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ORIGINAL ARTICLE

Identification of Molecular Signatures in Mild Intrinsic 
Atopic Dermatitis by Bioinformatics Analysis

Huibin Yin, Shangshang Wang, Chaoying Gu

Department of Dermatology, Fu Dan University, Huashan Hospital, Shanghai, China

Background: Atopic dermatitis (AD) is recognized as a com-
mon inflammatory skin disease and frequently occurred in 
Asian and Black individuals. Objective: Since the limitation 
of dataset associated with human severe AD, this study 
aimed to screen potential novel biomarkers involved in mild 
AD. Methods: Expression profile data (GSE75890) were ob-
tained from the database of Gene Expression Omnibus. 
Using limma package, the differentially expressed genes 
(DEGs) between samples from AD and healthy control were 
selected. Furthermore, function analysis was conducted. 
Meanwhile, the protein-protein interaction (PPI) network 
and transcription factor (TF)-miRNA-target regulatory net-
work were constructed. And quantitative real-time polymer-
ase chain reaction (qRT-PCR) was used to validate the ex-
pressions patterns of key genes. Results: In total, 285 DEGs 
including 214 upregulated and 71 downregulated genes 
were identified between samples from two groups. The upre-
gulated DEGs were mainly involved in nine pathways, such 
as hematopoietic cell lineage, pertussis, p53 signaling path-
way, staphylococcus aureus infection, and cell cycle, while 
tight junction was the only pathway enriched by the down-
regulated DEGs. Cyclin B (CCNB)1, CCNB2, cyclin A 
(CCNA)2, C-X-C motif chemokine ligand (CXCL)10, and 
CXCL9 were key nodes in PPI network. The TF-miRNA-target 

gene regulatory network focused on miRNAs such as 
miR-106b, miR-106a, and miR-17, TFs such as nuclear factor 
kappa B subunit 1, RELA proto-oncogene, Sp1 transcription 
factor, and genes such as matrix metallopeptidase 9, perox-
isome proliferator activated receptor gamma , and serpin 
family E member 1. Moreover, the upregulation of these 
genes, including CCNB1, CCNB2, CCNA2, CXCL10, and 
CXCL9 were confirmed by qRT-PCR. Conclusion: CCNB1, 
CCNB2, CCNA2, and CXCL9 might be novel markers of mild 
AD. miR-106b and miR-17 may involve in regulation of im-
mune response in AD patients. (Ann Dermatol 32(2) 130∼
140, 2020)
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INTRODUCTION

Traditionally, atopic dermatitis (AD) is recognized as a 
common inflammatory skin disease and frequently oc-
curred in Asian and Black individuals1,2. Adult AD has an 
estimated prevalence of 2.1% to 4.9% across countries, 
and the disease is becoming a substantial health care bur-
den for patients who demand a good quality of life3. The 
pathology of AD is complex and not fully understood. 
Usually, it is widely accepted that the occurrence of this 
disease is related with the defects of epidermal function 
and immune responses causing by a complex gene-envi-
ronment interaction4. Thus, in order to provide an im-
proved therapy for patients, mechanisms associated with 
AD development should be further explored.
With the development of sequencing and bioinformatics 
technologies, the microarray data of severe AD have been 
published; however, most of the studies are involved in 
analyzing the difference between the drug treatment group 
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Table 1. The primer sequence of gene

Primer Sequence (5’-3’)

CCNA2-hF TGATGAGCATGTCACCGTTCC 
CCNA2-hR AAGCCAGGGCATCTTCACG 
CCNB1-hF GGGTCGGCCTCTACCTTTG 
CCNB1-hR TGCTTCGATGTGGCATACTTG 
CCNB2-hF TGGCTGGTACAAGTCCACTCC 
CCNB2-hR CTTCCGGGAAACTGGCTGA
CXCL9-hF TGGGCATCATCTTGCTGGTT
CXCL9-hR GGTGGATAGTCCCTTGGTTGG
CXCL10-hF TGCCATTCTGATTTGCTGCC
CXCL10-hR TGATGGCCTTCGATTCTGGA
GAPDH-hF TGACAACTTTGGTATCGTGGAAGG
GAPDH-hR AGGCAGGGATGATGTTCTGGAGAG

CCNA: cyclin A, CCNB: cyclin B, CXCL: C-X-C motif chemokine
ligand, GAPDH: glyceraldehyde 3-phosphate dehydrogenase.

and the disease, rather than the difference between the 
disease group and the healthy group5-7. Previous studies 
on gene profiling assays have shown that the AD develop-
ment was significantly associated with the low expression 
levels of epidermal differentiation complex genes and the 
unregulated levels of T helper (Th)2 and Th17 genes8. 
Moreover, in lesion skin of AD patients, miR-155 targeting 
the immune suppressor cytotoxic T-lymphocyte–associated 
antigen 4 inhibiting T cell response was significantly over-
expressed9. However, these findings are far from enough 
for understanding the pathogenesis of AD. 
Recently, Martel and his colleagues10 reported microarray 
data on lesional skin from patients with mild intrinsic AD 
and healthy controls. Hence, the goal of this study was to 
systematically investigate the differences in gene expres-
sion between the mild intrinsic AD and healthy controls, 
and to explore the associated function biomarkers for mild 
AD patients. 

MATERIALS AND METHODS
Subjects and data source

The expression profile dataset GSE75890 was down-
loaded from the database, which included 31 samples. For 
this study, samples of lesional skin (3 mm biopsy) were 
analyzed from eight healthy persons (age, 29±8) and nine 
intrinsic AD patients (psoriasis area and severity index 
[PASI], 4.0±2.3; age, 37±16; total immunoglobulin E [IgE], 
53±48; eczema area and severity index [EASI], 3±2], di-
agnosed according to the criteria of Hanifin and Rajka, 
and all included patients had an EASI score <10. Expres-
sion profile of all samples was analyzed on the platform 
GPL17692 [HuGene-2_1-st] Affymetrix Human Gene 2.1 
ST Array (transcript [gene] version). 

Data preprocessing and differentially expressed genes 
screening 

The original CEL data were downloaded and read with oli-
go of R software package (ver. 1.44.0, http://www.biocond 
uctor.org/packages/release/bioc/html/oligo.html)11, and then 
normalized using Robust Multichip Average12,13. The probe 
was annotated with a platform annotation file to remove 
the probes that did not match the gene symbol. If the 
same gene was mapped by different probes, the average 
value of these probes would be defined as the final ex-
pression value of this gene.

Selection of differentially expressed genes

Based on limma package (ver. 3.34.9, http://bioconductor. 
org/packages/release/bioc/html/limma.html), the different-
ially expressed genes (DEGs) between AD and controls 

were screened out14. Benjamini-Hochberg method was 
used to adjust p-value. The threshold were defined as |log2 
(Fold Change)| ＞ 1 and adjusted p＜0.05.

Functional analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways and Gene Ontology (GO) functions of these DEGs 
were analyzed using the Database For Annotation, Visualiza-
tion And Integrated Discovery (DAVID; ver. 6.8, https:// 
david.ncifcrf.gov/)15,16. A comprehensive biological informa-
tion database was included in DAVID, and this system can 
be used to mine biological functions for numerous genes 
and protein identity numbers (ver. 6.8, https://david-d.ncifcrf. 
gov/). The threshold was designed as count ≥2 and p
＜0.05.

Construction of protein-protein interaction network and 
module 

Protein network visualization plays an important role in 
analyzing protein network characteristics. The database of 
Search Tool for Retrieval of Interacting Genes (STRING) is 
an online tool evaluating the network of protein-protein 
interaction (PPI)17. Using STRING (ver. 10.0, http://www. 
string-db.org/), the PPI among DEGs was analyzed. The in-
put gene was set as a DEG and the species was set as hu-
man beings. PPI score was set as 0.9 to create subsets of 
high-confidence human PPI networks. The network was 
visualized by Cytoscape (ver. 3.2.0, http://www.cytoscape. 
org/)18. The score of nodes was obtained, and the im-
portance of nodes in the network of PPI was identified by 
the score.

Exploration of module in PPI

Proteins in the same module had the same or similar func-
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Fig. 1. Expression spectrum matrix box diagram before and after normalization and heatmap of differentially expressed genes. (A)
Expression spectrum matrix box diagram before and after standardization. Blue represents the disease sample, red represents the normal
sample, the horizontal axis represents the sample name, the vertical axis on the left is the original expression value, and the vertical
axis on the right is the expression value of the log2 transformation. (B) Heatmap of differently expression genes.

tions, and they acted as a module on the same biological 
role. Thus, the module in PPI network was explored using 
MultiContrast Delayed Enhancement19, a plugin of Cytoscape. 
The score of the module were obtained, and the higher 
scores represented the closer relationship within the 
module. The module with score ＞5 and node ≥5 was 

chosen, and the function analyses including GO and 
KEGG pathway analyses were further analyzed.

Transcription factor-miRNA-target regulation forecast

The DEGs were inputted into the gene-miRNA targets 
module of the miRWalk 3.0 (http://mirwalk.umm.uni-hei 
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Fig. 2. Function analysis of differentially expressed genes. (A) Function analysis of up-regulated expression genes; (B) function analysis
of down-regulated expression genes. The horizontal axis represents the number of enriched genes, the solid gray line represents –lg
(p-value). DEG: differentially expressed gene, KEGG: Kyoto Encyclopedia of Genes and Genomes, CCR: motif chemokine receptor, 
RAGE: receptor for advanced glycation endproducts. 

delberg.de/search_genes/)20 to predict miRNA, and the 
species was set as human. Gene-miRNA regulatory rela-
tionship was obtained, and the pairs were selected when 

the score of relationship pairs was all more than 0.95 in 
the Targetscan, Mirdb, and Mirtarbase databases. Then, 
miRNA regulatory network was constructed.
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Table 2. Top ten genes in PPI network and modules in PPI network

PPI Module 1 Module 2

Name Degree Type Name Degree Type Name Degree Type

CCNB1 19 Up CXCL9 8 Up CCNA2 10 Up
CCNB2 15 Up CXCL10 8 Up PLK1 6 Up
CCNA2 10 Up PPBP 8 Down CDC20 5 Up
CXCL10 8 Up CCR4 8 Up RRM2 4 Up
CXCL9 8 Up CCL19 8 Up KIF20A 4 Up
CCL19 8 Up GALR2 8 Up DLGAP5 4 Up
PPBP 8 Down NMU 8 Up MELK 3 Up
CCR4 8 Up FPR3 8 Up CDC25B 2 Up
FPR3 8 Up CHRM4 8 Down ORC1 2 Up
NMU 8 Up 　 　 CCNE1 2 Up

GALR2 8 Up 　 　 SKA1 2 Up
CHRM4 8 Down 　 　 　 MYBL2 2 Up

PPI: protein-protein interaction, CCNB: cyclin B, CXCL: C-X-C motif chemokine ligand, CCNA: cyclin A.

Transcription factor (TF) was predicted using the tool of 
Transcriptional Regulatory Relationships Unraveled by 
Sentence-based Text mining (http://www.grnpedia.org/ 
trrust/)21. DEGs were inputted in the module of “find key 
regulators for query genes”, and species was selected as 
human in the analysis. The thresholds of false discovery 
rate ＜0.05 and overlapped genes ＞5 were designed as 
significance. Moreover, the interaction network of TF-target 
gene and miRNA-target gene was integrated and con-
structed by Cytoscape.

Validation of DEGs based on clinical tissue samples

For further validation of our findings, several key genes ex-
pression levels (including cyclin B (CCNB)1, CCNB2, cy-
clin A (CCNA)2, C-X-C motif chemokine ligand (CXCL)10 
and CXCL9) were also determined in clinical 8 mild AD 
tissues samples (age, 38±14; 5 male and 3 female; PASI, 
4.1±1.9; biopsy site: trunk, upper or lower limbs; total 
IgE, 51±49; EASI, 3±1.5) and 8 normal samples (age, 
34±16; 4 male and 4 female).
Total RNA from tissues were extracted using Trizol re-
agent (Invitrogen, Carlsbad, CA, USA). First-strand cDNA 
was generated using Reverse Transcription Reagents (Taka-
ra RR047, Sake, USA) according to the manufacturer’s 
protocol. Real-time qPCR was performed in the Real-Time 
PCR Detection System (Bio-Rad, Hercules, CA, USA) using 
SYBR Green (Takara RR820, Sake, USA). Primer se-
quences were summarized in Table 1. Relative expression 
of genes normalized to glyceraldehyde 3-phosphate de-
hydrogenase was calculated with the 2–ΔΔCt method.

Statistical analysis

All results were calculated as mean±standard deviation 

values, the statistical analysis was performed with Graph-
pad prism 5 (Graphpad Software, San Diego, CA, USA). 
The threshold was defined as p<0.05.

RESULTS
Screening of DEGs

As shown in Fig. 1A, the median of expression profile data 
after normalization was on the same level. The heatmap of 
DEGs is presented in Fig. 1B. There were 285 DEGs in-
cludeing 214 upregulated and 71 downregulated genes 
between intrinsic AD samples and healthy controls (Sup-
plementary Table 1).

Functional pathways of DEGs 

Fig. 2 presents the results of top 5 KEGG pathways and en-
riched GO functions. The enriched GO terms were classi-
fied into three categories: biological process (BP), molec-
ular function (MF), and cellular component (CC). The up-
regulated DEGs were enriched in nine pathways, such as 
hematopoietic cell lineage, pertussis, p53 signaling path-
way, staphylococcus aureus infection, and cell cycle. As 
for GO function analysis, 59 BPs were enriched including 
immune response, inflammatory response, and peptide 
cross-linking; 14 MFs were enriched including motif che-
mokine receptor chemokine receptor binding, receptor for 
advanced glycation endproducts receptor binding, and 
chemokine activity; 11 CCs were enriched including ex-
tracellular exosome, keratin filament, and extracellular 
region.
Tight junction was the only pathway enriched by the 
downregulated DEGs. Downregulated DEGs were asso-
ciated with nine BP terms such as oxidation-reduction 
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Fig. 3. Protein-protein interaction network of differentially expressed genes. Red circle represents up-regulated genes, green circle
represents down-regulated genes, and blue shades represent modules. The size of circle indicates the degree (the larger the circie,
the higher the degree is). 

Table 3. KEGG pathway enrichment with higher score in modules

Mcode Category Term Count p-value

Module 1 KEGG_PATHWAY hsa04062:chemokine signaling pathway 5 1.67E-05
KEGG_PATHWAY hsa04060:cytokine-cytokine receptor interaction 5 3.87E-05
KEGG_PATHWAY hsa04080:neuroactive ligand-receptor interaction 3 0.029424

Module 2 KEGG_PATHWAY hsa04110:cell cycle 6 3.50E-08
KEGG_PATHWAY hsa04914:progesterone-mediated oocyte maturation 3 0.003159
KEGG_PATHWAY hsa04114:oocyte meiosis 3 0.004917
KEGG_PATHWAY hsa05203:viral carcinogenesis 3 0.016671

KEGG: Kyoto Encyclopedia of Genes and Genomes.
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Fig. 4. MiRNA-target gene, transcription factor (TF)-target gene, and TF-miRNA-target gene composite network of differentially expressed
genes (DEGs). (A) MiRNA-target gene network of DEGs. Red circle represents up-regulated genes, green circle represents down-regulated
genes, and orange diamonds represents miRNAs; (B) TF-target gene network of DEGs. Red circle represents up-regulated genes, green
circle represents down-regulated genes, and the blue hexagon indicates the TF. (C) TF-miRNA-target gene composite network of DEGs.
The red circle represents the up-regulated gene, the green circle represents the down-regulated gene, the blue hexagon represents
the TF, the orange diamond represents the miRNA, the arrow line represents the regulatory relationship of miRNA-Target, and the 
T-shape represents the regulatory relationship of TF-target.

process, positive regulation of cell division, and calcium- 
independent cell-cell adhesion via plasma membrane 
cell-adhesion molecules; five CC such as bicellular tight 
junction, proteinaceous extracellular matrix, and ex-
tracellular space; five MF like interleukin (IL)-1 receptor 
binding, and cytokine activity.

PPI network and sub-network module construction

Total 89 nodes and 171 PPI pairs were obtained. Further-
more, two sub-module networks with higher scores were 
obtained. A total of nine nodes were included in module 
1. Module 2 included six nodes. Genes with the top ten 
degree in PPI network and genes included in two modules 
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Fig. 5. Gene expression is determined by quantitative real-time polymerase chain reaction. The cyclin A (CCNA)2 (A), cyclin B (CCNB)1
(B), CCNB2 (C), C-X-C motif chemokine ligand (CXCL)9 (D), and CXCL10 (E) levels in atopic dermatitis (AD) tissue samples were 
higher than those in normal tissue samples. *p<0.05 and **p<0.01.

are shown in Table 2, such as CCNB1, CCNB2, CCNA2, 
CXCL10, and CXCL9 (Fig. 3).
Genes included in module 1 mainly enriched in three 
pathways, including cytokine-cytokine receptor inter-
action, chemokine signaling pathway, and neuroactive li-
gand-receptor interaction. In total, four pathways were en-
riched by genes in module 2, including cell cycle, oocyte 
meiosis, progesterone-mediated oocyte maturation, and 
viral carcinogenesis (Table 3).

miRNA-target gene network construction

The miRNA-target gene network is shown in Fig. 4A. A to-
tal of 43 nodes and 31 miRNA-target gene interaction 
pairs were obtained in the network of miRNA-target gene. 
According to miRWalk prediction, 25 miRNAs targeting 
18 genes were selected, such as miR-106a, miR-106b, and 
miR-17.

TF-target gene network construction

As shown in Fig. 4B, TF-target gene network included 63 
nodes and 117 interaction pairs. A total of 11 TFs targeting 
52 genes were selected, such as nuclear factor kappa B 
subunit 1 (NFKB1), RELA proto-oncogene (RELA), Sp1 
transcription factor (SP1), and signal transducer and activa-

tor of transcription 1 (STAT1).

TF-miRNA-target gene network construction

The network of TF-miRNA-target gene is shown in Fig. 4C. 
The network of TF-miRNA-target gene included 101 nodes 
and 148 interaction pairs. Matrix metallopeptidase 9 
(MMP9), peroxisome proliferator activated receptor gam-
ma (PPARG), and serpin family E member 1 (SERPINE1) 
were hub genes with higher degrees than other nodes.

Validation of key DEGs in clinical tissue samples

To confirm the reliability of the identified DEGs, the 
CCNB1, CCNB2, CCNA2, CXCL10, and CXCL9 expres-
sion profiles were verified in tissue samples. As shown in 
Fig. 5, compared with the control group, the expression 
levels of CCNB1, CCNB2, CCNA2, CXCL10 and CXCL9 in 
mild AD group were significantly up-regulated (all, 
p<0.05), which is in accordance with the bioinformatics 
data above. 

DISCUSSION

This study used microarray analysis to investigate the po-
tential molecular biomarkers and functional network in 
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patients with mild intrinsic AD. In total, 285 DEGs includ-
ing 214 upregulated genes and 71 downregulated genes 
between AD and healthy controls were identified. The up-
regulated DEGs involved in hematopoietic cell lineage, 
pertussis, p53 signaling pathway, staphylococcus aureus 
infection, and cell cycle, and the downregulated DEGs 
were enriched in tight junction pathway. CCNB1, CCNB2, 
CCNA2, CXCL10, and CXCL9 were key nodes in PPI 
network. And the upregulation of these genes, including 
CCNB1, CCNB2, CCNA2, CXCL10 and CXCL9, were con-
firmed by qRT-PCR. In addition, TF-miRNA-target gene 
regulatory network focused on miRNAs such as miR-106a, 
miR-106b, and miR-17, TFs such as NFKB1, RELA, SP1, 
and STAT1, and hub genes like MMP9, PPARG, and 
SERPINE1.
AD is widely accepted as an inflammatory skin disease, 
and new insights into the genetics and pathophysiology 
have pointed out that immune dysregulation was critical 
in the development of AD22. In our study, CCNB1, 
CCNB2, CCNA2, CXCL10, and CXCL9 were key nodes in 
PPI network. Moreover, the results of TF-miRNA-target 
gene network construction showed that CCNB2 could be 
regulated by two TFs, such as tumor protein (TP) 53 and 
E1A binding protein p300. And as the DEGs in mild in-
trinsic AD, CXCL10 was targeted by the TFs of NFKB1, 
RELA, and STAT1. Similarly, CCNA2 was targeted by 
TP53 and SP1, and CCNB1 was targeted by TP53, E2F1, 
NFKB1, and SP1. CXCL10 could modulate adhesion mole-
cule expression, and stimulate monocytes, natural killer 
and T-cell migration. CXCL9 is an important paralog of 
CXCL10, which could affect immune and inflammatory re-
sponse based on participating in the growth, movement, 
or activation state of cells. Previous studies suggest that an 
imbalance of Th2-predominating cytokine milieu (such as 
IL-4 and IL-5) may be responsible for the development of 
human AD23,24. Recent studies have revealed that 
Th1-type cytokines, such as CXCL10 and CXCL9, play im-
portant roles in pathogenesis of AD. Shimada et al.25 re-
ported that both Th2 and Th1 chemokines are elevated in 
sera from patients with AD. Thus, we proposed that 
CXCL9 and CXCL10 may play a significant role in promot-
ing the inflammation of the skin barrier in patients with 
AD.
Pathway enrichment analysis revealed that the upregu-
lated DEGs involved in hematopoietic cell lineage, p53 
signaling pathway, staphylococcus aureus infection, and 
cell cycle. A multilineage committed progenitor cell can 
be developed by hematopoietic stem cells. Cell growth 
and death were the mainly functions introduced by p53 
signaling pathway. Among AD patients, a large number of 
proliferation markers have been found, such as marker of 

proliferation Ki-67 (MKI67) and keratin 16 (KRT16)26,27. 
CCNB1 and CCNB2 are all numbers of cyclin family, 
which participate in controlling of cell cycle regulatory 
machinery. Moreover, CCNA2 was also a main regulator 
of the cell cycle. Thus, the genes such as CCNB1, CCNB2, 
and CCNA2, which involved in the pathway of cell cycle, 
may participate in the progression of AD via modulating 
cell proliferation.
miRNAs are short single-stranded RNA molecules and 
formed in the nucleus through transcription. An estimated 
profile of miRNAs in AD patients has been reported using 
microarray28. Although an altered miRNAs expression in 
the skin of AD patients has been shown in many stud-
ies28,29, the functions of these molecular have been little 
known. In the study, we constructed the TF-miRNA-target 
gene network to explore the potential role of these molec-
ular in AD progression. In our study, miR-106a, miR- 
106b, and miR-17 were focused on in the TF-miRNA-tar-
get gene network. The expression of coagulation factor III 
(F3), RNA polymerase III subunit G (POLR3G), and kar-
yopherin subunit alpha 2 (KPNA2) were regulated by 
miR-106b. F3 is related to cytokine receptor activity. 
POLR3G could induce type I interferon and NFKB via the 
retinoic acid inducible gene I pathway30,31. KPNA2 has 
been proven as molecular marker of prognosis and ther-
apeutic sensitivity in many caners through involving in 
cell proliferation and inflammatory processes32,33. miR-17 
level was related to increased cell viability and migra-
tion34. Dual-specificity phosphatase 2 (DUSP2) is ex-
pressed widely in the immune system, and promotes im-
mune and inflammatory responses35. In our study, KPNA2 
and DUSP2 were regulated by miR-17. Thus, we spec-
ualted that miR-106b might be involved in regulation of 
immune response by decreasing the expression of F3 and 
increasing the expression of POLR3G and KPNA2, and 
miR-17 might promote immune and inflammatory re-
sponses in AD patients by regulating KPNA2 or DUSP2.
There are several limitations in this study. For example, 
these genes were not verified through in vitro and in vivo 
experiments. Thus, the potential role of these predicted re-
sults would be further confirmed in further study. 
In conclusion, the results highlight the significant role of 
CXCL9 and CXCL10 in promoting the occurrence of in-
flammation of the skin barrier and the genes associated 
with cell proliferation such as CCNB1, CCNB2, and CCNA 
in patients with AD. Furthermore, we suggested that 
miR-106b and miR-17 might be involved in regulation of 
immune and inflammatory responses by regulating the 
downstream pathway. 
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Supplementary data can be found via http://anndermatol. 
org/src/sm/ad-32-130-s001.pdf.
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