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An understanding of the forces shaping protein conservation is key, both for the
fundamental knowledge it represents and to allow for optimal use of evolutionary
information in practical applications. Sequence conservation is typically examined at
one of two levels. The first is a residue-level, where intra-protein differences are
analyzed and the second is a protein-level, where inter-protein differences are studied.
At a residue level, we know that solvent-accessibility is a prime determinant of
conservation. By inverting this logic, we inferred that disordered regions are slightly
more solvent-accessible on average than the most exposed surface residues in
domains. By integrating abundance information with evolutionary data within and
across proteins, we confirmed a previously reported strong surface-core association
in the evolution of structured regions, but we found a comparatively weak association
between disordered and structured regions. The facts that disordered and structured
regions experience different structural constraints and evolve independently provide a
unique setup to examine an outstanding question: why is a protein’s abundance the
main determinant of its sequence conservation? Indeed, any structural or biophysical
property linked to the abundance-conservation relationship should increase the relative
conservation of regions concerned with that property (e.g., disordered residues with
mis-interactions, domain residues with misfolding). Surprisingly, however, we found
the conservation of disordered and structured regions to increase in equal proportion
with abundance. This observation implies that either abundance-related constraints are
structure-independent, or multiple constraints apply to different regions and perfectly
balance each other.

Keywords: protein abundance, protein evolution, protein structure, misfolding, intrinsic disorder, contact number,
misinteraction, yeast proteome

INTRODUCTION

During the course of evolution, mutations arise throughout genomes and can impact every protein
at every site. However, contemplating a multiple sequence alignment of orthologous sequences
typically shows widely differing levels of conservation across sites. Additionally, comparing
multiple sequence alignments of different orthogroups shows even larger differences: certain groups
such as those of ribosomal genes can be well conserved despite hundreds of millions of years of
divergence, while others accumulate mutations much faster.
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Amino-acid residues within proteins are subject to functional,
biophysical, and structural constraints that are interconnected.
These constraints result in different degrees of purifying selection
along the sequence (i.e., purging of deleterious mutations by
natural selection), which yields different levels of positional
conservation. We discuss here structural aspects related to
these constraints while placing an emphasis on works of Cyrus
Chothia, to whom this issue is dedicated, and refer the reader
to several reviews for a comprehensive overview (Liberles et al.,
2012; Sikosek and Chan, 2014; Echave et al., 2016; Echave
and Wilke, 2017). Following the characterization of the first
few structures of proteins, their comparative analysis made it
clear that the burial of non-polar residues accompanied with
Van der Waals interactions and hydrogen bonding were the
main contributors to the folding free energy (Chothia, 1974,
1975, 1976; Miller et al., 1987). Confirming the “hydrophobic
bonding” intuition of Kauzmann (Kauzmann, 1959) and relying
on calculations of molecular surfaces based on the algorithm of
Lee and Richards (1971), Chothia estimated that each square
Ångstrom of accessible surface removed from contact with water
provides a free energy gain of 25 cal. Mol−1 (Chothia, 1974,
1975). At the same time, he provided universal relationships
governing protein folding, e.g., on the proportion of the total
accessible surface of a polypeptide chain that becomes buried
upon folding (Chothia, 1975). This simple relationship has
a profound meaning with respect to surface-to-volume ratios
in folded proteins, notably that longer proteins should fold
following a beads-on-a-string model rather than by forming
larger beads (Wetlaufer, 1973) – indeed it was soon realized
that beads (domains) are fundamental units of protein evolution
(Chothia, 1992; Murzin et al., 1995; Bateman et al., 2002;
Gough and Chothia, 2002). On top of hydrophobic bonding
energy, a high degree of steric complementarity creates a well-
packed protein interior (Chothia, 1975), in which mutations are
incrementally accommodated by small structural changes (Lesk
and Chothia, 1980). Ultimately, as sequences diverge, structures
do too, albeit more slowly (Chothia and Lesk, 1986, 1987).
Considering that structures are globally maintained during the
course of evolution, it is intuitive that buried residues, which
contribute to folding and stability more than surface residues
(Creighton and Chothia, 1989; Lim and Sauer, 1989; Tokuriki
et al., 2007), are more conserved (Koshi and Goldstein, 1995;
Goldman et al., 1998; Guo et al., 2004; Bloom et al., 2006;
Sasidharan and Chothia, 2007; Goldstein, 2008; Conant and
Stadler, 2009; Franzosa and Xia, 2009; Liberles et al., 2012;
Yeh et al., 2014; Echave et al., 2015; Shahmoradi and Wilke,
2016; Spielman and Wilke, 2016; Echave and Wilke, 2017;
Liu et al., 2017).

We saw that the structure of a protein could help explain
why certain positions – notably those buried and in contact with
a large number of neighboring residues, are more conserved
than others. Protein structure can also help to rationalize why
certain proteins, e.g., those with more designable folds, evolve
faster than others (Shakhnovich et al., 2005; Bloom et al.,
2006). Globally, however, structural information only explains
a small fraction of the heterogeneity in evolutionary rates seen
across different proteins. Several studies have singled out other

protein-centric properties associated with this heterogeneity
(Zhang and Yang, 2015), including function (Wall et al., 2005;
Lopez-Bigas et al., 2008; Xia et al., 2009), essentiality (Hurst
and Smith, 1999; Hirsh and Fraser, 2001; Jordan et al., 2002;
Liao et al., 2006), the number of interaction partners (Fraser
et al., 2002; Bloom and Adami, 2004; Fraser and Hirsh, 2004;
Hahn and Kern, 2005; Kim et al., 2006; Xia et al., 2009), or
cellular abundance (Pal et al., 2001; Krylov et al., 2003; Rocha
and Danchin, 2004; Subramanian and Kumar, 2004; Drummond
et al., 2005; Bloom et al., 2006; Liao et al., 2006; Popescu
et al., 2006; Pál et al., 2006; Sällström et al., 2006; Drummond
and Wilke, 2008; Xia et al., 2009; Zhang and Yang, 2015).
The latter is, by far, the most significant, in particular among
unicellular organisms where there is no complexity added by
tissue-specific expression. Several mechanistic interpretations of
this abundance-conservation association have been proposed
(Drummond et al., 2005; Drummond and Wilke, 2008; Cherry,
2010; Gout et al., 2010; Plata et al., 2010; Levy et al., 2012; Yang
et al., 2012; Park et al., 2013; Zhang and Yang, 2015) and remain a
matter of active debate (Plata and Vitkup, 2018; Razban, 2019).
We will scrutinize this relationship further in the results and
discussion section, in the context of the results presented.

We have seen how protein structure helped to interpret and
rationalize data on evolutionary conservation. Here, we invert
this logic to characterize structural properties of disordered
regions from data on their evolutionary conservation. First,
we compared the evolutionary rate of disordered regions to
that of surface residues in the same protein and found that
disordered regions are equivalent to super-accessible surface
residues. Second, we know that the divergence of surface and core
residues is interdependent. In other words, a protein’s surface
can hardly diverge without mutations arising in its interior as
well, and vice-versa. We confirmed this finding in showing that
evolutionary rates of surface and interior regions are correlated
within proteins (R > 0.85). In contrast, the evolutionary rates
of disordered and domain regions were poorly coupled (R ∼

0.25), indicating that disordered regions are, for the most part,
structurally independent from domains in the same sequence.
Finally, the structural differences and the lack of interdependence
between disordered and structured regions supports that they
can be influenced differently by biophysical and structural
constraints. For example, an increased purifying selection for
protein stability is expected to impact buried residues more
than disordered ones. This idea led us to examine whether
abundance impacts the relative conservation between these
regions. Surprisingly, however, the relative conservation between
different regions appeared independent from abundance.

RESULTS AND DISCUSSION

Disordered Regions Are Equivalent to
Super-Accessible Surface Residues in
Terms of Their Conservation
Among proteins that need to fold into stable structures to
function, amino-acid residues buried in the protein interior
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contribute the most to stability. Consequently, these residues
are under stronger purifying selection than surface amino-acid
residues, and are, on average, more conserved in the sequence.
Two measures of residue burial have been associated with the
heterogeneity of conservation in sequences: (i) solvent accessible
surface area or ASA (Lee and Richards, 1971; Shrake and Rupley,
1973; Goldman et al., 1998; Bloom et al., 2006; Lin et al.,
2007; Conant and Stadler, 2009; Franzosa and Xia, 2009), which
measures the surface or fractional surface of an amino-acid
residue that is in contact with bulk water, and (ii) the packing
density of an amino-acid residue, which measure the density
of its neighbors. Different metrics capture this information,
including the contact number and the weighted contact number,
with the latter containing longer-range information (Franzosa
and Xia, 2009; Yeh et al., 2014). While not strictly equivalent,
both accessible surface area and packing density correlate
strongly (Echave et al., 2016), and both measures show that
the less buried is a residue, the less conserved it is within a
protein sequence.

This conservation-structure relationship prompts us to infer
structural properties of disordered regions from their pattern
of conservation within proteins. We know that disordered
regions are devoid of a hydrophobic core and therefore
cannot autonomously adopt a stable three-dimensional structure.
However, if we consider the spectrum of solvent accessibility
and packing density found among folded domains, where would
disordered regions position themselves on average? Would
they appear much less conserved than even the most solvent-
exposed regions? Some disordered regions serve purely as
linkers or entropic springs and are expected to show very
weak sequence conservation (Dyson and Wright, 2005; Van der
Lee et al., 2014). At the same time, disordered regions can
also form secondary structure elements and bind to partners
(Tompa, 2005; Vacic et al., 2007; Uversky and Dunker, 2010;
Wright and Dyson, 2015; Banani et al., 2017; Dignon et al.,
2019), thereby burying residues and transiently increasing their
packing density. For example, p27Kip1 can wrap around the
structure of Cdk2 to regulate its function (Russo et al., 1996;
Galea et al., 2008).

To position disordered regions on the solvent accessibility
spectrum observed in structured regions, we compared
the evolutionary rate of residues in both region types.
Specifically, we selected 3,350 proteins from Saccharomyces
cerevisiae, which contain at least 20 residues in both structured
regions and disordered regions. We inferred residue-level
conservation using Rate4Site (Pupko et al., 2002) on multiple
sequence alignments of orthologs from 14 fungal species
(see section “Materials and Methods”). Evolutionary and
structural information were mapped along the reference
sequence from the multiple alignment as illustrated for
STI1, a conserved Hsp90 co-chaperone (Figure 1A). We
calculated a ratio per protein i, corresponding to the
mean evolutionary rate of residues in disordered regions
(Ridiso) divided by the mean rate of residues in a domain
(Ridomain). Overall, considering 2607 proteins with known
orthologs, containing both types of regions, the median
ratio (Ridiso/Ridomain) is equal to 2.2 (Figure 1B). If we

now consider domains of known structure (i.e., present in
PDB, currently ∼670) instead of those predicted, we find
a similar median ratio equal to 2.0. For those proteins,
we compared the conservation of disordered regions to
that of buried and surface residues separately and found
ratios equal to 3.1 and 1.4, respectively. Thus, in an
average protein of this dataset, disordered regions evolve
3.1 and 1.4-fold faster than buried and surface residues,
respectively (Figure 1B).

This result is based on a definition of surface that includes
residues with >25% relative ASA. As higher ASA is associated
with lower conservation, we asked whether increasing the cut-
off progressively from >25 to >80% would yield a point
where surface residues evolve faster than disordered ones
(Figure 1C). We did not reach such a point as the ratio
remained above 1 for all values. However, the ratio did
converge to a value close to 1, highlighting that in an average
protein, disordered residues are almost equivalent in their
conservation to the most exposed residues at the surface of
structured regions.

If we assume that the differential conservation of sites
within protein sequences largely reflects different structural
constraints, we can infer that disordered regions are, on
average, highly solvent-exposed and under weak structural
constraints. In sum, our results place disordered regions in
the continuum of protein structure, at the end of the solvent-
accessibility spectrum. It will be interesting to refine this
relationship in the future. For example, by comparing additional
properties such as hydrophobicity (Kyte and Doolittle, 1982)
or stickiness (Levy, 2010), by considering where disordered
segments fall in the sequence (e.g., N/C-ter and inside
domains), or by breaking down disorder into different types
(Bellay et al., 2011).

Conservation of Disorder Versus
Domains Is Poorly Correlated Among
Low Abundance Proteins and the
Correlation Increases With Abundance
Individual residues within a structure contribute to stability
together. As a result, we can expect the evolutionary
conservation of residues within a structure to be uniform.
To examine this idea, we compared the average evolutionary
rate of surface and buried amino-acid residues within
structures. Importantly, we know that protein abundance
imposes global constraints on the conservation of proteins,
which may also result in a uniform evolutionary pressure
across the sequence, independently of the structure. Thus,
we initially focused on low abundance proteins in which
such global constraints are minimized. We observed the
conservation of surface and buried regions to correlate
strongly (R > 0.83, Figure 2A), which is reminiscent
of the surface-core association described previously
(Tóth-Petróczy and Tawfik, 2011).

We next compared the association in evolutionary
conservation between disordered regions and domains found
in the same protein. In this case, the correlation was reduced

Frontiers in Molecular Biosciences | www.frontiersin.org 3 April 2021 | Volume 8 | Article 626729

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/
https://www.frontiersin.org/journals/molecular-biosciences#articles


fmolb-08-626729 April 26, 2021 Time: 16:21 # 4

Dubreuil and Levy Relative Rates of Evolution Across Protein Regions

FIGURE 1 | The evolutionary rate of disordered regions is comparable to that of super-exposed regions in folded proteins. (A) Evolutionary information and structural
features are mapped onto protein sequences from S. cerevisiae. The minimap represents the multiple sequence alignment of orthologous sequences to STI1. The
amino acids are colored using CLUSTAL’s color scale (Thompson et al., 1994) depending on residue type and conservation. The zoomed-in panel illustrates
residue-level conservation, which we calculated with Rate4Site (Pupko et al., 2002). We mapped the positions of PFAM (Bateman et al., 2002) and SUPERFAMILY
(Gough and Chothia, 2002) domains (gray box), and of disordered regions predicted by IUPRED (Dosztányi, 2018) (cyan ribbon). We also mapped structural
information available from PDB (Rose et al., 2017; Armstrong et al., 2019) and 3DComplex (Levy et al., 2006) on sequences. For this particular sequence, structural
information was partially available based on PDB code 3UQ3 (Schmid et al., 2012). (B) Within proteins, the evolutionary rate of residues in different regions are
averaged, and we compare the ratio of these averages. We show the median of ratios with error bars corresponding to the median absolute deviation. Surface and
buried residues are defined based on relative ASA of >25 and ≤25%, respectively (Levy, 2010). (C) We calculate the same ratio as in panel (B), between disordered
regions and surface regions, using an increasingly stringent relative ASA cut-off to define surface residues. As we increase the cutoff, the median ratio tends toward
1, which highlights that disordered residues evolve only slightly faster than the most exposed residues at protein surfaces.

greatly (R = 0.25), indicating that the structural connectivity
and interdependence between disordered regions and domains
are globally weak. These results are consistent with those
of the previous section, which depict disordered regions as
being highly solvent-accessible and structurally independent

from domains. However, proteins expressed at higher levels
show increasing correlation, from R = 0.40 among medium
abundance proteins, to R = 0.63 in the class of proteins with
the highest abundance (Figure 2B, lower row). This apparent
coupling in evolutionary rates is unlikely to have a structural
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FIGURE 2 | The correlation in the conservation of disorder vs domain regions is poor among low abundance proteins and increases with abundance. (A) The top
row shows the average evolutionary rate (ER) of surface residues (x-axis) vs buried residues (y-axis) per protein, for two classes of abundance (0–3 and 3–18 ppm or
parts per millions). The lower row shows the average ER of disordered residues (x-axis) vs residues in domains (y-axis) per protein, for the same two classes of
abundance. A protein falling on the diagonal (dashed line) means that residues in the two regions being compared have equal evolutionary rates (i.e., a ratio of 1). The
Spearman rank correlation coefficient (r), the associated p-value (p, two-sided Spearman’s rank correlation test), and the number of proteins (n) within each class of
abundance are given above each scatterplot. (B) Same as in panel (A), for three classes of abundance (18–59, 59–352, and 352–21,866 ppm or parts per million).

FIGURE 3 | The relative evolutionary rates of different protein regions are steady with abundance. Distribution of evolutionary rates ratio between different regions in
the sequence (y-axis), across five classes of protein abundance (x-axis). A ratio is calculated by dividing the average evolutionary rate of residues found in two
regions panel (A) surface vs. buried, panel (B) disorder vs. domain. The white dashed line highlights the median ratio across bins of abundance. Overlaid box plots
show the interquartile range (IQR = 25 to 75% quantiles) with their whiskers extending to 1.58 × IQR. Beyond this interval, the three most extreme outlier values are
annotated. The number of proteins contributing to each distribution is given. We also highlight the relative rates for a pair of proteins, one with low and one with high
abundance (STI1 and DBF4). These two proteins show comparable structural features, different evolutionary rates (respectively, 0.575 and 1.34 for their full
sequence), and similar ratios.

origin. Rather, it probably results from global constraints linked
to abundance and exerted on the whole protein sequence.
This apparent coupling also implies that different regions
in a sequence all experience increasingly strong purifying

selection with increasing abundance. This observation led
us to quantify whether such negative selection increases
equally in all regions, or whether some regions become more
constrained than others.
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FIGURE 4 | Evolutionary rates of different regions and their ratio as a function of abundance. (A) Evolutionary rates (y-axis) as a function of protein abundance
(x-axis) for surface regions, full-length structures, and buried regions. The ratio of evolutionary rate for surface vs buried regions is also shown as a function of
abundance. Contour lines show the density of points. The median evolutionary rate and median protein abundance are shown by a vertical and horizontal line,
respectively. The Spearman rank correlation coefficient and p-value are given with the number of proteins in each dataset. A black line shows the fitted sigmoidal
regression for each plot. We highlight two proteins, one with a low and one with a high abundance (DBF4 and STI1). Both have comparable structural features but
different evolutionary rates. (B) Same representation as in panel (A), now considering disordered versus domain regions.

Evolutionary Constraints Imparted by
Protein Abundance Scale Similarly
Among Surface, Buried, and Disordered
Regions
We saw that surface residues in a protein evolve twice as
fast as buried residues on average. This difference, which
has long been recognized, is mainly explained by solvent-
accessibility/packing density and reflects that protein structures
are more likely to be destabilized by mutations at buried positions
than by mutations at the surface (Koshi and Goldstein, 1995;
Goldman et al., 1998; Guo et al., 2004; Bloom et al., 2006;
Sasidharan and Chothia, 2007; Goldstein, 2008; Conant and
Stadler, 2009; Franzosa and Xia, 2009; Liberles et al., 2012; Yeh
et al., 2014; Echave et al., 2015; Shahmoradi and Wilke, 2016;
Spielman and Wilke, 2016; Echave and Wilke, 2017; Liu et al.,
2017). Similarly, residues in disordered regions evolve faster than
those in domains. Interestingly, this reflects that surface, buried,
and disordered residues experience different structural and
biophysical constraints. Thus, we propose to examine whether
the ratio of their conservation is changing as a function of
abundance. For example, observing that buried residues are twice
more conserved than surface residues among low abundance

proteins, and become four-times more conserved among high
abundance proteins would suggest that stability is increasingly
constrained with higher abundance.

We analyzed the ratio of conservation (Figures 3A, 4A) of
surface and buried residues as a function of abundance. The
distribution of these ratios showed comparable median values of
about ∼2. In the highest abundance class, this ratio reached ∼2.2
(Figure 3A) creating a significant albeit weak (R = 0.2) correlation
(Figure 4A). Overall, the ratio is relatively stable, implying that
both regions are constrained to a similar extent with increasing
abundance. Alternatively, a relatively constant ratio could be
favored by the coupling we observed between interior and surface
regions (Figure 2, top row). Accordingly, constraints placed on
the protein surface could percolate to interior regions and vice
versa (Tóth-Petróczy and Tawfik, 2011). To control for this effect,
we next compared disordered and domain regions, which show
minimal structural coupling. We also observed a stable ratio of
∼2 across the five same abundance classes (Figure 3B), and we
observed no dependence of the ratio with abundance even at the
highest levels (R = −0.02, Figure 4B). Additionally, focusing on
disorder and domain regions increased the size of the dataset
as we were not limited by the availability of atomic-resolution
structures, so this observation applies to the yeast proteome.
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By definition, disordered regions and domains should
experience distinct structural and biophysical constraints.
Thus, the fact that these two regions appear equally
constrained with increasing abundance is puzzling and can
be interpreted in different ways. One possible explanation is
that constraints associated with abundance apply to entire
sequences independently of structure. Such constraints could
include translational selection (Akashi, 2003), although region-
specific codon-bias constraints may exist as well (Tuller et al.,
2010; Pechmann and Frydman, 2013), cost of expression
(Dekel and Alon, 2005; Wagner, 2005; Cherry, 2010; Gout
et al., 2010; Plata et al., 2010), as well as other functional
elements and sequence properties that may impact transcription
or translation (Stergachis et al., 2013; Zhou et al., 2016).
Alternatively or in addition, region-specific structural and
biophysical constraints associated with protein concentration
could increase in similar proportions with abundance, resulting
in a stable ratio. In this case, two primary constraints have
been characterized: a first on protein stability (Serohijos
et al., 2012, 2013) leading to selection against misfolding
(Drummond et al., 2005; Drummond and Wilke, 2008),
would dominate among interior residues. A second, on
protein solubility (Knowles et al., 2014; Garcia-Seisdedos et al.,
2017, 2018; Dubreuil et al., 2019; Foy et al., 2019; Macossay-
Castillo et al., 2019; Vecchi et al., 2020), with selection against
promiscuous interactions (Deeds et al., 2007; Levy et al.,
2009, 2012; Liberles et al., 2011; Yang et al., 2012), would
dominate among solvent-exposed residues. However, the fact
that constraints on different regions scale proportionally with
abundance may appear surprising and will need to be explored
in future works.

CONCLUSION

We analyzed the evolutionary conservation of sites within
proteins, and of proteins within proteomes. We found that
disordered regions evolve about three-fold faster than buried
regions, and 1.4-fold faster than surface regions. Additionally,
disordered regions evolve about as fast as the most solvent-
exposed surface regions, highlighting that they extend the
continuum of protein structure as a “super-accessible” surface.
Unlike regular surface residues, however, disordered regions
evolve more independently from domains in the same sequence.
This independence allowed us to examine how abundance
constrains different regions that are not structurally connected
in sequences. Notably, the evolution of disordered regions and
domains changed in a similar proportion with abundance: on
average, disordered regions evolved twice as fast as domains
across the entire range of abundance. Since different regions
are subject to different structural and biophysical constraints,
we foresee that such comparative analyses of conservation-
ratios as a function of abundance will help identify mechanisms
underlying the abundance-conservation relationship. It is likely
that multiple mechanisms are at play (Mehlhoff et al., 2020) and
may be captured by targeted analyses of specific regions and
protein subsets.

FIGURE 5 | Pairwise sequence identity across orthologs pairs. For each
orthogroup we calculate the average percent sequence-identity using all
ortholog pairs or only pairs that include the S. cerevisiae protein. The
distribution for these two measures are shown with dark and light blue,
respectively. Vertical lines highlight the median. The number of orthogroups is
3,798.

MATERIALS AND METHODS

Reference Proteome Sequences
The sequences were taken from the reference S. cerevisiae
proteome maintained by SGD (Cherry et al., 2012). To facilitate
data integration, we also mapped those reference sequences
against the UniprotKB complete proteome for S. cerevisiae (Stutz
et al., 2006; UniProt Consortium, 2019).

Crystallographic Structures
We relied on the 3DComplex database (Levy et al., 2006) to
map UNIPROT sequences onto atomic coordinates of protein
structures. For each yeast protein, the structures matching the
UNIPROT sequence with the largest sequence overlap (minimum
20%) and identity above 90% were retained. Only experimentally
determined crystallographic structures with resolutions below 3.0
Ångtrsoms were considered.

Cellular Abundance
Protein abundances were obtained from Pax-Db (v4.0, May 2015)
(Wang et al., 2012, 2015), which provides relative abundances for
unicellular and multicellular organisms including tissue-specific
data. We use overall abundance inferred from all available data
sets (integrated data set).

Orthologs Alignment and
Position-Specific Evolutionary Rate
The orthologs’ alignments were obtained from the original
work by Wapinski et al. (2007). Briefly, genes sharing
significant sequence similarity were clustered into putative
orthogroups and their phylogeny was constructed by a modified
neighbor-joining procedure based on pre-computed residues
similarities and shared synteny scores. This process was
repeated and optimized until each orthogroup consisted
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of genes that shared a single common ancestor. Here,
we used 3798 groups of orthologous proteins along with
their multiple sequence alignment encompassing 14 fungal
species (S.cerevisiae, Saccharomyces paradoxus, Saccharomyces
mikatae, Saccharomyces bayanus, Naumovozyma castellii
(Saccharomyces castellii), Candida glabrata, Kluyveromyces
lactis, Debaryomyces hansenii, Yarrowia lipolytica, Eremothecium
gossypii (Ashbya gossypii), Lachancea waltii (Kluyveromyces
waltii), Candida albicans, Aspergillus nidulans, Fusarium
graminearum, Magnaporthe grisea, Neurospora crassa,
Cryptococcus neoformans, Schizosaccharomyces pombe) were
used. Only 6 orthogroups had one sequence missing
and these were replaced by indels. The median pairwise
sequence identity within these 3,798 orthogroups is
58.3% (Figure 5).

All alignments were computed using MUSCLE (Edgar, 2004)
and then concatenated to estimate residue-level evolutionary rate
using the software Rate4Site (Pupko et al., 2002). Additional
details on how evolutionary rates were estimated are available in
Landry et al. (2009).

Intrinsic Disorder Predictions
We predicted disordered regions in the yeast proteome by
combining short and long disorder segments predicted by IUPred
(Mészáros et al., 2009; Dosztányi, 2018). We considered the
20% amino-acid residues with the highest disorder probabilities
among all proteins. In all analyses, we required a minimum
number of 20 residues in a particular region to calculate an
average evolutionary rate. When fewer residues were available,
the average rate of the region was considered undefined.

Domains Assignment
To assign domains, we aligned profiles from Pfam-A (v27.0, May
2013) (Bateman et al., 2002; Finn et al., 2014) and SUPERFAMILY
(v1.75, March 2013) (Gough, 2002; Oates et al., 2015) to reference
proteome sequences, filtering the hits with an E-value score above

10−3. Finally, domain residues are those that were identified as
part of a hit from either Pfam, SUPERFAMILY, or both.
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