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ABSTRACT

In the present study, an effort has been made to elucidate the gut bacterial diversity of twelve species of
the family Araneidae under three subfamilies collected from 5 states of India along with their predicted
metabolic role in functional metabolism. Further, we also compared the host species phylogeny based on
partial cytochrome c oxidase subunit I (COI) sequences with the gut bacteria composition dendrogram to
decipher the phylosymbiotic relationships. Analysis revealed the presence of 22 bacterial phyla, 145 fam-
ilies, and 364 genera in the gut, with Proteobacteria, Firmicutes, Actinobacteria, and Deinococcus-
Thermus as the highest abundant phyla. Moreover, phylum Bacteriodetes was dominated only in
Cyclosa mulmeinensis and Chlamydiae in Neoscona bengalensis. At the genus level, Bacillus,
Acinetobacter, Cutibacterium, Pseudomonas, and Staphylococcus were the most dominant genera.
Furthermore, the genus Prevotella was observed only in Cyclosa mulmeinensis, and endosymbiont
Wolbachia only in Eriovixia laglaizei. The differential abundance analysis (DeSeq2) revealed the 19 signif-
icant ASVs represented by the genera like Acinetobacter, Vagoccoccus, Prevotella, Staphylococcus,
Curvibacter, Corynebacterium, Paracoccus, Streptococcus, Microbacterium, and Pseudocitrobacter. The
inter- and intra-subfamilies comparison based on diversity indices (alpha and beta diversity) revealed
that the subfamily Araneinae have high richness and diversity than Argiopinae and Gasteracanthinae.
The phylosymbiotic analysis revealed that there is no congruence between the gut bacteria composition
dendrogram with their host phylogeny.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Spiders (Order Araneae) are known as generalist predators
(Bristowe 1941). All the species are not useful against a particular

The vital gut communities, bacteria in arthropods can provide
their host with essential and beneficial functions like nutrient pro-
duction, digestion, energy metabolism, and regulation of the
immune system (Warnecke et al. 2007, Engel et al. 2012, Engel
and Moran 2013, Gaio et al. 2011, Hu et al. 2019). The correlation
between the host species phylogeny with their gut bacteria phy-
logeny have been studied in various groups like ants (Sanders
et al. 2014), Drosophila (Chandler et al. 2011, Wong et al. 2013),
and isopterans (Dietrich et al. 2014) etc.
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pest, but few of them are used as a biological controlling agent on
agricultural pests (Marc et al., 1999), such as for the control of cot-
ton pests in China (Zhao 1993), apple orchard pests in Israel and
Europe (Mansour 1980, Riechert and Lockley 1984, Marc 1993).
They are also used as ecological indicator species for environment
monitoring (Clausen 1986; Maelfait & Hendrickx 1997; Churchill
1997). The endosymbiont Wolbachia in spiders is well studied
(Duron et al., 2008; Goodacre et al., 2006; Zhang et al., 2018), but
the studies on the abundance of Wolbachia in gut and their impact
on the abundance of other bacteria taxa is poorly understood (Hu
et al. 2019). Like other arthropods, the endosymbionts in the gut
of spiders is responsible for the host nutrition and sex ratio alter-
ations (Gunnarsson et al., 2009; Vanthournout, Swaegers &
Hendrickx 2011; Vanthournout, Vandomme, & Hendrickx 2014;
Vanthournout & Hendrickx, 2015).

Spiders exhibit extra oral digestion (EOD), immobilize their
prey by injecting venom and regurgitating digestive fluid onto
(or into) their prey and then sucking back again the resulting lique-
fied tissue (Foelix, 2011, Kennedy et al., 2020). This type of feeding
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behaviour also makes spiders an interesting model to study the
composition and function of their gut microbial communities.
However, the gut bacterial diversity of this most diverse group is
poorly explored.

Till date, gut bacterial diversity of only thirteen spider species
have been reported (Kennedy et al., 2020; Hu et al., 2019; Rivera
et al,, 2017; Sheffer et al,, 2020, Kumar et al., 2020). Kennedy
et al., studied the impact of different prey on the gut microbiome
of the spider species Badumna longinqua, and revealed a clear cor-
relation between the prey insects and the gut microbiome
(Kennedy et al., 2020). Hu et al., 2019, documented the gut micro-
bial profiling and observed that the phylum Proteobacteria was the
most dominant, including Tenericutes, Actinobacteria, Firmicutes,
Acidobacteria and Bacteroidetes. Furthermore, Rivera et al., 2017
studied the microbial profiling using body swaps and excreta sam-
ples of Rabidosa rabida. The culture studies revealed the presence
of the genus Staphylococcus sp. in body swaps and Staphylococcus
aureus in excreta samples. Furthermore, the species Staphylococcus
aureus is also responsible for the staph infection in humans (Foster
1996) and it will open the opportunity for researchers to explore
that the spiders may be the potential vector of this pathogen or
not. Sheffer et al., 2020 reported the presence of novel bacterial
symbiont affiliated to Tenericutes in the wasp spider i.e. Argiope
bruennichi, which they named as DUSA (Dominant unknown sym-
biont of Argiope bruennichi) (Sheffer et al., 2020). Kumar et al. stud-
ied the gut bacterial diversity of 7 species belonging to the family
Thomisidae and Oxyoopidae from wild populations. Further, the
subfamily Araneinae of family Araneidae has been recovered as a
paraphyletic group (Scharff et al. 2020) and it would be interesting
to study the phylosymbiotic relationship by correlating the gut
bacterial divergence with their host phylogeny.

In the present study, an effort has been made to explore gut
bacterial composition of twelve species of the family Araneidae
under three subfamilies Araneinae, Argiopinae and Gasteracanthi-
nae through 16 s rRNA amplicon sequencing along with inter- and
intra-subfamily comparison. In addition to this, phylosymbiotic
relationships, and the predicted functional metabolism analysis
were also investigated.

2. Materials and methods
2.1. Sample collection

In this study, we have collected specimens of all the twelve spi-
der species from the five states of India (Arunachal Pradesh, Assam,
Gujarat, Odisha and West Bengal) (Table 1). The specimens were
collected from the field by the following collection methods: hand
picking, sweep net, and yellow pan trap method. All the specimens

Table 1
Detail of the studied species included in this study.
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are sorted and kept individually in a separate empty vial. After 8 h
of collection, each specimen is transferred in 100% alcohol and
stored in 4 °C. Subsequently, each specimen was washed thrice
with PBS solution to remove the contamination. After washing,
DNA is extracted from a single specimen of each species. The spi-
ders used in this study were non-endangered and non-protected
species. The taxonomic identification of these specimens was done
by Priya Prasad on a NIKON SMZ25 stereo microscope using avail-
able literature (Table 1).

2.2. DNA Isolation, amplification and sequencing

The DNA of a single specimen of each spider species was
extracted using a DNeasy Blood & Tissue Kit (Qiagen) following
the manufacturer’s protocol. The quantification of the DNA was
checked by Qubit 2.0 Fluorometer (Q32866, Thermofisher), and
the quality was checked using agarose gel electrophoresis (Cell
BioScience Alphalmager MINI). DNA of 10 specimens of each spe-
cies was pooled for amplification and sequencing. The extracted
DNA was amplified using the primer sets of V3-V4 hypervariable
regions of the 16S rRNA 341F (5'- ACTCCTACGGGAGGCAGCAG-3')
and 806R (5'-GGACTACHVGGGTWTCTAAT-3'). Total 25 pl of mix-
ture was prepared for the PCR, including 1 pl of each primer,
0.5 ul of Tag DNA polymerase (Takara), 1 pl of dNTPs, 2.5 pl of
10 x buffer, 50 ng of template, and Milli-Q water. The PCR cycle
involved denaturation for 5 min at 98 °C followed by 35 cycles
for 30 s at 98 °C, annealing for 45s at 53 °C, and elongation at
72 °C for 45 s, and final extension of 7 min at 72 °C. The PCR prod-
ucts were visualized using agarose gels for high-throughput
sequencing of microbial diversity. The sequencing of the targeted
gene region of 16S rRNA was carried out on the Illumina HiSeq
platform (Illumina Hiseq2500). The qualified constructed Nextra
library was sequenced using PE300bp (Illumina Hiseq2500 RC V2
Kit) with rapid mode. The National Center for Biotechnology Infor-
mation (NCBI) GenBank Portal has been used for the submission of
the generated raw reads to under the BioProject ID PRJNA638522.

2.3. Bioinformatics and statistical analyses

The generated paired end raw reads of twelve spider species
were merged into single reads in QIIME2 (ver. 2019.10) (Bolyen
et al.,, 2019) using demultiplexing. These reads were processed by
DADA2 (Callahan et al., 2016) pipeline in QIIME2 for quality filter-
ing, trimming, de-noising and merging (Table S1). The chimeric
reads were filtered and the non-chimeric reads were assigned into
Amplicon Sequence Variants (ASVs). These ASVs were further clas-
sified based on SILVA 99% similarity database (version 132) using
QIIME2 qg2-feature-classifier plugin. The generated taxonomy and

SI. No. Specimen code Species Collection Locality Lat Long and Elevation References used for Identification
Araneinae

AA 2217 Araneus mitificus Odisha N20.50 E85.96; 19 m Kim & Lee 2012

AA 787 Cyclosa spirifera Assam N 27.47 E94.91; 98 m Keswani 2013

AA 795 Cyclosa mulmeiensis Assam N 27.66 E95.36; 102 m Yin et al. 2012

AA 598 Cyclosa bianchoria Arunachal Pradesh N 28.60 E95.49; 1909 m Yin et al. 2012

AA 2116 Eriovixia excelsa Odisha N18.78 E82.70; 887 m Tso & Tanikawa 2000

AA 1438 Eriovixia laglaizei Odisha N20.4 E85.82; 31 m Han & Zhu 2010

AA 1873 Neoscona bengalensis West Bengal N22.57 E88.31; 10 m Tikader 1982

AA 397 Neoscona nautica Assam N26.67 E92.85; 63 m Yin et al. 2012
Argiopinae

AA 136 Argiope pulchella West Bengal N22.16 E88.82; 8 m Jager 2009

AA 29 Cyrtophora cicatrosa West Bengal N23.41 E87.11; 100 m Yin et al. 1997
Gasteracanthinae

AA 154 Gasteracantha kuhli Gujarat N20.77 E 73.67; 415 m Tan et al. 2019

AA 1164 Gasteracantha hasselti Assam N 27.29 E 95.51; 203 m Tan et al. 2019
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feature tables along with metadata file were processed for the
downstream analysis. A web-based tool, MicrobiomeAnalyst
(Dhariwal et al., 2017) using Marker Data Profiling (MDP) module
was used for bacterial diversity analysis. A total of 1326 ASVs were
recovered out of 5967 ASVs after removing the singletons. These
ASVs were further filtered based on low abundance features with
prevalence 10 and low variance features with a default inter quan-
tile range and resulting a total of 1175 ASVs. To test the ASVs dif-
ferential abundance analysis based on filtered data between three
subfamilies of family Araneidae, we used DEseq2 (Love et al. 2014)
package in MicrobiomeAnalyst to identify the ASVs that differ
between the groups (Table S2).

The Alpha-diversity was analysed using T-test/ANOVA statisti-
cal methods with observed, Chao1, Shannon and Simpson as diver-
sity measures. The PERMANOVA based statistical method for Bray
Curtis and Ward’s linkage-based method for Unweighted UniFrac
distance measure were used for analyzing the beta diversity. Fur-
ther, an online tool jvenn (Bardou et al., 2014) (http://jvenn.tou-
louse.inra.fr) was used for the construction of the Venn diagram,
while the R-based (R core team 2020), Metacoder software
(Foster et al., 2017) was used for the picturing of the heat tree.
We used UpSetR software in R to generate the plots of each sub-
family ASVs (Conway et al., 2017). The Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States (Langille
et al., 2018) (PICRUSt2) was used for predicting the functional
metabolic pathways. The predicted metabolic pathways were char-
acterized through Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Kanehisa et al, 2000; Kanehisa et al., 2019; Kanehisa,
2019) database and accuracy evaluated by the Nearest Sequenced
Taxon Index (NSTI) values. Further, the generated file along with
the metadata were loaded on the MicrobiomeAnalyst web server
for the diversity association between the predicted pathways and
ASVs. Further, to test the correlation between the host phylogeny
and bacterial composition based phylogeny, Mantel test was
implemented with 9999 permutations to compare the distance
matrices of host species COI sequences and gut bacteria.

2.4. Host species phylogeny

The phylogeny of the host species was constructed using the

partial Cytochrome c oxidase subunit I (COI) sequences. These
sequences of the host species were taken from the earlier study
(Tyagi et al. 2019) except Eriovixia laglaizei (Accession number:
MK392634, MK392659, MK392665, MK392676, MK392691,
MK392701, MK392733, MK392761, MK392773, MK393097). The
COI sequence of Eriovixia laglaizei was generated and submitted
to BOLD (Barcode of Life Data Systems) under the project “Spiders
from India” (BIN AEC1993). The sequence of Neoscona bengalensis is
not available in GenBank or BOLD and mite sequence (BOLDMSA-
CA57112_0G_Acari) was used as an out-group (Astrin et al.
2016). The Bayesian inference was constructed in CIPRES Portal
(http://www.phylo.org/; Miller et al. 2010) using Mr. Bayes 3.2
(Ronquist et al. 2012) with nst = 6, four (one cold and three hot)
metropolis-coupled Markov Chain Monte Carlo (MCMC), for
50,000,000 generations with 25% burn in and trees saving at every
100 generations. Further, to decipher the phylosymbiotic relation-
ship between the host phylogeny and bacterial composition based
phylogeny, Unweighted UniFrac dendrogram was constructed.

3. Results
3.1. Rarefaction and ASVs distribution

A total of 1,077,166 sequences of 16S rRNA (V3-V4) was identi-
fied after pre-processing steps i.e. merging, quality filtering, chi-

5915

Saudi Journal of Biological Sciences 28 (2021) 5913-5924

mera removal, etc. which ranges from 69,573 to 106,136
(average of 89,763 reads per sample) and assigned into 5967 ASVs
(Tables S1). Rarefaction curve analysis using Good Coverage
reached the saturation which indicated that the sufficient sequenc-
ing depth has been achieved to decipher the bacterial community
structure. Further, Venn analysis revealed that out of 5967 ASVs,
65% were unique for Araneinae, 7% for Argiopinae and 11% for
Gasteracanthinae, while only 4.5% ASVs were shared as core micro-
biome in the family Araneidae (Fig. 1a, 1b). Moreover, we had car-
ried out the analysis to decipher the percentage contribution of
phylum from each subfamily i.e. Araneinae, Argiopinae, and
Gasteracanthinae towards the core microbiome. From results, it
was observed that all the sub families contributed almost equally
in term of phylum Proteobacteria (23-25%), Bacteroidetes (22%),
and Firmicutes (22-25%) while significant differences was
observed in the abundance of Deinococcus-Thermus (10-22%)
and Actinobacteria (11-22%) (Fig. 1c). Further for downstream
analysis, 5967 ASVs were subjected to removal of singletons
(4641 ASVs), low variance (20 ASVs) and low abundance features
(131 ASVs) and resulted into 1175 ASVs. Further, we have also rar-
efy the data in normalization step in MicrobiomeAnalyst with Total
Sum Scaling (TSS) and minimum library size option (Weiss et al.
2017). To elucidate the bacterial abundance, diversity indices and
differential abundance analysis, we used the normalized data.

3.2. Structure and composition of bacterial diversity

The taxonomic classification of the annotated sequences
revealed the presence of 22 bacterial phyla and 364 bacterial gen-
era in all. The phylum Proteobacteria was predominant with an
abundance of around 49-75%, followed by the phylum Firmicutes
with an abundance of 14-35%, were detected in the gut of all spi-
der species. Other bacterial taxa like Actinobacteria (1-14%), Bac-
teroidetes (1-10%), and Deinococcus-Thermus (2-6%) were
detected in the gut of eleven spider species of the family Araneidae.
The major contribution of the phylum Actinobacteria comes from
two species of the subfamily Araneinae, i.e. Cyclosa spirifera and
Eriovixia laglazei, while the phylum Bacteriodetes was most
strongly represented in Cyclosa mulmeinensis (Araneinae). The
microbiome of the species Araneus mitificus was constituted by
only two phyla i.e. Proteobacteria and Firmicutes. In addition to
this, the phylum Chlamydiae was observed only in one species of
the subfamily Araneinae, i.e. Neoscona bengalensis (Fig. 2)

A total of 81 orders were detected in the current dataset, among
them the orders that majorly contribute to the total bacterial
diversity in subfamily Araneinae were Pseudomonadales, Enterobac-
teriales, Bacilliales, Lactobacilliales, Micrococcales, Corynebacteriales,
Propionibacteriales, Flavobacteriales, Bacteriodales, Rickettsiales,
Thermales (Figure S1). Similar trends were observed in subfamily
Argiopinae and Gasteracanthinae with considerable changes in
the abundance of order Bacilliales, Bacteriodales and Rickettsiales
in Argiopinae (Figure S2), and the abundance of orders Enterobac-
teriales, Lactobacilliales, Siphingomonadales, Thermales, Bacteriodales
in Gasteracanthinae (Figure S3).

At the family level, Moraxellaceae (20%), Enterobacteriaceae
(13%), Bacillaceae (9%), Pseudomonadaceae (6%), Burkholderiaceae
(5%), were observed in all three subfamilies of spiders. The remain-
ing 47% diversity was contributed by other families, including
Prevotellaceae, Staphylococcaceae, Propionibacteriaceae,
Corynebacteriaceae, Micrococcaceae, Thermaceae etc. Two fami-
lies, Burkholderiaceae and Pseudomonadaceae, were not observed
in Araneus mitificus (Araneinae). The major contribution of the fam-
ily Prevotellaceae was reflected in only Cyclosa mulmeinensis
(Araneinae).

At the genus level, 364 genera were observed in the current
dataset of spiders. The genera Acinetobacter (5-34%), Bacillus (0-
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Fig. 1. (a) Venn diagram (b) Percentage contribution of core microbiome of family Araneidae (c) Percentage contribution of phylum from each subfamilies i.e. Araneinae,

Argiopinae, and Gasteracanthinae towards the core microbiome.

24%), V4 (3-23%), Cutibacterium (0-16%), Pseudomonas (0-9%), and
Staphylococcus (0-12%), Coryneobacteria_1 (1-11%) constitute
towards the gut microbiome of Indian Spiders. In addition to this,
the genus Prevotella (60%) was observed only in Cyclosa mulmeinen-
sis while endosymbiont Wolbachia (28%) was detected only in Eri-
ovixia laglaizei (Araneinae) (Fig. 3).

3.3. Inter- and Intra-subfamilies gut bacteria comparison in family
Araneidae

To identify inter- and intra-subfamilies core bacterial taxa, the
shared and unique ASVs were examined. Inter-subfamilies com-
parison revealed that 4.5% ASVs were shared, and 65% unique for
Araneinae, 7% for Argiopinae and 11% for Gasteracanthinae. On
the other hand, intra-subfamilies comparison in subfamily Aranei-
nae, eight species shared a relatively low 0.06% (3) of total ASVs,
while 0.5% (24 ASVs) unique for Araneus mitificus, 2.5% (122) for
Cyclosa mulmeinensis, 7% (339) Cyclosa bianchoria, 7.7% (37 1) Eri-
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ovixia laglaizei, 14% (677) Neoscona nautica, 14.5% (696) Cyclosa
spirifera, 16.4% (7 87) Eriovixia excelsa, 17.9% (858) Neoscona ben-
galensis. The maximum ASVs (164 ASVs) shared between Neoscona
nautica and Neoscona bengalensis while minimum (1 ASV) shared
by Araneus mitificus with four species (Neoscona bengalensis,
Cyclosa spirifera, Cyclosa mulmeinensis, Eriovixia laglaizei) (Fig. 4a).
In case of Argiopinae, both the species shared 6.1% ASVs, and
37.6% unique for Argiope pulchella, 56.1% for Cyrtophora cicatrosa
(Fig. 4b). In case of Gasteracanthinae, both the species shared
18.4%, while 43.2% unique for Gasteracantha hasselti, 38.3% for
Gasteracantha kuhli (Fig. 4c).

Further, the DEseq_? is carried out to identify which gut bacterial
taxa differed between these three subfamilies (Table S2). This anal-
ysis identified the 19 significant ASVs with a p value cut off 0.05
and indicated the presence of the following genera Acinetobacter,
Vagoccoccus, Prevotella_9, Staphylococcus, Curvibacter, Corynebac-
terium_1, Paracoccus, Streptococcus, Microbacterium, and Pseudoc-
itrobacter as significant. The taxa of the family Araneidae gut
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Fig. 2. Abundance of gut bacterial diversity at the phylum level of twelve spider species under three subfamilies, Araneinae, Argiopinae, and Gasteracanthinae.
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Fig. 3. Abundance of gut bacterial diversity at the genus level of twelve spider species under three subfamilies, Araneinae, Argiopinae, and Gasteracanthinae.

bacterial community, Moraxellaceae; Acinetobacter, was found to
be significantly higher abundance in the Argiopinae as compared
with Araneinae and Gasteracanthinae (Fig. 5).

Moreover, another taxa of the Araneidae gut community, Enter-
obacteriaceae; Cosenzaea, were significantly higher in abundance
in the Argiopinae and Gasteracanthinae as compared with Aranei-
nae. The bacterial taxa Enterococcaceae; Vagococcus were also sig-
nificantly higher abundance in the Argiopinae as compared with
Araneinae and Gasteracanthinae. The bacterial taxa in the family
Araneidae gut community, Prevotellaceae; Prevotella_9 was abun-
dant in Araneinae as compared with Argiopinae and Gasteracanthi-
nae. The bacterial taxa of Staphylococcaceae; Staphylococcus was
more abundant in Araneinae and Argiopinae as compared to
Gasteracanthinae. The bacterial taxa, Burkholderiaceae; Curvibac-
ter, were more abundant in the Argiopinae as compared with
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Araneinae and Gasteracanthinae. Other low abundance taxa were
also found to be different in abundance between these three
subfamilies.

3.4. Diversity metrics for comparison of gut microbiota

To decipher the bacterial community richness, o- and B-
diversity analyses were carried out. The diversity measurements
of Chao1l, Observed, Shannon and Simpson were used for the a-
diversity analysis, while Bray-Curtis and Unweighted Unifrac
diversity measures for B-diversity analysis. The o-diversity for
three spider subfamilies (Araneinae, Argiopinae, and Gasteracan-
thinae) of the family Araneidae lies in the range of 39-559 (Chaol,
Observed). The changes observed in the community richness of
three subfamilies were non-significant (p>0.05) (Table S3).
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Inter- subfamilies comparison reveals that the bacterial commu-
nity richness of Neoscona bengalensis was highest, while that of
Araneus mitificus was lowest. Further, intra-subfamilies compar-
ison in Araneinae, Gasteracanthinae and Argiopinae revealed that
the richness profile was highest for Neoscona bengalensis, Gastera-
cantha kuhli and Cyrtophora cicatrosa while lowest for Araneus miti-
ficus, Gasteracantha hasselti and Argiope pulchella respectively.
Based on the values of richness estimators, it can be concluded that
Araneinae was richer (in terms of bacterial community) than
Argiopinae and Gasteracanthinae (Fig. 6).

Moreover, the a-diversity analysis based on Shannon and Simp-
son were in the range of 2.33-4.72 and 0.859-0.975 respectively.
However, the changes observed in these diversity estimates for
three subfamilies were non-significant (p>0.05). Inter-
subfamilies comparison based on these measures was different
than that of community richness measures and it was observed
that Eriovixia excelsa possess higher diversity while lowest in Ara-
neus mitificus. On the other hand, in terms of intra-subfamilies
comparison the vice-versa of community richness measures stands
true for Gasteracanthinae and Argiopinae while for Araneinae dif-
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ferent results (in terms of highest diversity) for both the diversity
measures were observed (Table S3). Hence, based on diversity esti-
mators, it can be concluded that subfamily Araneinae possess
higher diversity than Argiopinae and Gasteracanthinae (Fig. 6).

The Bray-Curtis based NMDS ordination plot also suggested a
similar type of results as indicated by unweighted unifrac diversity
measures. Based on distance matrix (NMDS Stress = 0.055), it was
observed that two species i.e. Araneus mitificus and Eriovixia laglzei
were in close resemblance with each other. The gut samples
obtained from the two species (Gasteracantha kuhli and G. hassleti)
of subfamily Gasteracanthinae were in close resemblance with one
species of Argiopinae (Argiope pulchella) and two species of Aranei-
nae (Neoscona nautica and N. bengalensis). The rest of the members
of subfamily Araneinae were in close resemblance with one species
of family Argiopinae (Cytrophora cicatrosa) (Fig. 7).

3.5. Functional predictions analysis

The PICRUSt2 computational approach was used to decipher
the resemblances and differences in metabolic profiles of the
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Fig. 6. Box plot for the alpha-diversity index (a) observed, (b) Chao1, (¢) Shannon and (d) Simpson of the gut bacterial diversity in three subfamilies of family Araneidae. The
ends of the whiskers represent the minimum and maximum while the line inside the box represents the median.
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Fig. 7. Bray-Curtis dissimilarity-based Non-metric Multidimensional Scaling (NMDS) ordination plot of twelve spider species.

microbiome of three subfamilies, i.e. Araneinae, Argiopinae, and
Gasteracanthinae. Results revealed the presence of 443 Metabolic
functional pathways which were further analysed with Micro-
biomeAnalyst and obtained significant (p value < 0.05) pathways
on the basis of their ASVs abundance/metagenome hits
(Table S4). These pathways included profiles related to metabo-
lism (carbon, amino acids, nitrogen, sulphur, biotin, pyruvate
Butanoate and fatty acids etc), biosynthesis (amino acids, car-
bapenem), Glycolysis, TCA cycle, degradation (fatty acids, Valine,

250

Leucine, Isoleucine, Lysine, Geraniol), Drug and enzymes metabo-
lism etc. (Table S4). Furthermore, the bacterial taxa Like Bacillus,
Acinetobacter, Lactococcus, Thermus Staphlococcus, Blastomonas,
Enterobacteriaceae ambiguous Taxa, and Burkholderiaceae
ambiguous taxa, were mainly responsible for these predicted
metabolic pathways (Fig. 8). Moreover, the gut bacteria associated
with carbon metabolism and amino acid biosynthesis have higher
relative abundance than those involved in other metabolic
activities.

PICRUSH2 hits

Predicted Metabolic Pathways

Fig. 8. The predicted functional metabolic pathway of twelve species under three subfamilies of family Araneidae.
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3.6. Comparison of gut bacterial composition based phylogeny with
their host phylogeny

To evaluate the phylosymbiotic relationship, the host species
phylogeny (BI phylogeny based on COI sequences) and bacterial
composition phylogeny (Unweighted Unifrac based dendrogram)
were compared (Fig. 9). The dendrogram revealed two clades and
can be discriminated by the relative abundance of phylum
Deinococus-Thermus. Clade I with negligible abundance of phylum
Deinococus-Thermus was observed in one species of subfamily
Argiopinae (Cyrtrophora cicatrosa) + all the members of subfamily
Araneinae in this clade while clade II contain all the members of
subfamily Gasteracanthinae + one species of subfamily Argiopinae
(Argiope pulchella) + two species of subfamily Araneinae (Neoscona
nautica and N. bengalensis).

Clade I was further divided into two subclades A and B: The sub-
clade IA possesses a similar type of bacterial abundance, except in
the species Cyclosa mulmeinensis which diverged due to increased
abundance of the phylum Bacteroidetes. The subclade IB also pos-
sesses a similar type of bacterial abundance, except in the species
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of Cyclosa bianchoria, in which the abundance of phylum Pro-
teobacteria was higher than the other three species. Two species
of Araneinae (Eriovixia excelsa and Cyclosa spirifera) and one species
of Argiopinae (Cyrtophora cicatrosa) in subclade IB have similar
type of bacterial diversity, while Cyclosa spirifera was branched
out from this subclade due to the high abundance of phylum
Actinobacteria.

The clade II with a considerable abundance of Deinococcus-
Thermus contains five species (Neoscona nautica, N. bengalensis,
Gasteracantha kuhli, Gasteracantha hasselti and Argiope pulchella).
The branch of species Argiope pulchella (Argiopinae) was the first
branch out due to the high abundance of phylum Firmicutes. This
clade further sub divided into two subclades A and B and have sim-
ilar type of bacterial diversity except a few changes in the diversity
of Phylum Chalamydiae and Cyanobacteria.

In host species phylogeny, the species of the subfamily Gaster-
acanthinae (Gasteracantha hassleti and G. kuhli) showed sister rela-
tionship with subfamilies Araneinae and Argiopinae (Fig. 9) while
these species are closer to Neoscona species and Argiope pulchella
in bacterial composition phylogeny. However, the subfamily

Gasteracantha kuhli ==

Cyrtophora cicatrosa

Eriovixia excelsa

Argiope pulchella

Araneus mitificus
1 0.5
= 0.6
507
80.9
01.0

Cyclosa mulmeinensis

Neoscona nautica ==

Eriovixia laglaizei

Cyclosa bianchoria

Acar m——

02

Fig. 9. Dendrogram of p-diversity of twelve species from three subfamilies of the family Araneidae, along with phylum gut bacterial diversity (left side); host species

phylogeny (right side).
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Argiopinae species Cyrtophora cicatrosa is closer to Eriovixia excelsa
in both phylogenies, while Argiope pulchella showed different
topologies in both phylogenies. Furthermore, the phylogeny of
the species of family Araneinae is not congruent with bacterial
composition phylogeny.

Further, the correlation between the host and bacterial compo-
sition phylogenies was observed based on statistical test like Man-
tel test (r=0.0674, P=0.31) with 9999 permutations, and
indicating that there is no correlation between the host species
and gut bacterial composition phylogeny.

4. Discussion

In the present study, an effort has been made to elucidate the
gut bacterial diversity of twelve species of the family Araneidae
under three subfamilies collected from 5 states of India along with
their predicted metabolic pathways. Further, we have also com-
pared the pattern of gut bacteria with their host species phylogeny.

The family Araneidae comprises 3100 species in 175 genera
(World Spider Catalog, 2020). Recently, Scharaff et al. 2019
observed that the family Araneidae is not monoplyletic. This study
used multiple molecular markers to determine the classification
implications and intrafamilial relationships of family Araneidae
and classify it into outgroups (22 genera and 11 families), ingroups
(three Zygiellinae and four Nephilinae genera) and ARA Clade gen-
era with 10 informal groups (85 genera). The genera Argiope and
Gasteracantha were included under informal groups of ARA clade
Argiopines and Gasteracanthines respectively, whereas the place-
ment of the genera Araneus, Cyclosa, Eriovixia and Neoscona is
ambiguous. Our BI phylogeny also depicted the similar topology.

The data analysis indicated that the dominant phyla in these
twelve Araneidae species were composed of Proteobacteria and
Firmicutes, which play an important role in nutrient and energy
metabolism as also reported in previous study (Hu et al. 2019).
The high abundance of phylum Proteobacteria in the spiders’ gut
is in line with previous studies on spider and other insects (Hu
et al,, 2019; Chen et al., 2016; Ruokolainen et al., 2016; Hammer
et al.,, 2017). The other bacterial phyla like Bacteriodetes and
Chlamydiae dominated in Cyclosa mulmeinensis and Neoscona ben-
galensis respectively.

At the genus level, the dominant genera were Acinetobacter,
Bacillus, Pseudomonas, Cutibacterium, Staphylococcus, and Cory-
neobacteria with considerable abundance throughout the spider
species, while an endosymbiont genus Wolbachia was observed
only in Eriovixia laglaizei. The genus Prevotella was observed in
Cyclosa mulmeinensis, it may be due to abnormal r digestion at
the time of capturing (Suenami et al 2019). The high relative abun-
dance of the genera Wolbachia and Prevotella_9 in the gut of these
two species have greatly reduced the abundance of other bacteria.
Similar results were observed in three spider species (Hu et al.
2019), wherein, the presence of Wolbachia and Rickettsiella have
caused significant differences in the relative abundance of other
gut bacteria.

We used the PICRUSt2 for the prediction of the metabolic func-
tional pathways of gut bacteria in spiders. The predicted metabolic
function of gut bacteria in spiders were involved in metabolism of
amino acids, carbon, fatty acids, glycolysis, TCA cycle, degradation
of amino acids and fatty acids, drug and enzyme metabolism etc.
Our result is also similar to previous spider gut microbiome study
wherein gut bacteria were associated with host nutrient and
energy metabolism (Hu et al. 2019). This indicated that the gut
bacteria involved in amino acid biosynthesis and carbon metabo-
lism have the highest relative abundance than those involved in
other metabolic functions. The alpha diversity based on the rich-
ness and diversity estimators concluded that the subfamily Aranei-
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nae possess high richness and diversity than Argiopinae and
Gasteracanthinae.

Moreover, the host species phylogeny was not congruent with
those of bacterial compositions based phylogeny. Our study indi-
cated that the gut bacterial composition may not be influenced
by the host species phylogeny. Several other factors like environ-
ment conditions, diet and physiology might be shaping the gut
bacterial diversity. The structure of gut bacteria in twelve species
of spider and their predicted functional metabolic pathways in
the current study is the preliminary effort based on 16 s rRNA. It
needs future analyses based on metagenomics and metatranscrip-
tomics approaches to explain the relationship of host-microbiome,
their structure and functions.

5. Conclusion

This study provides the first baseline data for gut bacterial
diversity of twelve spider species of the family Araneidae col-
lected from wild. The result showed that species of three subfam-
ilies shared gut bacterial structure except Cyclosa mulmeinensis
and Eriovixia laglaizei with high abundance of Prevotella and Wol-
bachia respectively. Further, the gut bacterial composition of
these twelve species are not in coherence with their species phy-
logeny. To clarify the relationship between the gut bacteria and
their host species phylogeny, extensive sampling along with
metagenomics and metatransciptomics analyses with different
parameters is needed.
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