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Abstract
Dopamine (DA) signaling via G protein-coupled receptors is a multifunctional neuro-
transmitter and neuroendocrine–immune modulator. The DA nigrostriatal pathway, 
which controls the motor coordination, progressively degenerates in Parkinson's 
disease (PD), a most common neurodegenerative disorder (ND) characterized by a 
selective, age-dependent loss of substantia nigra pars compacta (SNpc) neurons, 
where DA itself is a primary source of oxidative stress and mitochondrial impairment, 
intersecting astrocyte and microglial inflammatory networks. Importantly, glia acts 
as a preferential neuroendocrine–immune DA target, in turn, counter-modulating in-
flammatory processes. With a major focus on DA intersection within the astrocyte–
microglial inflammatory network in PD vulnerability, we herein first summarize the 
characteristics of DA signaling systems, the propensity of DA neurons to oxidative 
stress, and glial inflammatory triggers dictating the vulnerability to PD. Reciprocally, 
DA modulation of astrocytes and microglial reactivity, coupled to the synergic impact 
of gene–environment interactions, then constitute a further level of control regulat-
ing midbrain DA neuron (mDAn) survival/death. Not surprisingly, within this circuitry, 
DA converges to modulate nuclear factor erythroid 2-like 2 (Nrf2), the master regulator 
of cellular defense against oxidative stress and inflammation, and Wingless (Wnt)/β-
catenin signaling, a key pathway for mDAn neurogenesis, neuroprotection, and 
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1  |  INTRODUC TION

Dopamine (DA) is a central player in movement regulation, reward, 
and neuroendocrine–immune homeostasis. In the nigrostriatal path-
way, the substantia nigra (SN, A9) cell bodies are responsible for the 
production and release of DA into the corpus striatum (Str), which 
governs motor coordination. In Parkinson's disease (PD), a most 
prevalent age-dependent movement disorder and the second most 
common neurodegenerative disease (ND) affecting 2%–3% of the 
population >65 years of age, a selective and progressive loss of SN 
pars compacta (SNpc) neurons, associated with a slow degeneration 
of their terminals in the Str, gradually impairs motor function leading 
to the classical motor features of PD (i.e., bradykinesia, rest tremor, 
rigidity, and postural instability) (Obeso et al., 2017). A major patho-
logical feature of PD is the presence of aggregates that localize in 
neuronal cytoplasm as Lewy bodies, mainly composed of α-synuclein 
(α-syn) and ubiquitin (Chu et al., 2019; Killinger & Kordower, 2019; 
Litvan et al., 2007; Ulusoy & Monte, 2013).

Remarkably, Parkinson's disease is the fastest growing neuro-
logical disorder in the world, with the number of patients affected 
expected to grow exponentially from almost 7 million in 2015 to 
>14.2 million in 2040. Such a Parkinson “pandemic” facing, now, the 
coronavirus disease 2019 (COVID-19) pandemic is expected to cause 
a most severe health care, and social and economic burden (Dorsey 
et al., 2018; Helmich & Bloem, 2020). Particularly, COVID-19 infec-
tion (Huang et al., 2020) intersects the pivotal environmental hall-
marks for PD and other NDs, namely aging (Gerashchenko et al., 
2020), chronic stress, and exacerbated inflammatory response (the 
so-called “cytokine storm”) (Delgado-Roche & Mesta, 2020; Huang 
et al., 2020), representing conditions recognized to drive and/or 
worsen Parkinson's symptoms.

Indeed, aging, a most dangerous vulnerability factor for PD, 
by promoting a sustained inflammatory activation of the glial cell 
compartment, for example, astrocytes and microglia, acts as critical 
“vicious” mechanism contributing to the onset and/or progression 
of the disease (Betarbet et al., 2002; Di Monte et al., 2002; Gao & 
Hong, 2011; Gao et al., 2011; Hirsch & Hunot, 2009; Marchetti & 
Abbracchio, 2005; McGeer & McGeer, 2008; Przedborski, 2010; Tu 
et al., 2019; Tu et al., 2019; Whitton, 2010; Zhu et al., 2021).

Regrettably, the underlying causes linking these pathological 
hallmarks with neurodegeneration still remain unclear, and by the 
time clinical manifestations appear, about 70% of the dopamine (DA) 

fibers in the caudate putamen (CPu) and almost 50% of the midbrain 
dopaminergic neurons (mDAns) in SNpc are already lost (Litvan et al., 
2007; Obeso et al., 2017). The progression of the disease is slow 
in most cases, but irreversible, with current therapies (e.g., L-3,4-
dihydroxyphenylalanine, L-DOPA, the mainstay in PD treatment), 
being directed toward the replacement of DA levels in the brain, and, 
as such, provided only symptomatic relief (Jankovic, 2019; Schapira 
et al., 2014). Of note, these drugs do not modify the progressive 
neurodegenerative cell loss associated with PD that, in many cases, 
results in debilitating side effects (see Obeso et al., 2017).

Because DA has a multifunctional role as neurotransmitter and 
neuroendocrine–immune modulator, along with SNpc-mDAns, other 
neural populations of the central (CNS) and peripheral nervous sys-
tems (PNS) are affected in PD (Braak et al., 2004; Garrido-Gil et al., 
2018; Ulusoy et al., 2017). Aside the DA nigrostriatal pathway, con-
trolling motor coordination, in the ventral tegmental area (VTA, A10), 
DA-containing cell bodies release DA into major brain limbic regions 
including the nucleus accumbens, the amygdala, the hippocampus, 
and the prefrontal cortex, constituting the mesolimbic–mesocortical 
reward pathway (Klein et al., 2019) (Figure 1). Within the arcuate nu-
clei of the mediobasal hypothalamus, the so-called “tuberoinfundibular 
DA (TIDA)” system modulates the output of releasing factors within 
the hypothalamic median eminence (ME), thereby regulating neu-
roendocrine axes, such as the hypothalamic–hypophyseal–gonadal 
(HPG) and hypothalamic–hypophyseal–adrenocortical (HPA) axes, 
neurotransmitters, neuropeptides, and hormones, including luteinizing 
hormone-releasing hormone (LHRH) and prolactin (PRL), in turn piv-
otally involved in immunomodulation (Hodo et al., 2020; Illiano et al., 
2020; Maatouk et al., 2019; Marchetti et al., 1990, 2001; Morale et al., 
2004; Sarkar et al., 2010) (Figure 1). Accordingly, thanks to the expres-
sion of neurotransmitter, peptidergic, hormonal, and cytokine regula-
tory receptors, glia acts as a preferential neuroendocrine–immune DA 
target, with DA signaling pathways in turn counter-modulating inflam-
matory processes, both at central and at peripheral levels (Figure 1). 
Importantly, DA contributes to bidirectional neuroendocrine–immune 
crosstalk, also within the brain–gut axis, with critical implications for 
PD (Chow & Gulbransen, 2017; Garrido-Gil et al., 2018; Sampson et al., 
2016). Remarkably, emerging functions are being also increasingly re-
ported for the renin–angiotensin system in the regulation of central 
and peripheral inflammation, collaborating in the complex integration 
of immune responses (Dang et al., 2021; Gong et al., 2019; Mowry & 
Biancardi, 2019).

immunomodulation, adding to the already complex “signaling puzzle,” a novel actor 
in mDAn–glial regulatory machinery. Here, we propose an autoregulatory feedback 
system allowing DA to act as an endogenous Nrf2/Wnt innate modulator and trace the 
importance of DA receptor agonists applied to the clinic as immune modifiers.
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Not surprisingly, within this frame, alterations in a number of 
non-motor (including, autonomic, gastric, hormonal, and cognitive) 
symptoms may both precede and accompany PD onset and progres-
sion (Chen, Burton, et al., 2013; Chen, Ni, et al., 2013; Matsumoto, 
2015; Tibar et al., 2018).

A number of genes that cause certain forms of inherited PD 
(<10% cases) have been identified, but the majority of cases 
(>90%) appear to be sporadic and likely represent an interplay 
between genetic and environmental influences, with the aging 

process and inflammation, as main players both in the brain and 
in the periphery (Bae et al., 2018; Campos-Acuña et al., 2019; 
Cannon & Greenamyre, 2013; Di Monte, 2003; Duffy et al., 2018; 
Gao & Hong, 2011; Gao et al., 2011; Harms et al., 2021; Langston, 
2017; Marchetti & Abbracchio, 2005; Tansey & Romero-Ramos, 
2019; Vance et al., 2010). Notably, multiple lines of evidence sug-
gest an interactive network between innate immune cells and 
the integrity and function of mitochondria, the key organelles 
maintaining homeostatic cellular balance, critically involved in 

F I G U R E  1 Dopamine as a neuroendocrine–immunomodulator. Schematic representation of DA pathways in CNS and bidirectional DA 
crosstalk at central and peripheral levels orchestrating the regulation of neuroendocrine, autonomic, lymphoid, and gut axes. Bidirectional 
circuits linking brain DA to astrocyte and microglial crosstalk are schematically represented. There are three major DA pathways in the brain. 
The nigrostriatal DA pathway originating in the substantia nigra pars compacta (SNpc, A9) releases DA into the corpus striatum (Str), which 
governs motor coordination. The mesocortical and mesolimbic DA pathways arise from the ventral tegmental area (VTA, A10), releasing DA 
into major brain limbic regions, including the nucleus accumbens (Ac), the amygdala (Am), the hippocampus (Hip), and the prefrontal cortex, 
constituting the mesolimbic–mesocortical reward pathway. Within the hypothalamus (HYP), the tuberoinfundibular DA system modulates 
the output of releasing factors regulating the hypothalamic–hypophyseal–gonadal (HPG) and hypothalamic–hypophyseal–adrenocortical 
(HPA) axes, neuropeptides, and hormones, including luteinizing hormone-releasing hormone (LHRH) and prolactin (PRL), in turn involved 
in immunomodulation. At peripheral level, DA can communicate with the immune system to modulate its activity, directly through specific 
receptors in immune organs and cells or indirectly through the peripheral nervous system (PNS), via sympathetic and parasympathetic 
innervation, neuropeptides, and hormone release. Bidirectional DA crosstalk between CNS and gastrointestinal DA, within the brain–gut 
axis, also plays roles in modulating microenvironmental cues, including the inflammatory milieu and microbiome homeostasis
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mDAn health (Schapira et al., 1990, 2014; Vizioli et al., 2020). A 
compelling link between glial physiopathology and PD genes has 
been the identification of a panel of mutated genes, including α-
synuclein (SNCA), parkin (PRKN), PINK1, PTEN-induced putative 
kinase (DJ1), and leucine-rich repeat kinase 2 (LRRK2) in astro-
cytes and/or microglial cells (Ashley et al., 2016; Barodia et al., 
2019; Booth et al., 2017; Choi et al., 2016; Dzamko et al., 2015). 
Particularly, the pathways regulated by these genes intersect DA 
signaling and mDAn health at the interface of key cellular func-
tions affected in both aging and Parkinson's disease, namely, the 
inflammatory response, endoplasmic reticulum (ER) stress, and 
mitochondrial, lysosomal, proteasomal, autophagic, and Wingless-
type mouse mammary tumor virus integration site (Wnt)/β-catenin 
signaling functions (Arias, 2017; Awad et al., 2017; Bektas et al., 
2019; Belenkaya et al., 2008; Berwick & Harvey, 2012, 2014; 
Berwick et al., 2017; Cuervo, 2008; Cuervo & Macian, 2014; Kim 
et al., 2013; Marchetti, 2018; Schmidt et al., 2011). On the con-
trary, potential neuroprotective and neuroreparative functions of 
astrocytes and microglia are being increasingly reported, thereby 
supporting the initial claim “To be or not to be inflamed: is that 
the question in anti-inflammatory drug therapy of neurodegener-
ative diseases?” (Marchetti & Abbracchio, 2005), underscoring “Dr 
Jekyll/Mr Hyde” sides of glia, yet the crucial mechanisms/condi-
tions driving a “beneficial glial switch,” whereby astrocytes and 
microglia can exert neuroprotective and/or proregenerative prop-
erties upon injury, remain ill-defined.

One critical feature of astrocytes is to protect the vulnerable 
mDAns. Research of the last decade from our laboratory centered 
on Nuclear factor erythroid 2-like 2 (NFE2L2/Nrf2), the master reg-
ulator of cellular defense against oxidative stress and inflamma-
tion, and a critical modulator of the life span (Ammal Kaidery et al., 
2019; Cuadrado et al., 2019; Dinkova-Kostova & Abramov, 2015; 
Holmström et al., 2016; Johnson & Johnson, 2015; Lastres-Becker, 
2021; Ryoo & Kwak, 2018; Strong et al., 2016), and the Wnt/β-
catenin signaling cascade, a vital pathway for mDAn neurogenesis, 
neuroprotection, and immunomodulation, and key interactor of the 
aging process (Arias, 2017; Awad et al., 2017; Berwick & Harvey, 
2012, 2014; Berwick et al., 2017; Galli et al., 2014; Hofmann et al., 
2014; Harvey & Marchetti, 2014; Knotek et al., 2020; L’Episcopo, 
Tirolo, et al., 2011; L’Episcopo, Serapide, et al., 2011; L’Episcopo, 
et al., 2013; Marchetti & Pluchino, 2013; Marchetti et al., 2020).

Notably, it should be emphasized that being a critical neuro-
pathological hallmark of aging and aging-dependent diseases, es-
pecially PD, inflammatory response regulation is multifaceted and 
integrated by a wide panel of crucial intermingled pathways to in-
clude, besides others, the renin–angiotensin system and a wide 
panel of neurotransmitters, and hormonal and peripheral immuno-
regulatory networks, recently summarized in excellent reviews and 
original contributions (Dang et al., 2021; Hodo et al., 2020).

Considering the complexity of the mutual interplay of glial-
derived factors in vivo, coupled to the influence of different risk 
factors in mDAn vulnerability, it is conceivable that DA signaling at 
the astrocyte–microglial interface will have a prominent impact for 

mDAn survival and health, especially in light of the intrinsic charac-
teristics of mDAns, the interplay between DA signaling mechanisms, 
coupled to the region-specific properties of nigrostriatal glial cells 
(Asanuma et al., 2019; Kostuk et al., 2019; Sofroniew, 2015; Wang 
et al., 2020; Yao et al., 2021).

With a major focus on DA intersection within the astrocyte–
microglial inflammatory network in PD vulnerability with age, we 
herein first summarize the characteristics of DA receptor signaling 
systems, the propensity of DA neurons to oxidative stress/glial in-
flammatory triggers dictating the vulnerability to PD. Reciprocally, 
DA modulation of astrocytes and microglial reactivity, coupled to the 
convergent impact of gene–environment interactions, then constitute 
a further level of control impacting on mDAn survival/death. Not sur-
prisingly, within this circuitry, DA acting as a neuroendocrine–immune 
modulator converges to modulate the Nrf2/Wnt signalosome, adding 
to the already complex “signaling puzzle,” a novel actor in mDAn–glial 
regulatory machinery. Here, an autoregulatory feedback system is 
proposed allowing DA to act as an endogenous Nrf2/Wnt innate mod-
ulator, thereby linking DA-induced oxidative stress to most important 
neuroprotective pathways in PD, then tracing the importance of DA 
receptor agonists applied to the clinic as immune modifiers.

1.1  |  DA receptor signaling and oxidative 
stress: a unique link for mDAn vulnerability in 
Parkinson's disease

Five subtypes known as “D1-like (DRD1 and DRD5) and “D2-like” 
(DRD3 and DRD4) receptors, belonging to the superfamily of G 
protein-coupled receptors (GPCRs), mediate all physiological func-
tions of DA, as expanded in comprehensive reviews of the field 
(Beaulieu et al., 2015; Beaulieu & Gainetdinov, 2011; Gurevich et al., 
2016). Upon DA binding, DRD1-like receptor subtypes, coupled to 
Gαs/olf, drive adenylyl cyclase and thus cyclic adenosine monophos-
phate (cAMP) activity, then promoting cAMP-dependent protein ki-
nase A activation engendering phosphorylating cascades (Figure 2). 
In addition to DRD1 effects on cAMP-regulated signaling and Src 
family kinase (SFK) pathway, DRD1/DRD2  heterodimers or DRD5 
can couple to Gαq to modulate phospholipase C (PLC), in turn acti-
vating phospholipid turnover and diacylglycerol (DAG), releasing Ca2+ 
from internal stores, and activating protein kinase C (PKC) (Figure 2).

On the contrary, D2-like receptor subtypes, coupled to Gαi/o, 
suppress cAMP activity, thereby producing an inhibitory effect 
upon DA binding. In addition, DRD2-mediated activation of Gβγ 
subunits also participates in the modulation of ion channels, in-
cluding G protein-coupled inwardly rectifying potassium channels 
(GIRKs) and L-type calcium channels (Beaulieu et al., 2015; Beaulieu 
& Gainetdinov, 2011). The G protein-independent DRD2  signaling 
is represented by β-arrestin-2 (βArr2)-mediated signaling (Figure 2). 
The mechanism underlying the regulation of Akt by βArr2 has shown 
that activation of the D2-like receptors contributes to the consti-
tution of a protein complex composed of protein phosphatase 2A 
(PP2A), Akt, and βArr2 involved in a panel of intermingled signaling 
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pathways (reviewed by Beaulieu et al., 2015), including the mod-
ulation of glycogen synthase kinase-3 (GSK-3), a multifunctional 
enzyme intersecting a wide variety of survival and immunomodula-
tory pathways (see Beurel et al., 2015, and details in next sections) 
(Figure 2).

1.1.1  |  Aging, dopamine transporter (DAT), and the 
vulnerability to PD

In the presynaptic terminal, the reuptake of DA through the ac-
tions of the high-affinity DA transporter (DAT) represents a key 

step whereby DA is repackaged into the storage vesicles by the 
action of the vesicular monoamine transporter, VMAT. DAT is a 
sodium-coupled symporter protein belonging to the superfamily 
of SLC transporters, responsible for modulating the concentration 
of extraneuronal DA in the brain (Amara & Kuhar, 1993). Notably, 
association of a polymorphism in the DAT gene with Parkinson's 
disease (Le Couteur et al., 1997; Wang et al., 2000) underlines its 
potential role in PD vulnerability (Schmitt et al., 2013). Specifically, 
age-dependent changes in DAT and accumulation of nitrosylated 
tyrosine (3-nitrotyrosine, 3-NT) in rhesus monkey (Kanaan et al., 
2008) and rodent mDAns (Marchetti et al., 2013) support dysfunc-
tional DAT as a vulnerability factor for nigrostriatal degeneration. 

F I G U R E  2 Dopamine receptors and signaling pathways in neuroimmune network. Simplified schematic representation of DA acting via 
DRD1- and DRD2-like receptors by G protein-dependent, by stimulatory (Gαs) or inhibitory Gαi/o subunits, or by G protein-independent 
β-arrestin-2 (βArr2)-dependent pathway (for details, see the text). DA binding to DRD1-like receptor subtypes can elicit two transduction 
pathways, of which one is coupled to Gαs/olf, driving adenylyl cyclase increasing cyclic adenosine monophosphate (cAMP) activity. In 
addition to DRD1 effects on cAMP-regulated signaling, DRD1Rs couple to Gαq to modulate phospholipase C (PLC) pathway, in turn 
activating phospholipid turnover and increasing diacylglycerol (DAG), releasing Ca2+ from internal stores, and activating protein kinase C 
(PKC). D2-like receptor subtypes, coupled to Gαi/o, suppress cAMP activity, thereby producing an inhibitory effect upon DA binding. The 
G protein-independent D2R signaling is represented by βArr2-mediated signaling. The activation of the D2-like receptors contributes to 
the constitution of a protein complex composed of protein phosphatase 2A (PP2A), serine/threonine kinase (Akt), and βArr2, where PP2A 
increases the dephosphorylation and inactivation of Akt, leading to the modulation of glycogen synthase kinase-3 (GSK-3) activation
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Particularly, recent studies of Illiano et al. (2020) showed that in ro-
dents, the lack of DAT results in increased vulnerability and aberrant 
autonomic response to acute stress. In particular, DAT represents a 
preferential target for parkinsonian neurotoxins, as the active me-
tabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 
MPP+, is specifically transported by DAT and concentrated within 
the nigral DA neurons where it inhibits complex I of the mitochon-
drial electron transport chain (METC), resulting in ATP depletion 
and subsequent neuronal cell death (Di Monte & Langston, 1995; 
Langston, 2017; Schildknecht et al., 2017) (Figure 3). The induction 
of oxidative stress results in the opening of mitochondrial perme-
ability transition pore (mPTP), the release of cytochrome C, and the 
activation of caspases. It seems important to recall that mitochon-
dria represent the primary energy-generating system, involved in 
multiple processes, including energy metabolism, reactive oxygen 
(ROS) generation, mitochondrial dynamics, and distribution (Blesa 

et al., 2015; Bose & Beal, 2016; Schildknecht et al., 2017). Of specific 
mention, mitochondrial damage due to Ca2+ overload-induced open-
ing of mPTP is believed to play a key role in selective degeneration 
of nigrostriatal DAns in PD. Hence, endoplasmic reticulum (ER) acts 
as a reservoir of Ca2+ ions, and increased Ca2+ released from the ER 
further enhances mitochondrial oxidative stress of mDAns in SNpc 
(Blesa et al., 2015; Schildknecht et al., 2017). Reportedly, reduction 
in complex I activity in the SNpc of patients with sporadic PD has 
been well described, being considered as one of the primary sources 
of ROS in PD, and accounting for the majority of mDAn cell death 
(Hattori et al., 1991; Hattingen et al., 2009; Schapira et al., 1990). 
Of note, in Str, DA terminals actively degenerated proportionally to 
increased levels of DA oxidation following a single injection of DA 
into the striatum (Rabinovic et al., 2000).

Not only too little but also too much of DAT-mediated mech-
anisms may have harmful consequences, since increased uptake 

F I G U R E  3 Dopamine metabolic pathways and astrocyte–microglial oxidative/inflammatory network. A schematic view of DA pre/
postsynaptic regulatory functions. DA biosynthetic steps start with the action of the enzyme tyrosine hydroxylase (TH), the rate-limiting 
step in the biosynthesis of DA in the presynaptic terminals to form the DA precursor, L-DOPA, the principal drug in the therapeutic 
management of PD. Next, L-DOPA is decarboxylated to form DA. DA is next incorporated into synaptic vesicles, via the vesicular 
monoamine transporter 2 (VMAT2), permitting its protection from metabolic inactivation, and its storage until stimulation, when DA 
released by exocytosis then reaches postsynaptic neurons and binds to cognate D1- and D2-like receptors. D2 presynaptic (inhibitory) 
receptor can stop the further production and release of DA. The reuptake of DA by presynaptic terminals through the actions of the high-
affinity DA transporter (DT) represents another key step whereby DA is recycled back into the storage vesicles, responsible for modulating 
the concentration of extraneuronal DA in the brain. Two enzymes are responsible for DA inactivation, monoamine oxidases (MAOs) and 
catechol-O-methyl transferase (COMT), predominantly expressed by astrocytes. During DA metabolic steps, reactive oxygen (ROS) and 
nitrogen (RNS) species can be produced, which may further engender a neurotoxic cycle capable of causing cell death (for details, see 
the text). Astrocyte–neuron dialogue may be harmful upon exposure to 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP), as the 
neurotoxin is converted to its active metabolite in astrocytes, MPP+, then specifically transported by DAT and concentrated within the 
nigral DA neurons where it inhibits complex I of the mitochondrial electron transport chain, resulting in ATP depletion and subsequent 
neuronal cell death. This process associated with a robust microgliosis and proinflammatory cytokines, tumor necrosis factor α (TNF-α), 
and interleukin-1β (IL-1 β) production can be counter-modulated by DA anti-inflammatory effects via D1/D2-like receptors in glial cells, as 
discussed in Sections 1.3–1.5
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of DA through DAT in transgenic (Tg) mice overexpressing the DA 
transporter results in oxidative damage, neuronal loss, and motor 
deficits (Masoud et al., 2015). Here, the effects of increased DAT 
expression on DA homeostasis, neuronal survival, oxidative stress, 
and motor behavior of DAT-Tg mice were evaluated together with 
the nigrostriatal response to MPTP (Masoud et al., 2015). Hence, an 
almost 30%–36% loss of mDAns and fine motor deficits were asso-
ciated with an increased vulnerability to MPTP-induced mDAn loss, 
indicating that overactivation of DAT-mediated uptake of dopamine 
leads to basal neurotoxicity and heightened sensitivity to exogenous 
insults (Masoud et al., 2015).

Together, the presynaptic transporter DAT in nigral dopaminer-
gic neurons confers susceptibility and represents a principal age-
dependent vulnerability factor for PD.

1.1.2  |  Aging, DA oxidative metabolism, and 
nigrostriatal neuron vulnerability in PD

Given the high metabolic activity that is required to support their 
extensive axonal arborization, mDAns are physiologically subjected 
to various levels of oxidative stress, and reciprocally, among a num-
ber of brain regions studied, the SNpc, where A9 DA cell bodies are 
located, is the more vulnerable region, as DA metabolism constantly 
generates ROS (Chinta & Andersen, 2008). Notably, the aging pro-
cess, associated with a progressive mDAn dysfunction, may add a 
further oxidative load to the system, with harmful consequences for 
nigrostriatal neuron integrity (as summarized in Section 1.2). Two 
enzymes are primarily responsible for DA inactivation, monoam-
ine oxidase isoforms (MAO-A and MAO-B) and catechol-O-methyl 
transferase (COMT), predominantly expressed by glial cells. MAO, 
a flavin-containing enzyme is located on the outer membrane of the 
mitochondria. This enzyme oxidatively deaminates catecholamines 
to their corresponding aldehydes; these can be in turn converted 
either by aldehyde dehydrogenase to acids or by aldehyde reduc-
tase to form glycols. Due to its intracellular localization, MAO has a 
strategic role in the inactivation of DA when the amine is not pro-
tected by the storage vesicles in presynaptic terminal. MAO breaks 
down DA to 3,4-dihydroxyphenylacetaldehyde (DOPAL), which, in 
turn, is degraded to form 3,4-dihydroxyphenylacetic acid (DOPAC) 
by the action of the enzyme aldehyde dehydrogenase. COMT con-
verts DA to 3-methoxytyramine (3-MT), which is further reduced 
by MAO to homovanillic acid (HVA) and then eliminated in the 
urine. During DA metabolic steps, ROS and RNS can be produced 
(Afanas, 2005). These may include hydrogen peroxide (H2O2), sin-
glet oxygen (1O2), hydroxyl (OH), and superoxide (O2) radicals 
(Halliwell & Gutteridge, 1984; Kumar et al., 2012; Sies et al., 2017). 
RNS are produced in neuronal cells from arginine by the neuronal 
nitric oxide synthase (nNOS) and include nitric oxide (NO), nitrite 
(NO2), and S-nitrosothiols and peroxynitrite (OONO) (Adams et al., 
2015). Additionally, DA metabolites and certain derivatives such as 
N-methyl-(R)-salsolinol (NMSAL) (Naoi et al., 2002) are prone to 

oxidation, generating reactive quinones, which may further engen-
der a neurotoxic cycle able to readily modify proteins and potentially 
cause protein aggregation (Sulzer & Zecca, 2000; Zucca et al., 2014).

Overall, age- and PD-dependent chronic DA neuronal dysfunc-
tion, altered DA metabolism, and dysregulated reactive species 
production then have to face the harmful gene x environment in-
teractions promoting a feedforward oxidative/inflammatory cycle, 
contributing to progressive neuronal deterioration and motor defi-
ciency of PD.

1.2  |  The vicious cycle of aging, genes, and mDAn 
mitochondrial dysfunction

1.2.1  |  Aging and the glial inflammatory network 
in PD

A critical hallmark of aging is the progressive decline in nigrostriatal 
DA neurons (Bezard & Gross, 1998; Boger et al., 2010; Collier et al., 
2007; de la Fuente-Fernández et al., 2011; Hindle, 2010) associated 
with the failure of the adaptive/compensatory potential of mDAns, 
recognized to be implicated in the slow but progressive nigrostri-
atal degeneration of PD, with the late appearance of clinical signs 
(Bezard & Gross, 1998; Hornykiewicz, 1993; Kanaan et al., 2008). 
Here, a crucial causative role is represented by the exacerbation of 
the astroglial microenvironment, as a result of a dysfunctional gene–
environment crosstalk. Reportedly, the major aging culprits, namely 
oxidative stress and low-grade inflammation, may further be exac-
erbated under basal ganglia injury, neurotoxin exposure, male gen-
der, and PD genetic mutations (Gao & Hong, 2011; Gao et al., 2003, 
2011; Hu et al., 2008; Marchetti & Abbracchio, 2005). Notably, with 
age, defective mitochondrial turnover by autophagy may trigger 
chronic inflammation and critically contribute to the impairment of 
immune defense, in as much as malfunctioning autophagy has been 
reported in several diseases NDs, including PD, with its consequent 
toxicity considered to be a main cause of the disease (Bektas et al., 
2019; Cuervo, 2008; Cuervo & Macian, 2014; Scrivo et al., 2018). 
Recently, the pentose phosphate pathway (PPP, a metabolic path-
way parallel to glycolysis), which converts glucose-6-phosphate into 
pentoses and generates ribose-5-phosphate and NADPH thereby 
governing anabolic biosynthesis and redox homeostasis, has gained 
a critical attention (Tu et al., 2019). Hence, expression and activity 
of G6PD were elevated in an in vitro model of PD (e.g., LPS-treated 
midbrain neuron–glial cultures) and the SN of vivo PD models, as-
sociating with microglial activation and mDAn neurodegeneration, 
whereas inhibition of G6PD elevation or knockdown of microglial 
G6PD attenuated LPS-elicited chronic mDAn neurodegeneration (Tu 
et al., 2019). Further, microglia with elevated G6PD activity/expres-
sion produced excessive NADPH and provided abundant substrate 
to overactivated NADPH oxidase (NOX2) resulting in exacerbated 
ROS, which suggests that G6PD and NOX2 are potential therapeutic 
targets for PD (Tu et al., 2019).
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In glial cells, mutated genes then cooperate with environmental 
influences to impair mitochondrial homeostasis and the autophagy–
lysosomal pathways, all implicated in mDAn dysfunction observed in 
PD (Ashley et al., 2016; Barodia et al., 2019; Booth et al., 2017; Choi 
et al., 2016; Cuervo & Macian, 2014; Dzamko et al., 2015; Gillardon 
et al., 2012; Kim et al., 2013; Kline et al., 2021; Lastres-Becker et al., 
2012; Marchetti, 2020; Schmidt et al., 2011). While this topic is out-
side the scope of the present work, it seems important to under-
score that all major human PD-linked mutations (i.e., SNCA, LRRK2, 
PINK1, and DJ1) induce complex I inhibition, and synergism with the 
age-dependent oxidative stress and inflammation further promotes 
increased generation of oxidative and nitrosative stress mediators, 
in turn exacerbating the proinflammatory microglial “M1” pheno-
type, then promoting progression of mDAn death (Lastres-Becker 
et al., 2012). Notably, with age, progressive acquisition by glial cells 
of the capacity to produce greater levels of a set of proinflamma-
tory mediators both in physiological conditions, and more actively 
under immune or neurotoxic stimuli on the one hand, coupled to 
the failure of host surveillance systems, on the other, can translate 
into harmful consequences both at central and at peripheral levels 
(Boche et al., 2013; De Cecco et al., 2019; Perry & Teeling, 2013; 
Tansey & Romero-Ramos, 2019). This so-called “microglial cell shift” 
to the “harmful,” M1 phenotype promoting the release of an array 
of factors that are detrimental for the vulnerable mDAns depends 
upon inflammasome activation.

1.2.2  |  Aging, inflammasome activation, and 
mitochondrial dysfunction in PD

Significantly, nuclear factor kappa-light-chain-enhancer of activated 
B cells (NF-ĸB, a protein complex that controls cytokine production 
and cell survival) is the first signal for inflammasome induction and 
a key interactor of DA signaling (as detailed in the next section). 
Among the numerous inflammatory cytokines, interleukin-1β (IL-1β) 
produced by glial cell Nod-like receptor protein (NLRP) inflamma-
some exerts a central role in regulating neuroinflammation (Codolo 
et al., 2013; Haque et al., 2020; Heneka et al., 2014). Upon stimu-
lation by adenosine triphosphate (ATP), reactive oxygen species, 
lysosomal contents, or other factors, NLRP3 recruits the adapter 
molecule apoptosis-related speck-like protein (ASC) and procaspase-
1 to promote caspase-1 activation (Dinarello, 2007). This process 
leads to the maturation of the proinflammatory cytokines (IL-1β, IL-
18). The secretion of IL-1β by glial cells contributes toward the de-
struction of mDAns in the brain of PD patients and the initiation of 
cell death (McGeer & McGeer, 2008). Hence, MPTP-driven NLRP3 
inflammasome activation in microglia plays a central role in mDAns 
demise (Gordon et al., 2018; Lee, 2018), in as much as aging rep-
resents a synergic trigger directing microglia toward the M1 proin-
flammatory phenotype (L’Episcopo, Tirolo, Testa, Canigilia, Morale, 
Impagnatiello, et al., 2011). Additionally, mitochondrial impairment 
in microglia amplifies NLRP3 inflammasome proinflammatory sign-
aling in cell culture and animal models of PD (Sarkar et al., 2017; 

Zhu et al., 2021), whereas the suppression of NLRP3 inflammasome-
derived proinflammatory cytokines mitigates mDAn degeneration 
and may be beneficial to PD patients (Ahmed et al., 2021; Gordon 
et al., 2018; Haque et al., 2020; Zhu et al., 2018). Interestingly, the 
vicious crosstalk between the impaired mitochondrial signaling and 
NLRP3  machinery can contribute to amplify further the noxious 
mDAns outcome, as NLRP3/caspase-1 activation under toxic expo-
sure is mediated by mitochondrial ROS generation (Afonina et al., 
2017; Sarkar et al., 2017).

Altogether, glia acts as a common final pathway of gene x envi-
ronment interactions in PD, playing critical roles in the exacerbation 
of age-dependent mDAn degeneration, and intersecting the harmful 
DA oxidative metabolism. As a result, the modulatory role of DA sig-
naling in glial cell networks appears decisive, since they might either 
help the imperiled mDAns to combat oxidative stress and inflamma-
tion through a wide variety of mechanisms addressed in the follow-
ing sections.

1.3  |  Dopamine signaling strategy to combat 
oxidative stress and inflammation in PD

Indeed, within this scenario, DA emerges as a pivotal regulator 
of inflammation, thanks to its dual facet of immunosuppressor/
activator relying on its receptor subtypes coupled to stimulatory/
inhibitory signal transduction pathways. Reportedly, exposure 
to DA or DA receptor agonists decreases detrimental actions of 
immune cells (Table 1). In contrast, a reduction in DA signaling 
perpetuates a proinflammatory state associated with increased 
release of proinflammatory molecules. Here, DA dialogue with mi-
croglia and astrocytes together with the proposed DA-mediated 
intersection at the Nrf2/Wnt/β-catenin/GSK-3β signalosome is 
presented.

1.3.1  |  DA signaling intersects harmful microglial 
inflammatory networks in PD: DA/NF-ĸB /
NLRP3 crosstalk

A most robust evidence linking DA to inflammation is the recognized 
notion that DA deficit within the nigrostriatal system, as observed in 
preclinical and clinical models of PD, strongly associates with exag-
gerated inflammation both at central and at peripheral levels. Studies 
conducted in the MPTP model of PD, including our own results, 
clearly showed an inverse relationship between microglial inflam-
matory activation and the sharp inhibition of DA, DRD2 and DAT 
in striatum of basal ganglia-injured mice (Serapide et al., 2020). The 
greatest effects were observed in aged mice, coincident with a ro-
bust activation of major proinflammatory transcripts, including NF-
ĸB, IL-1β, TNF-α, and IL-6, as well as oxidative and nitrosative stress 
markers such as ROS, RNS, and 3-NT. Likewise, at the midbrain level, 
progressive decline in DA resulting from the aging process associates 
with increased reactivity of the microglial cell compartment, further 
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amplified after basal ganglia injury, in the face of downregulation of 
major DA transcripts, including DRD2 and protein levels in the mid-
brain (L’Episcopo et al., 2018). Such a dramatic loss of DA inhibitory 
tonus onto nigrostriatal astrocytes and microglia likely contributes 
to the observed exacerbated neuroinflammation during aging and 
PD (Serapide et al., 2020).

Reportedly, microglia harbor DA receptor subfamilies (Pocock 
& Kettenmann, 2007). Studies of Mastroeni et al. (2009) showed 
that cultured human elderly microglia expressed mRNAs for DRD1-
DRD4 but not DRD5 receptors (Table 1). In addition, PD microg-
lia in situ were also immunoreactive for DRD1-DRD4 but not for 
DRD5 receptors, suggesting that activated PD microglia expressing 
DA receptors might play roles in the selective vulnerability of DA 

neurons in PD (Mastroeni et al., 2009). In PD rats, DRD1 activated 
by acetyl-L-carnitine attenuates microglial activation and the release 
of proinflammatory mediators, a phenomenon potentially linked 
to the amelioration of cognitive deficits and neurodegeneration 
(Singh, Mishra, Mohanbhai, et al., 2018). Here, acetyl-L-carnitine 
inhibited microglial activation-mediated inflammatory response 
and weakened TNF-α levels by increasing the production of the 
anti-inflammatory cytokine, IL-10, which led to improved neuronal 
survival (Singh, Mishra, Mohanbhai, et al., 2018), implicating DA 
regulation of inflammasome/NF-ĸB pathway (recently reviewed by 
Feng & Lu, 2021). Within this context, emerging evidence also indi-
cates that microglial polarization and generation of ROS are tightly 
related to the DA-targeted brain intrinsic renin–angiotensin system 

TA B L E  1 Dopamine signaling at the microglial-astrocyte interface

Da receptor subtypes and functions References

ASTROCYTES AND MICROGLIA

Cultured human elderly microglia expressed mRNAs for DRD1-D4 but not DRD5. The microglia, as well as PD 
microglia in situ, were also immunoreactive for DRD1-D4 but not DRD5.

Mastroeni et al. (2009)

DA has a differential role in resting and activated microglia, as phagocytosis and adhesion depend on the 
activation states of microglia.

Fan et al. (2018)

DA prevents microglial glutamate release evoked by α-synuclein aggregates by an antioxidant effect requiring 
DRD1 activation and PI3K inhibition.

Dos-Santos-Pereira et al. (2018)

In PD rats DRD1 activated by acetyl-L-carnitine attenuates microglial activation and the release of pro-
inflammatory mediators, preventing neuronal death and improving memory functions.

Singh et al. (2018a)

In ageing mice, progressive decline of DA-activating DR2R associates with increased reactivity of microglia, 
further amplified after basal ganglia injury, in the face of downregulation of major DRD2, anti-oxidant and 
neuroprotective astrocyte transcripts and protein levels.

L’Episcopo et al. (2018)
Serapide et al (2020)

DRD1 are present on fine processes of GFAP+ astrocytes in the substantia nigra pars reticulata being a major 
candidate to receive DA released dendritically.

Nagatomo et al. (2017)

DRD3 are selectively expressed in astrocytes but not in microglia. DRD3 selective antagonist PG01037 
reduces the acquisition and activation of M1 microglia, and contributes to anti-inflammatory effects, with 
therapeutic effects in PD mice model.

DRD3 deficiency resulted in exacerbated expression of the anti-inflammatory protein “found in inflammatory 
zone 1” (Fizz1) in glial cells both in vitro and in vivo.

Elgueta et al (2017)
Montoya et al. (2019)

DRD2 agonists suppress the upregulation of caspase-1 and IL-1β expression in primary cultured mouse 
astrocytes in response to LPS plus ATP-induced NLRP3 inflammasome activation. Astrocyte DRD2 
receptor restricts astrocytic NLRP3 inflammasome activation via enhancing the interaction of βArr2 
and NLRP3.

Zhu et al. (2018)

DRD2 agonists significantly mitigate LPS-induced inflammatory response in astrocytes, while α-Syn disrupts 
the anti-inflammatory role of DRD2 interfering with β-arrestin2-TAB1 interaction in astrocytes.

Du et al. (2018)

DA downregulates astrocyte-derived angiotensin I and regulates microglial angiotensin receptors, with 
inhibition of proinflammatory microglia phenotype under LPS activation.

Dominguez-Meijide et al. (2017)

There is an inverse relationship between microglia inflammatory activation and the sharp inhibition of 
DA, DRD2 and DAT in striatum during ageing and basal ganglia-injury. Robust activation of major 
proinflammatory transcripts, including Nfkb, IL-1α, TNF-α, and IL-6, as well as oxidative and nitrosative 
stress markers such as ROS, RNS, and 3-NT coinciding maximal glial activation.

L’Episcopo et al (2012; 2013)

Astrocytic DA modulation carried out by DRD2 can suppress neuroinflammation through CRYAB- dependent 
mechanism, whereas DRD2 knockout mice showed robust inflammatory responses and increased 
vulnerability of mDAns to MPTP.

Shao et al. (2013)

DRD2 receptor activation by Sinomenine in astrocytes alleviates neuroinflammatory injury via the CRYAB/
STAT3 pathway.

Qiu et al (2016)

Abbreviations: 3-NT, 3-nitrotyrosine; CRYAB, α-beta-cristallin; DA, dopamine; DRD1-DRD5, dopamine receptor 1-5; Fizz1, found in inflammatory 
zone 1; IL-1 β, interleukin-1β; IL-6, interleukin-6; iNOS, inducible nitric oxide; NF-ĸB, nuclear factor kappa-light-chain-enhancer of activated B cells; 
NLRP3, Nod-like receptor protein 3; reactive nitrogen species, RNS; reactive oxygen species, ROS; TAB1, transforming growth factor beta 1; TNF-α, 
tumor necrosis factor α; α-Syn, α-Synuclein; βArr2, β-Arrestin 2.
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(RAS), a local/paracrine modulatory mechanism playing an import-
ant role in inflammatory processes (Dang et al., 2021; Dominguez-
Meijide et al., 2017; Gong et al., 2019; Mowry & Biancardi, 2019; Xia 
et al., 2019).

The roles of DA signaling in regulating these key inflammatory 
pathways stem from the transduction machinery of DRD1/DRD2-
like receptor subtypes. In DRD1-like receptors, the elevated cAMP 
induced by DA directly binds to NLRP3 (Figure 4). Here, elevated 
cAMP activates PKA and phosphorylates cAMP-response element 
binding protein (CREB), thus disrupting NF-ĸB homeostasis and 
resulting in the inhibition of the inflammatory response (Neumann 
et al., 1995; Xia et al., 2019 and Refs herein). Also, via DRD5  sig-
naling, DA can block NF-kB pathway, thus suppressing proinflam-
matory mediators (Wu et al., 2020; Zhang et al., 2015). DRD2-like 
receptor signaling may involve either a GPC-dependent or a β-
arrestin-dependent GPC-independent pathway to modulate glial in-
flammatory activation, with the β-arrestin-dependent mechanism 
playing a critical role (Fan, 2014) (Figure 4).

Interestingly, DA receptor expression is induced by the activated 
microglial phenotype, as cerebral ischemia induced the expression of 

DRD2 on Iba1-immunoreactive inflammatory cells in the infarct core 
and penumbra (Huck et al., 2015). Similarly, DA has a differential role 
in influencing cellular functions of resting and activated microglia, 
such as phagocytosis and adhesion, depending on the activation 
states of microglia (Fan et al., 2018). Notably, while DRD3 were 
reported not to be expressed in microglial cells, DRD3 deficiency 
results in attenuated microglial activation upon systemic LPS treat-
ment (Montoya et al., 2019). Hence, the role of DRD3 signaling in 
the acquisition of inflammatory phenotype by microglial cells was re-
cently further studied by the determination of the M1 and M2 phe-
notypes acquired by microglia 24 h after LPS treatment in WT and 
DRD3-KO mice (Montoya et al., 2019). Interestingly, the percentage 
of M1 microglia was not affected by genetic deficiency or pharma-
cological antagonism of DRD3 signaling, but the percentage of M2 
phenotype in microglial cells was significantly reduced upon DRD3 
antagonism in LPS-treated WT mice (Montoya et al., 2019). On the 
bases of these and other results (Elgueta et al., 2017; Montoya et al., 
2019), DRD3 has been indicated to be expressed selectively in as-
trocytes, but not in microglial cells, thereby implicating astrocyte 
intermediacy in M1-M2 microglial switch.

F I G U R E  4 Dopamine signaling pathways modulate inflammasome activation in microglia. Immune activation is schematically represented. 
LPS via Toll-like receptors (TLRs) activates Nod-like receptor protein 3 (NLRP3) inflammasome and nuclear factor kappa-light-chain-
enhancer of activated B cell (NF-ĸB) signaling pathways promoting proinflammatory cytokine (IL-1β, TNF-α, IL-6) release (detailed in Section 
1.2). DA and DA agonist activation of D1-like receptors (D1 and D5) results in a downmodulation of immune response. D1 activation via 
Gαsolf increases cAMP, which binds directly to NLRP3 triggering its ubiquitination via an autophagy-mediated degradation. Activated cAMP 
signaling also inhibits p65/RelA and p50 activation. D5R activation directly recruits a multiprotein complex, impairing activation of NF-kB. 
Activation of D2R-b-arrestin-2 complex also results in D2R binding to NLRP3 to repress its activation. D2R signaling can negatively regulate 
the NF-kB signaling pathway, thereby inhibiting major proinflammatory cytokine release. The hypothetical role of neuroinflammation, aging, 
and brain injury, as a counter-regulatory mechanism, via upregulation of DA receptor expression is illustrated
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1.3.2  |  DA intersect astrocyte's harmful signaling in 
PD: DA/αβ-crystallin /STAT3 crosstalk

Astrocytic DA modulation carried out by DRD2 can suppress 
neuroinflammation through αB-crystallin-dependent mechanism 
(Figure 5). Hence, DRD2 agonist quinpirole  increased resistance 
of the nigral dopaminergic neurons to MPTP through partial sup-
pression of  inflammation (Shao et al., 2013). Conversely, knockout 
mice lacking DRD2  showed robust inflammatory responses in dif-
ferent brain regions. Additionally, DRD2 knockout increased the vul-
nerability of mDAns to MPTP-induced neurotoxicity. Interestingly 
enough, DRD2-deficient astrocytes became hyper-responsive to 
immune stimuli in the face of a significant decrease in the level of 
αB-crystallin (Shao et al., 2013). Further evidence comes from ex-
periments carried out after ablation of DRD2 in astrocytes result-
ing in a robust activation of astrocytes in SNpc (Shao et al., 2013). 
Using gain-of function or loss-of-function settings and pharmaco-
logical treatments with the selective DRD2 agonist, quinpirole, 
increased resistance of the SNpc DA neurons to MPTP, through a 
partial suppression of inflammation. Overall, these studies indicated 

that astrocytic DRD2 activation physiologically downregulates neu-
roinflammation in the studied model, via αB-crystallin-dependent 
mechanism, suggesting a potential novel approach aimed at target-
ing the astrocyte-mediated innate immune response (Shao et al., 
2013). Likewise, in the study of Qiu et al. (2016), sinomenine was 
shown to activate astrocytic DRD2 receptors, thereby alleviating 
neuroinflammatory injury via the αβ-crystallin /STAT3 pathway after 
ischemic stroke in mice.

A novel interaction between DA and α-Syn was recently stud-
ied by Du et al. (2018). Here, the authors showed that the selective 
DRD2 agonist quinpirole can suppress inflammation in the midbrain 
of wild-type mice, but not in α-Syn-overexpressing mice. DRD2 ago-
nists were also capable to significantly mitigate LPS-induced inflam-
matory response in astrocytes (Du et al., 2018).

Interestingly, such DRD2-mediated anti-inflammatory effect 
was dependent on β-arrestin-2-mediated signaling, but not on clas-
sical G protein pathway. Additionally, α-Syn reduced the expression 
of β-arrestin-2 in astrocytes, whereas it increased the β-arrestin-2 
expression and restored the anti-inflammatory effect of DRD2 in α-
Syn-induced inflammation. Such α-Syn-mediated disruption of DRD2 

F I G U R E  5 Dopamine signaling pathways intersect oxidative/inflammatory cascades in astrocytes. Schematic representation of DA 
modulation of astrocyte harmful phenotype during inflammation and oxidative stress. DA crosstalk with Nrf2-ARE induced targeting 
of antioxidant response elements (ARE) is highlighted. Upon DA binding to DRD2, neuroinflammation can be mitigated by different 
mechanisms. αB-Crystallin (αBC)-dependent mechanism can be elicited by DRD2 agonists alleviating neuroinflammatory injury via the αβC/
STAT3 pathway. DRD2 agonists can also mitigate LPS-induced proinflammatory cytokine response, via a β-arrestin-2-mediated signaling 
inhibiting NLRP3 inflammasome activation. On the contrary, α-Syn reduced the expression of β-arrestin-2 in astrocytes, whereas it increased 
the β-arrestin-2 and can restore the anti-inflammatory effect of DRD2 (detailed in the text). A critical loop is represented by the ability of 
DRD signaling to upregulate the master regulator of oxidative stress and inflammation, Nrf2 in astrocytes, via ARE stimulation of a panel 
antioxidant/anti-inflammatory proteins, such as heme oxygenase (HO1), superoxide dismutases (SODs), glutathione S-transferase (GST), and 
catalase (CAT) besides others, regulating the cellular redox state by decreasing oxidative stress and inflammation (detailed in Section 1.4)
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anti-inflammatory effect was carried out by inhibiting the association 
of β-arrestin-2 with transforming growth factor-beta-activated kinase 
1 (TAK1)-binding protein 1 (TAB1) and promoting TAK1-TAB1 inter-
action in astrocytes, underscoring the ability α-Syn disrupts the func-
tion of β-arrestin-2 and inflammatory pathways in the pathogenesis 
of PD (Du et al., 2018). DRD2 agonists were also found to suppress 
the upregulation of caspase-1 and IL-1β expression in primary cultured 
mouse astrocytes in response to LPS plus ATP-induced NLRP3 inflam-
masome activation (Zhu et al., 2018). Furthermore, using the MPTP 
mouse model of PD, the authors found that DRD2 agonists inhibited 
NLRP3 inflammasome activation, evidenced by decreased caspase-1 
expression and reduced IL-1β release in the midbrain of wild-type 
mice. Such anti-inflammasome effect of DRD2 was abolished in β-
arrestin-2  knockout and β-arrestin-2  small interfering RNA-injected 
mice, suggesting a critical role of β-arrestin-2 in DRD2-regulated 
NLRP3 inflammasome activation (Zhu et al., 2018).

On the contrary, the studies of Elgueta et al. (2017) showed a 
selective DRD3 transcription in astrocytes but not in microglia. 
Interestingly, D3R selective antagonist PG01037 reduces the ac-
quisition and activation of M1 phenotype microglia, contributing to 
an anti-inflammatory effect and displaying a significant therapeutic 
effect in PD mouse model (Elgueta et al., 2017).

Of note, the DRD3 immunoreactivity in astrocytes is associated 
with a clustered pattern, resembling the expression pattern observed 
for those proteins contained in lipid rafts (see Montoya et al., 2019).

Altogether, DA powerfully modulates glial inflammatory re-
sponses via both D1 and D2 receptor subtypes, via its inter-
section within the major proinflammatory circuits. Moreover, 
DA-mediated counter-regulation of immune response may change 
according to the activation stage and/or the severity of the proin-
flammatory glial phenotype, thus suggesting that DA-mediated 
immunomodulation not only varies according to the DA receptor 
subtype and operated transduction pathway but also depends on 
the severity of inflammation and the counter-modulatory effects 
elicited by DA crosstalk with key antioxidant/anti-inflammatory/
cytoprotective Nrf2/Wnt pathways, as discussed below inthe next 
sections).

1.4  |  DA signaling intersects the Nrf2/Wnt/β-
catenin/GSK-3β protective axis

1.4.1  |  DA-Nrf2 crosstalk

Nrf2 activation-induced targeting of antioxidant response ele-
ments (AREs) in the promoter region of several hundred genes 
results in the promotion of a wide panel of cytoprotective, anti-
inflammatory and phase 2 proteins, such as heme oxygenase (HO1), 
NAD(P)H quinone oxidoreductase (NQO1), superoxide dismutases 
(SOD1, SOD2), glutathione S-transferase (GST), glutathione per-
oxidase (GPx), glutathione reductase (GR), and catalase (CAT), 
which together are capable of regulating the cellular redox state 
by decreasing ROS. Specifically, Nrf2  has a multifaceted role in 

mitochondrial function and inflammatory networks (Blackwell 
et al., 2015; Dinkova-Kostova & Abramov, 2015; Holmström et al., 
2016; Ryoo & Kwak, 2018). Of major importance, Nrf2 induction 
is primarily observed in non-neuronal cells. In astrocytes, this in-
ducible mechanism coordinates expression of several cellular de-
fense pathways including the following: detoxification of reactive 
oxygen/nitrogen species and xenobiotics, GSH synthesis, and gen-
eration of NADPH (see Vargas & Johnson, 2009). Notably, Nrf2 is 
an important player in the pathogenesis of cancer and common in-
flammatory, age-dependent, and most neurodegenerative diseases, 
and its multifunctional role has been emphasized in several earlier 
and more recent studies and reviews (Abdalkader et al., 2018; Cano 
et al., 2021; Cuadrado et al., 2019; Dinkova-Kostova & Abramov, 
2015; Johnson et al., 2008; Lastres-Becker, 2021; Lastres-Becker 
et al., 2016; Marchetti, 2020; Strong et al., 2016; Vargas & Johnson, 
2009). Activation of Nrf2 in astrocytes protects neurons from 
a wide array of insults in different in vitro and in vivo paradigms, 
including MPTP-induced mDAn neurotoxicity, whereas Nrf2 defi-
ciency contributes to neuronal death, supporting the role of astro-
cytes in determining the vulnerability of neurons to noxious stimuli, 
in particular mDAns (Calkins et al., 2010; Chen et al., 2009; Copple 
et al., 2010; Gan et al., 2012; Vargas & Johnson, 2009) (Figure 5 
and Table 2). Of note, loss of Nrf2 in the presence of α-syn expres-
sion cooperates to aggravate protein aggregation, neuronal death, 
and inflammation in early-stage PD (Lastres-Becker et al., 2012), 
further highlighting the critical role of gene–environment harmful 
interactions in PD.

Also, in aged MPTP mice, the old parenchymal astrocytes in VM 
loose both DRD2 and Nrf2 transcriptional activity, whereas grafting 
young astrocytes rejuvenates the microenvironment, resulting in a 
gain of Nrf2 function, as ARE transcriptional activity and mitochondrial 
beneficial effects are associated with mDAn neurorescue (Serapide 
et al., 2020). In particular, in vivo and ex vivo experiments carried out in 
astrocyte-grafted aged MPTP mice underscored the ability of “young” 
astrocyte's grafts to reprogram the aged parenchymal astrocyte meta-
bolic activity, switching mitochondrial dysfunction, in turn resulting in 
mitigation of ROS, RNS, and inflammatory mediators, compared with 
aged MPTP control astrocytes transplanted with a non-specific cell 
type (Serapide et al., 2020).

Further, the activation of Nrf2 enables protection against 6-hydr
oxydopamine-(6-OHDA)-induced ferroptosis, a form of cell death in-
volving the iron-dependent accumulation of GSH depletion and lipid 
peroxide in DA cells (Sun et al., 2020; Wei et al., 2020). By contrast, 
Nrf2 deficiency was associated with exaggerated mitochondrial 
dysfunction and blockade of Nrf2’s mitochondrial protective re-
sponse, as recently reported by Cano et al. (2021) in Nrf2-deficient 
retinal pigmented epithelium. The pivotal function of Nrf2  stems 
from its modulatory role on key aspects of mitochondrial health (see 
Ammal Kaidery et al., 2019; Cano et al., 2021; Ryoo & Kwak, 2018). 
Interestingly, in Caenorhabditis elegans, where the Nrf proteins are 
represented by their ortholog SKN-1, recent studies implicate Nrf/
SKN-1 in a wide range of homeostatic functions (Blackwell et al., 
2015). Reportedly, as underscored by Blackwell et al. (2015), “SKN-1 
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plays a central role in diverse genetic and pharmacological inter-
ventions that promote C. elegans longevity, suggesting that mecha-
nisms regulated by SKN-1 may be of conserved importance in aging” 
(Blackwell et al., 2015). Accordingly, a number of experimental ap-
proaches evaluating the potential regulation of the transcription fac-
tor Nrf2 to enhance the expression of genes that contrast oxidative 
stress and promote healthy aging have been provided, particularly 
with Nrf2 activators described to expand the life span, contrasting 

oxidative stress and inflammation (Liu et al., 2009; Nelson et al., 
2006; Strong et al., 2016; Velmurugan et al., 2009).

Against this background, a direct DA-Nrf2 crosstalk may repre-
sent a further protective mechanism whereby DA activation triggers 
Nrf2-regulated pathways (Figure 5). Hence, in astrocytes, excessive 
extracellular DA itself likely served as an endogenous signal to activate 
Nrf2-dependent neuroprotective pathways (Shih et al., 2007). Indeed, 
the ability of Nrf2 activation in protecting cells from DA toxicity has long 

TA B L E  2 Dopamine signaling at the NRf2/Wnt/β-catenin/GSK-3β interface in PD
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been recognized, and in part attributable to enhanced H2O2 scavenging 
by the GSH system, and detoxification of reactive quinones by NAD(P)
H: NQO1 (Duffy et al., 2018). Particularly, physiological oxidative stress-
ors or subthreshold concentrations of neurotoxins support DA neuron 
survival and neural stem progenitor cell (NSC) differentiation via acti-
vation of Nrf2/Wnt signaling in glial cells (Marchetti et al., 2020; Wang 
et al., 2020). Notably, DA activation of DRD1-like receptor, DRD5, was 
recognized as a necessary trigger for the normal expression of Nrf2 and 
inhibition of harmful oxidative cascades, as DRD5 deficiency causes an 
increase in NADPH oxidase activity and prevents the translocation of 
Nrf2 nuclear (Jiang et al., 2018). Then, DA activation of D1-like recep-
tors in astrocytes might further contribute to an autoregulatory feed-
back triggered by endogenous DA and DA agonists (Figure 5, Table 2).

Together, DA-Nrf2 crosstalk appears a feasible counter-
regulatory mechanism triggered by DA to prevent the deleterious 
effects of exacerbated oxidative stress and inflammation.

1.4.2  |  DA-Wnt/β-catenin crosstalk

Earlier studies on functional interactions between DA and Wnt/β-
catenin signaling focused on DRD2 under long-term treatment 
with antipsychotic drugs, which are the blockers of D2-like recep-
tors (Alimohamad et al., 2005; Freyberg et al., 2010), supporting a 
functional interaction between Wnt pathway and DRD2/DRD3. The 
chief role of Wnt signaling for neurogenesis in the adult and aged 
PD brain has been recently reviewed (Marchetti et al., 2020). During 
age and basal ganglia injury, the progressive decline in DA targeting 
glial cells via DRD2 in VM and Str of aged MPTP-treated PD mice 
was associated with decreased Wnt/β-catenin signaling genes and 
proteins, in turn affecting both glial cell reactivity and mDAn loss 
(Marchetti, 2018). Moreover, decreased D1 receptor expression, mi-
tochondrial biogenesis, mitochondrial functions, and dopaminergic 
neuron differentiation were associated with downregulation of Wnt/
β-catenin signaling in the hippocampus of rats lesioned with the PD 
neurotoxin, 6-OHDA (Mishra, Singh, Tiwari, Chaturvedi, et al., 2019; 
Mishra, Singh, Tiwari, Parul, et al., 2019). Conversely, pharmacologi-
cal stimulation of D1 receptor enhanced mitochondrial biogenesis, 
mitochondrial functions, and DA neurogenesis that lead to improved 
motor functions in 6-OHDA-injured rats. The specificity of these 
effects was underscored using a D1 antagonist, whereas shRNA-
mediated knockdown of Axin-2, a negative regulator of Wnt sign-
aling, significantly abolished D1 antagonist-induced impairment in 
mitochondrial biogenesis and DA neurogenesis in 6-OHDA-lesioned 
rats (Mishra, Singh, Tiwari, Chaturvedi, et al., 2019; Mishra, Singh, 
Tiwari, Parul, et al., 2019).

A number of studies investigated the molecular mechanisms of 
DRD2-Wnt/β-catenin crosstalk (Han et al., 2019; Min et al., 2011). In 
the study of Min et al. (2011), among the five DA subtypes, DRD2 
interacted with β-catenin through the second and third intracellular 
loops and inhibited the entry of β-catenin into the nucleus, leading to 
an inhibition of the LEF-1-dependent transcription (Min et al., 2011). 
In this work, the authors suggested that the functional regulation of 

Wnt signaling by DRD2 could occur through direct interaction with 
β-catenin independently of the upstream signaling components (Min 
et al., 2011). Notably, of the two DRD2 downstream intracellular 
pathways, the β-arrestin-dependent pathway appears to be the one 
targeting Wnt/β-catenin signaling (Bryja et al., 2007), with GSK-3β, 
being the critical intersector, and the contribution of serine/thre-
onine kinase (AKT) counter-regulation (Figure 6).

In fact, in addition to AKT’s roles in β-arrestin-2-dependent 
DRD2  signaling, AKT regulates GSK-3β through phosphoryla-
tion. In its non-phosphorylated state, GSK-3β is constitutively ac-
tive, whereas AKT-induced phosphorylation inactivates GSK-3β 
(Beaulieu et al., 2007) (Figure 6). Regarding the so-called “canonical 
Wnt/β-catenin” signaling, GSK-3β is part of a destruction complex, 
whereby GSK-3β-induced phosphorylation of β-catenin results in its 
proteasomal degradation, blockade of β-catenin nuclear transloca-
tion associated with inhibition of Wnt-dependent transcription of a 
panel of downstream target genes. Then, DA activation of DRD2-
β-arrestin-2-dependent pathway may also modulate Wnt signaling 
via AKT-mediated phosphorylation of GSK-3β, thereby modulating 
β-catenin nuclear translocation (Figure 6).

Significantly, in the study of Han et al. (2019), DRD2-dependent 
crosstalk was shown to modulate Wnt3a expression via an evolution-
arily conserved TCF/LEF site within the Wnt3 promoter. Moreover, 
DRD2 signaling also modulated cell proliferation and modifies the 
pathology in a renal ischemia/reperfusion injury disease model, via 
its effects on Wnt/β-catenin signaling, thus suggesting DRD2 as a 
transcriptional modulator of Wnt/β-catenin signal transduction, 
with broad implications for health and development of new thera-
peutics (Han et al., 2019).

Importantly, DRD2-mediated Wnt-β-catenin signaling also cross-
talks with major immune signaling actors. Hence, if not phosphory-
lated by GSK-3β, β-catenin forms a complex with both the units of 
NF-κB, altering its DNA binding activity, and consequently inhibits the 
inflammatory cascade (Marchetti & Pluchino, 2013). However, when 
GSK-3β is activated, it phosphorylates β-catenin protein for protea-
somal degradation that directly promotes the inflammatory events 
(Deng et al., 2002; Marchetti & Pluchino, 2013). Activated GSK-3 also 
modulates CREB-DNA activity, phosphorylating NF-κB, and degrades 
β-catenin, thus promoting systemic inflammation.

The ability of active GSK-3β to phosphorylate Nrf2 (Cuadrado 
et al., 2018; Hayes et al., 2015) then represents a further vulnerabil-
ity factor, as its overexpression exacerbates inflammation, thus im-
pairing neuron–glial and glial–NSC interactions leading to enhanced 
neuronal vulnerability and/or cell death, associated with reduced 
neurorepair (Marchetti, 2020). By contrast, DA-activated DRD2-β-
arrestin-2-dependent signaling via AKT can boost the antioxidant, anti-
inflammatory, prosurvival, and neurogenic downstream gene cascade.

As a whole, DA-mediated signaling at the astrocyte–microglial 
interface via DRDs appears as a pivotal counter-regulatory system 
contributing to limit both Nrf2 and β-catenin phosphorylation and sub-
sequent degradation, thereby reinforcing the Nrf2-ARE/Wnt/β-catenin 
neuroprotective and immunomodulatory axis to combat aging and PD 
(Figure 7), and can be envisaged for the treatment of other CNS diseases.
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1.5  |  “Reframing” DA agonists as immune modifiers 
in CNS disorders

Accordingly, increasing evidence suggests the potential to redirect 
DA drugs to downregulate inflammation at both central and periph-
eral levels, with the ability of well-recognized indirect and direct DA 
agonists (including levodopa, pramipexole, ropinirole, quinpirole, apo-
morphine, and amantadine among others), used in the symptomatic 
therapy of PD, to be repurposed by virtue of their neuroprotective/
anti-inflammatory properties in a wide panel of disorders, includ-
ing ischemic stroke, intracerebral hemorrhage, ICH, traumatic brain 
injury, TBI, and amyotrophic lateral sclerosis, ALS, besides others. 
Hence, studies of Yan et al. (2015) showed that DA prevented NLRP3-
dependent neuroinflammation via regulating dopamine DRD1/cAMP 
signaling pathway and suggested D1R agonists as potential thera-
peutic target for the inflammation-related CNS diseases (Yan et al., 

2015). The work of Zhang et al. (2015) implicated DRD2 agonists in 
suppressing neuroinflammation via αB-crystallin, via inhibition of NF-
κB nuclear translocation in experimental ICH mouse model. The role 
of DA in poststroke inflammation has been deeply studied by several 
investigators. Reportedly, levodopa treatment improves functional 
recovery after experimental stroke (Ruscher et al., 2012) both directly 
and via DRD-induced glial cell line-derived neurotrophic factor (Kuric 
et al., 2013), with the role of DA–immune cell signaling in poststroke 
inflammation expanded by Talhada et al. (2018). Also, DRD2 agonist, 
bromocriptine methylate, can suppress glial inflammation, thus miti-
gating disease progression in a mouse model of ALS (Tanaka et al., 
2011), and quinpirole-mediated regulation of DRD2 can inhibit glial 
neuroinflammation both in the cortex and in the Str after TBI (Alam 
et al., 2021). Notably, the studies of Wang et al. (2018) showed the 
ability of DRD1 activators to decrease NLRP3-mediated inflammation 
in ICH, and in a rat model of spinal cord injury, the DRD1 agonist, 

F I G U R E  6 Dopamine signaling pathways crosstalk with Wnt/β-catenin/GSK-3β cascade. Simplified representation of the Wnt/β-catenin 
signaling pathway and its intersection with DRD2 signaling. Wnt signal activation is tightly controlled by a dynamic signaling complex 
comprised of core receptors from the Frizzled (Fzds) family of G protein-coupled receptors (GPCRs), the low-density lipoprotein (LDL) 
receptor-related protein (LRP) 5/6 co-receptors, and the disheveled (Dvl) and Axin adapters. Binding of Wnt1-like endogenous/exogenous 
agonists to Fzd triggers a molecular cascade leading to the cytoplasmic accumulation of β-catenin, which enters the nucleus, and associates 
with T-cell factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors, in turn promoting the transcription of Wnt target genes. 
β-Catenin is tightly regulated via phosphorylation by the ‘destruction complex’, consisting of glycogen synthase kinase-3β (GSK-3β), casein 
kinase 1α (CK1α), the scaffold protein Axin, and the tumor suppressor adenomatous polyposis coli (APC). DRD2 downstream intracellular 
G protein-independent, arrestin-dependent pathways can target Wnt/β-catenin signaling, intersecting GSK-3β, through the contribution 
serine/threonine kinase (AKT)-mediated phosphorylation. Crosstalk between DRD2 and Wnt signaling can relieve β-catenin from active 
GSK-3 phosphorylation, thus permitting β-catenin translocation in the nucleus activating transcription of Wnt-dependent genes involved in 
proliferation, differentiation, neuroprotection and immunomodulation (detailed in the text)
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A-68930, inhibits NLRP3 activation-mediated inflammation and alle-
viates histopathology (Jiang et al., 2015).

Altogether, DA agonists emerge as potential therapeutics in a 
wide number of CNS diseases, in as much as the interacting harmful 
cascades arising from DA deficiency at central and peripheral levels, 
may engender a detrimental vicious cycle (Figure 8). Hence, the dra-
matic loss of DA-mediated signaling at central and peripheral levels 
was associated with the age-dependent GSK-3β overactivation, in 
turn creating a favorable milieu driving a feedforward cycle of in-
flammation/neurodegeneration, as loss of Nrf2/Wnt and upregula-
tion of GSK-3 phosphorylating and degrading β-catenin further drive 
inflammation and excessive oxidative stress, which is linked to the 
inhibition of adult neurogenesis and neurorepair (Marchetti, 2020; 
Marchetti et al., 2020).

Notably, a panel of “protective/beneficial” strategies targeting 
lifestyle, such as physical activity and exercising, diet and dietary 
supplementations/restrictions, impacting on global organic/psycho-
mental health and abating the harmful effects of chronic stress, have 
resilient effects on Nrf2/ARE-Wnt/β-catenin axis (Marchetti, 2020) 
and may promote a more resistant phenotype (Figure 8).

2  |  CONCLUDING REMARKS AND FUTURE 
PERSPEC TIVES

Oxidative stress and inflammation are recognized aggravating fac-
tors for the development of both the sporadic and the genetic 
forms of PD, where the exacerbated generation ROS and a panel 

F I G U R E  7 Dopamine drives astrocyte–microglial crosstalk via DRDs/Nrf2/Wnt/GSK-3 signaling to combat oxidative stress and 
inflammation. Schematic representation of DA signaling pathways intersecting major oxidative/inflammatory networks in astrocyte–
microglial dialogue in PD. Aging, inflammation, and toxic (including bacterial, viral, neurotoxic…) exposures work in synergy with genetic 
mutations impair nigrostriatal DA neurons. DA and DA agonist can revert such harmful dialogue via a glial switch toward a beneficial 
antioxidant/anti-inflammatory and neuroprotective phenotype. DA and DA agonists acting via DRD1 and DRD2 in astrocytes can upregulate 
Nrf2/HO1 and Wnt1/β-catenin during oxidative stress and inflammation representing a self-defense system for mDAn survival. Increased 
DRD2-β-arrestin-2/AKT cascade may then block GSK-3β-induced phosphorylation and proteasomal degradation of the neuronal pool of β-
catenin. Stabilized β-catenin can translocate into the nucleus and associate with a family of transcription factors and regulate the expression 
of Wnt target genes involved in DA neuron survival/plasticity, neuroprotection and repair. Oxidative stress engendered by DA itself may 
also function as a critical negative feedback mechanism via DRD5 induction Nrf2-ARE cascade and/or via DRD2/β-arrestin-2-induced 
GSK-3 inhibition, leading to Nrf2 nuclear translocation. DA-induced beneficial astrocyte phenotype also intersects microglial inflammatory 
phenotype via both direct DRD1 and DRD2 transduction pathways inhibiting NLRP3/ NF-ĸB cascade, and/or via astrocyte beneficial 
feedback onto microglial cells, via astrocytic Wnt1-like ligands through Fzd receptors, GSK-3β antagonist, or HO1-induced anti-inflammatory 
effects
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of proinflammatory cytokines targeting mDAn mitochondria con-
tribute to the progressive dysfunction and death of nigrostriatal 
neurons. Here, we highlighted DA and its signaling pathways, in-
tersecting astrocyte–microglial oxidative/inflammatory networks 
in PD vulnerability. Notably, the intrinsic propensity of DA neurons 
to oxidative stress and glial inflammatory triggers, coupled to the 
aging process and a genetic predisposition, dictates the vulnerability 
to PD. Importantly, DA emerges as a novel critical modulator of as-
trocytes and microglial reactivity, as well as systemic inflammation 
thanks to the expression of specific classes of DA receptors, in both 
central and peripheral immune cells and intermingled crosstalk with 
Nrf2/Wnt/β-catenin cascades.

Hence, in reviewing the pivotal role of DA in controlling the 
harmful consequences of oxidative stress and inflammation, we in-
troduce a novel perspective underscoring DA’s ability to serve as 
an endogenous signal to activate Nrf2-dependent antioxidant, met-
abolic cytoprotective pathways. In turn, glial activation engenders a 
DA autoregulatory feedback loop via DRs upregulation to provide 
a counter-regulatory mechanism. Within this frame, DA activation 
of DRD2/β-arrestin-2-dependent pathway may also modulate Wnt 
signaling via AKT-mediated inactivation of GSK-3β, thereby favoring 
β-catenin nuclear translocation and the transcription of a panel of 
Wnt-dependent prosurvival and anti-inflammatory genes.

Aside PD, increasing evidence also suggests the potential to redi-
rect DA drugs to downregulate inflammation at both central and pe-
ripheral levels, with the ability of well-recognized indirect and direct 
DA agonists used in the symptomatic therapy of PD to be reframed 
by virtue of their neuroprotective/anti-inflammatory, and herein de-
scribed as potential positive modulators of the resilient Nrf2/Wnt 
axis, in a wide panel of disorders.

As a whole, novel perspectives can be envisaged for the ther-
apeutic management of both central and peripheral disorders, 
where inflammation and oxidative stress represent the core of a 
self-perpetrating age-dependent disease, with relevance for devel-
oping novel therapeutic options for NDs. Against this background, 
different challenges and questions still remain open, and much has 
to be further disclosed regarding the aging process and what can 
be translatable to age-related functional decline in humans in order 
to be relevant for aging research and drug discovery as well as for 
rational therapeutics as recently underscored (Bakula et al., 2019; 
Evans et al., 2021; Gorgoulis et al., 2019; Mkrtchyan et al., 2020; 
Zhu et al., 2021).

Significantly, the tremendous growth of the elderly population, 
coupled to the emerging role of viral infections that will further in-
crease worldwide, represents a unique challenge for the develop-
ment of integrated therapies, drug repurposing, and redirection of 

F I G U R E  8 Vicious cycle of dopamine deficiency, aging, inflammation, and CNS disease. Schematic illustration of the interacting harmful 
cascades arising from DA deficiency at central and peripheral levels engendering a detrimental vicious cycle. The dramatic loss of DA-
mediated signaling at central and peripheral levels associated with the age- and PD-dependent GSK-3β overactivation in turn creates 
a favorable milieu driving a feedforward cycle of inflammation/neurodegeneration, as loss of Nrf2/Wnt and upregulation of GSK-3 
phosphorylating and degrading β-catenin further drive inflammation and excessive oxidative stress associated with inhibition of adult 
neurogenesis and neurorepair (Marchetti, 2020)
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“old” drugs, using high-throughput analysis to identify most effec-
tive drug candidates, establishing novel multiorgan-on-a-chip sys-
tems for drug discovery platforms, besides others, but especially for 
the discovery of robust disease biomarkers, to prevent and/or com-
bat “harmful” aging and PD.
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