both	glial	 cell	 reactivity	 and	mDAn	 loss	
(Marchetti,	2018).	Moreover,	decreased	D1	receptor	expression,	mi-
tochondrial	biogenesis,	mitochondrial	 functions,	and	dopaminergic	
neuron	differentiation	were	associated	with	downregulation	of	Wnt/
β-	catenin	signaling	in	the	hippocampus	of	rats	lesioned	with	the	PD	
neurotoxin,	6-	OHDA	(Mishra,	Singh,	Tiwari,	Chaturvedi,	et	al.,	2019;	
Mishra,	Singh,	Tiwari,	Parul,	et	al.,	2019).	Conversely,	pharmacologi-
cal	stimulation	of	D1	receptor	enhanced	mitochondrial	biogenesis,	
mitochondrial	functions,	and	DA	neurogenesis	that	lead	to	improved	
motor	 functions	 in	 6-	OHDA-	injured	 rats.	 The	 specificity	 of	 these	
effects	was	 underscored	 using	 a	 D1	 antagonist,	 whereas	 shRNA-	
mediated	knockdown	of	Axin-	2,	 a	negative	 regulator	of	Wnt	 sign-
aling,	 significantly	 abolished	D1	 antagonist-	induced	 impairment	 in	
mitochondrial	biogenesis	and	DA	neurogenesis	in	6-	OHDA-	lesioned	
rats	 (Mishra,	Singh,	Tiwari,	Chaturvedi,	et	al.,	2019;	Mishra,	Singh,	
Tiwari,	Parul,	et	al.,	2019).

A	number	of	studies	investigated	the	molecular	mechanisms	of	
DRD2-	Wnt/β-	catenin	crosstalk	(Han	et	al.,	2019;	Min	et	al.,	2011).	In	
the	study	of	Min	et	al.	 (2011),	among	the	five	DA	subtypes,	DRD2	
interacted with β- catenin through the second and third intracellular 
loops and inhibited the entry of β-	catenin	into	the	nucleus,	leading	to	
an	inhibition	of	the	LEF-	1-	dependent	transcription	(Min	et	al.,	2011).	
In	this	work,	the	authors	suggested	that	the	functional	regulation	of	

Wnt	signaling	by	DRD2	could	occur	through	direct	interaction	with	
β-	catenin	independently	of	the	upstream	signaling	components	(Min	
et	 al.,	 2011).	 Notably,	 of	 the	 two	DRD2	 downstream	 intracellular	
pathways,	the	β- arrestin- dependent pathway appears to be the one 
targeting	Wnt/β-	catenin	signaling	(Bryja	et	al.,	2007),	with	GSK-	3β,	
being	 the	 critical	 intersector,	 and	 the	 contribution	 of	 serine/thre-
onine	kinase	(AKT)	counter-	regulation	(Figure	6).

In	 fact,	 in	 addition	 to	 AKT’s	 roles	 in	 β- arrestin- 2- dependent 
DRD2	 signaling,	 AKT	 regulates	 GSK-	3β through phosphoryla-
tion.	 In	 its	 non-	phosphorylated	 state,	GSK-	3β is constitutively ac-
tive,	 whereas	 AKT-	induced	 phosphorylation	 inactivates	 GSK-	3β 
(Beaulieu	et	al.,	2007)	(Figure	6).	Regarding	the	so-	called	“canonical	
Wnt/β-	catenin”	signaling,	GSK-	3β	 is	part	of	a	destruction	complex,	
whereby	GSK-	3β- induced phosphorylation of β- catenin results in its 
proteasomal	degradation,	blockade	of	β- catenin nuclear transloca-
tion	associated	with	inhibition	of	Wnt-	dependent	transcription	of	a	
panel	of	downstream	target	genes.	Then,	DA	activation	of	DRD2-	
β-	arrestin-	2-	dependent	 pathway	may	 also	modulate	Wnt	 signaling	
via	AKT-	mediated	phosphorylation	of	GSK-	3β,	 thereby	modulating	
β-	catenin	nuclear	translocation	(Figure	6).

Significantly,	in	the	study	of	Han	et	al.	(2019),	DRD2-	dependent	
crosstalk	was	shown	to	modulate	Wnt3a	expression	via	an	evolution-
arily	conserved	TCF/LEF	site	within	the	Wnt3	promoter.	Moreover,	
DRD2 signaling also modulated cell proliferation and modifies the 
pathology	in	a	renal	ischemia/reperfusion	injury	disease	model,	via	
its	effects	on	Wnt/β-	catenin	signaling,	 thus	suggesting	DRD2	as	a	
transcriptional	 modulator	 of	 Wnt/β-	catenin	 signal	 transduction,	
with broad implications for health and development of new thera-
peutics	(Han	et	al.,	2019).

Importantly,	DRD2-	mediated	Wnt-	β- catenin signaling also cross-
talks	with	major	 immune	signaling	actors.	Hence,	 if	not	phosphory-
lated	by	GSK-	3β,	β-	catenin	 forms	a	complex	with	both	 the	units	of	
NF-	κB,	altering	its	DNA	binding	activity,	and	consequently	inhibits	the	
inflammatory	cascade	(Marchetti	&	Pluchino,	2013).	However,	when	
GSK-	3β	 is	activated,	 it	phosphorylates	β- catenin protein for protea-
somal degradation that directly promotes the inflammatory events 
(Deng	et	al.,	2002;	Marchetti	&	Pluchino,	2013).	Activated	GSK-	3	also	
modulates	CREB-	DNA	activity,	phosphorylating	NF-	κB,	and	degrades	
β-	catenin,	thus	promoting	systemic	inflammation.

The	 ability	 of	 active	 GSK-	3β	 to	 phosphorylate	 Nrf2	 (Cuadrado	
et	al.,	2018;	Hayes	et	al.,	2015)	then	represents	a	further	vulnerabil-
ity	 factor,	 as	 its	 overexpression	 exacerbates	 inflammation,	 thus	 im-
pairing	 neuron–	glial	 and	 glial–	NSC	 interactions	 leading	 to	 enhanced	
neuronal	 vulnerability	 and/or	 cell	 death,	 associated	 with	 reduced	
neurorepair	 (Marchetti,	 2020).	 By	 contrast,	 DA-	activated	 DRD2-	β- 
arrestin-	2-	dependent	signaling	via	AKT	can	boost	the	antioxidant,	anti-	
inflammatory,	prosurvival,	and	neurogenic	downstream	gene	cascade.

As	 a	 whole,	 DA-	mediated	 signaling	 at	 the	 astrocyte–	microglial	
interface via DRDs appears as a pivotal counter- regulatory system 
contributing to limit both Nrf2 and β- catenin phosphorylation and sub-
sequent	degradation,	thereby	reinforcing	the	Nrf2-	ARE/Wnt/β- catenin 
neuroprotective	and	immunomodulatory	axis	to	combat	aging	and	PD	
(Figure	7),	and	can	be	envisaged	for	the	treatment	of	other	CNS	diseases.
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1.5  |  “Reframing” DA agonists as immune modifiers 
in CNS disorders

Accordingly,	 increasing	 evidence	 suggests	 the	 potential	 to	 redirect	
DA	drugs	to	downregulate	inflammation	at	both	central	and	periph-
eral	levels,	with	the	ability	of	well-	recognized	indirect	and	direct	DA	
agonists	(including	levodopa,	pramipexole,	ropinirole,	quinpirole,	apo-
morphine,	and	amantadine	among	others),	used	in	the	symptomatic	
therapy	of	PD,	to	be	repurposed	by	virtue	of	their	neuroprotective/
anti-	inflammatory	 properties	 in	 a	 wide	 panel	 of	 disorders,	 includ-
ing	 ischemic	stroke,	 intracerebral	hemorrhage,	 ICH,	 traumatic	brain	
injury,	 TBI,	 and	 amyotrophic	 lateral	 sclerosis,	 ALS,	 besides	 others.	
Hence,	studies	of	Yan	et	al.	(2015)	showed	that	DA	prevented	NLRP3-	
dependent	neuroinflammation	via	regulating	dopamine	DRD1/cAMP	
signaling pathway and suggested D1R agonists as potential thera-
peutic	 target	 for	 the	 inflammation-	related	CNS	diseases	 (Yan	et	al.,	

2015).	The	work	of	Zhang	et	al.	(2015)	implicated	DRD2	agonists	in	
suppressing neuroinflammation via αB-	crystallin,	via	inhibition	of	NF-	
κB	nuclear	translocation	in	experimental	ICH	mouse	model.	The	role	
of	DA	in	poststroke	inflammation	has	been	deeply	studied	by	several	
investigators.	 Reportedly,	 levodopa	 treatment	 improves	 functional	
recovery	after	experimental	stroke	(Ruscher	et	al.,	2012)	both	directly	
and	via	DRD-	induced	glial	cell	line-	derived	neurotrophic	factor	(Kuric	
et	al.,	2013),	with	the	role	of	DA–	immune	cell	signaling	in	poststroke	
inflammation	expanded	by	Talhada	et	al.	(2018).	Also,	DRD2	agonist,	
bromocriptine	methylate,	can	suppress	glial	inflammation,	thus	miti-
gating	disease	progression	 in	a	mouse	model	of	ALS	 (Tanaka	et	al.,	
2011),	and	quinpirole-	mediated	regulation	of	DRD2	can	 inhibit	glial	
neuroinflammation	both	in	the	cortex	and	in	the	Str	after	TBI	(Alam	
et	al.,	2021).	Notably,	the	studies	of	Wang	et	al.	 (2018)	showed	the	
ability	of	DRD1	activators	to	decrease	NLRP3-	mediated	inflammation	
in	 ICH,	 and	 in	 a	 rat	model	of	 spinal	 cord	 injury,	 the	DRD1	agonist,	

F I G U R E  6 Dopamine	signaling	pathways	crosstalk	with	Wnt/β-	catenin/GSK-	3β	cascade.	Simplified	representation	of	the	Wnt/β- catenin 
signaling	pathway	and	its	intersection	with	DRD2	signaling.	Wnt	signal	activation	is	tightly	controlled	by	a	dynamic	signaling	complex	
comprised	of	core	receptors	from	the	Frizzled	(Fzds)	family	of	G	protein-	coupled	receptors	(GPCRs),	the	low-	density	lipoprotein	(LDL)	
receptor-	related	protein	(LRP)	5/6	co-	receptors,	and	the	disheveled	(Dvl)	and	Axin	adapters.	Binding	of	Wnt1-	like	endogenous/exogenous	
agonists	to	Fzd	triggers	a	molecular	cascade	leading	to	the	cytoplasmic	accumulation	of	β-	catenin,	which	enters	the	nucleus,	and	associates	
with	T-	cell	factor/lymphoid	enhancer	binding	factor	(TCF/LEF)	transcription	factors,	in	turn	promoting	the	transcription	of	Wnt	target	genes.	
β-	Catenin	is	tightly	regulated	via	phosphorylation	by	the	‘destruction	complex’,	consisting	of	glycogen	synthase	kinase-	3β	(GSK-	3β),	casein	
kinase 1α	(CK1α),	the	scaffold	protein	Axin,	and	the	tumor	suppressor	adenomatous	polyposis	coli	(APC).	DRD2	downstream	intracellular	
G	protein-	independent,	arrestin-	dependent	pathways	can	target	Wnt/β-	catenin	signaling,	intersecting	GSK-	3β,	through	the	contribution	
serine/threonine	kinase	(AKT)-	mediated	phosphorylation.	Crosstalk	between	DRD2	and	Wnt	signaling	can	relieve	β- catenin from active 
GSK-	3	phosphorylation,	thus	permitting	β-	catenin	translocation	in	the	nucleus	activating	transcription	of	Wnt-	dependent	genes	involved	in	
proliferation,	differentiation,	neuroprotection	and	immunomodulation	(detailed	in	the	text)



16 of 25  |     MARCHETTI ET Al.

A-	68930,	inhibits	NLRP3	activation-	mediated	inflammation	and	alle-
viates	histopathology	(Jiang	et	al.,	2015).

Altogether,	 DA	 agonists	 emerge	 as	 potential	 therapeutics	 in	 a	
wide	number	of	CNS	diseases,	in	as	much	as	the	interacting	harmful	
cascades	arising	from	DA	deficiency	at	central	and	peripheral	levels,	
may	engender	a	detrimental	vicious	cycle	(Figure	8).	Hence,	the	dra-
matic	loss	of	DA-	mediated	signaling	at	central	and	peripheral	levels	
was	 associated	with	 the	 age-	dependent	GSK-	3β	 overactivation,	 in	
turn creating a favorable milieu driving a feedforward cycle of in-
flammation/neurodegeneration,	as	loss	of	Nrf2/Wnt	and	upregula-
tion	of	GSK-	3	phosphorylating	and	degrading	β- catenin further drive 
inflammation	and	excessive	oxidative	stress,	which	 is	 linked	to	the	
inhibition	of	adult	neurogenesis	and	neurorepair	 (Marchetti,	2020;	
Marchetti	et	al.,	2020).

Notably,	 a	 panel	 of	 “protective/beneficial”	 strategies	 targeting	
lifestyle,	 such	 as	 physical	 activity	 and	 exercising,	 diet	 and	 dietary	
supplementations/restrictions,	impacting	on	global	organic/psycho-
mental	health	and	abating	the	harmful	effects	of	chronic	stress,	have	
resilient	effects	on	Nrf2/ARE-	Wnt/β-	catenin	axis	(Marchetti,	2020)	
and	may	promote	a	more	resistant	phenotype	(Figure	8).

2  |  CONCLUDING REMARKS AND FUTURE 
PERSPEC TIVES

Oxidative	stress	and	 inflammation	are	 recognized	aggravating	 fac-
tors for the development of both the sporadic and the genetic 
forms	 of	 PD,	where	 the	 exacerbated	 generation	ROS	 and	 a	 panel	

F I G U R E  7 Dopamine	drives	astrocyte–	microglial	crosstalk	via	DRDs/Nrf2/Wnt/GSK-	3	signaling	to	combat	oxidative	stress	and	
inflammation.	Schematic	representation	of	DA	signaling	pathways	intersecting	major	oxidative/inflammatory	networks	in	astrocyte–	
microglial	dialogue	in	PD.	Aging,	inflammation,	and	toxic	(including	bacterial,	viral,	neurotoxic…)	exposures	work	in	synergy	with	genetic	
mutations	impair	nigrostriatal	DA	neurons.	DA	and	DA	agonist	can	revert	such	harmful	dialogue	via	a	glial	switch	toward	a	beneficial	
antioxidant/anti-	inflammatory	and	neuroprotective	phenotype.	DA	and	DA	agonists	acting	via	DRD1	and	DRD2	in	astrocytes	can	upregulate	
Nrf2/HO1 and Wnt1/β- catenin	during	oxidative	stress	and	inflammation	representing	a	self-	defense	system	for	mDAn	survival.	Increased	
DRD2- β-	arrestin-	2/AKT	cascade	may	then	block	GSK-	3β- induced phosphorylation and proteasomal degradation of the neuronal pool of β- 
catenin.	Stabilized	β-	catenin	can	translocate	into	the	nucleus	and	associate	with	a	family	of	transcription	factors	and	regulate	the	expression	
of	Wnt	target	genes	involved	in	DA	neuron	survival/plasticity,	neuroprotection	and	repair.	Oxidative	stress	engendered	by	DA	itself	may	
also	function	as	a	critical	negative	feedback	mechanism	via	DRD5	induction	Nrf2-	ARE	cascade	and/or	via	DRD2/β- arrestin- 2- induced 
GSK-	3	inhibition,	leading	to	Nrf2	nuclear	translocation.	DA-	induced	beneficial	astrocyte	phenotype	also	intersects	microglial	inflammatory	
phenotype	via	both	direct	DRD1	and	DRD2	transduction	pathways	inhibiting	NLRP3/	NF-	ĸB	cascade,	and/or	via	astrocyte	beneficial	
feedback	onto	microglial	cells,	via	astrocytic	Wnt1-	like	ligands	through	Fzd	receptors,	GSK-	3β	antagonist,	or	HO1-	induced	anti-	inflammatory	
effects
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of	 proinflammatory	 cytokines	 targeting	 mDAn	 mitochondria	 con-
tribute to the progressive dysfunction and death of nigrostriatal 
neurons.	 Here,	 we	 highlighted	 DA	 and	 its	 signaling	 pathways,	 in-
tersecting	 astrocyte–	microglial	 oxidative/inflammatory	 networks	
in	PD	vulnerability.	Notably,	the	intrinsic	propensity	of	DA	neurons	
to	 oxidative	 stress	 and	 glial	 inflammatory	 triggers,	 coupled	 to	 the	
aging	process	and	a	genetic	predisposition,	dictates	the	vulnerability	
to	PD.	Importantly,	DA	emerges	as	a	novel	critical	modulator	of	as-
trocytes	and	microglial	reactivity,	as	well	as	systemic	inflammation	
thanks	to	the	expression	of	specific	classes	of	DA	receptors,	in	both	
central and peripheral immune cells and intermingled crosstalk with 
Nrf2/Wnt/β- catenin cascades.

Hence,	 in	 reviewing	 the	 pivotal	 role	 of	 DA	 in	 controlling	 the	
harmful	consequences	of	oxidative	stress	and	inflammation,	we	in-
troduce	 a	 novel	 perspective	 underscoring	DA’s	 ability	 to	 serve	 as	
an	endogenous	signal	to	activate	Nrf2-	dependent	antioxidant,	met-
abolic	cytoprotective	pathways.	In	turn,	glial	activation	engenders	a	
DA	autoregulatory	 feedback	 loop	via	DRs	upregulation	 to	provide	
a	 counter-	regulatory	mechanism.	Within	 this	 frame,	DA	activation	
of DRD2/β-	arrestin-	2-	dependent	pathway	may	also	modulate	Wnt	
signaling	via	AKT-	mediated	inactivation	of	GSK-	3β,	thereby	favoring	
β- catenin nuclear translocation and the transcription of a panel of 
Wnt-	dependent	prosurvival	and	anti-	inflammatory	genes.

Aside	PD,	increasing	evidence	also	suggests	the	potential	to	redi-
rect	DA	drugs	to	downregulate	inflammation	at	both	central	and	pe-
ripheral	levels,	with	the	ability	of	well-	recognized	indirect	and	direct	
DA	agonists	used	in	the	symptomatic	therapy	of	PD	to	be	reframed	
by	virtue	of	their	neuroprotective/anti-	inflammatory,	and	herein	de-
scribed	as	potential	positive	modulators	of	 the	 resilient	Nrf2/Wnt	
axis,	in	a	wide	panel	of	disorders.

As	a	whole,	novel	perspectives	 can	be	envisaged	 for	 the	 ther-
apeutic	 management	 of	 both	 central	 and	 peripheral	 disorders,	
where	 inflammation	 and	 oxidative	 stress	 represent	 the	 core	 of	 a	
self-	perpetrating	age-	dependent	disease,	with	relevance	for	devel-
oping	novel	therapeutic	options	for	NDs.	Against	this	background,	
different	challenges	and	questions	still	remain	open,	and	much	has	
to be further disclosed regarding the aging process and what can 
be translatable to age- related functional decline in humans in order 
to be relevant for aging research and drug discovery as well as for 
rational	 therapeutics	as	 recently	underscored	 (Bakula	et	 al.,	2019;	
Evans	 et	 al.,	 2021;	Gorgoulis	 et	 al.,	 2019;	Mkrtchyan	 et	 al.,	 2020;	
Zhu	et	al.,	2021).

Significantly,	the	tremendous	growth	of	the	elderly	population,	
coupled to the emerging role of viral infections that will further in-
crease	worldwide,	 represents	 a	 unique	 challenge	 for	 the	develop-
ment	of	 integrated	therapies,	drug	repurposing,	and	redirection	of	

F I G U R E  8 Vicious	cycle	of	dopamine	deficiency,	aging,	inflammation,	and	CNS	disease.	Schematic	illustration	of	the	interacting	harmful	
cascades	arising	from	DA	deficiency	at	central	and	peripheral	levels	engendering	a	detrimental	vicious	cycle.	The	dramatic	loss	of	DA-	
mediated	signaling	at	central	and	peripheral	levels	associated	with	the	age-		and	PD-	dependent	GSK-	3β overactivation in turn creates 
a	favorable	milieu	driving	a	feedforward	cycle	of	inflammation/neurodegeneration,	as	loss	of	Nrf2/Wnt	and	upregulation	of	GSK-	3	
phosphorylating and degrading β-	catenin	further	drive	inflammation	and	excessive	oxidative	stress	associated	with	inhibition	of	adult	
neurogenesis	and	neurorepair	(Marchetti,	2020)
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“old”	drugs,	using	high-	throughput	analysis	 to	 identify	most	effec-
tive	 drug	 candidates,	 establishing	 novel	multiorgan-	on-	a-	chip	 sys-
tems	for	drug	discovery	platforms,	besides	others,	but	especially	for	
the	discovery	of	robust	disease	biomarkers,	to	prevent	and/or	com-
bat	“harmful”	aging	and	PD.
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