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Abnormal phosphorylation and aggregation of tau is a key hallmark of Alzheimer’s disease

(AD). AD is a multifactorial neurodegenerative disorder for which Diabetes Mellitus (DM)

is a risk factor. In animal models for DM, the phosphorylation and aggregation of tau is

induced or exacerbated, however the underlying mechanism is unknown. In addition to

the metabolic dysfunction, DM is characterized by chronic low-grade inflammation. This

was reported to be associated with a neuroinflammatory response in the hypothalamus

of DM animal models. Neuroinflammation is also implicated in the development and

progression of AD. It is unknown whether DM also induces neuroinflammation in brain

areas affected in AD, the cortex and hippocampus. Here we investigated whether

neuroinflammation could be the mechanistic trigger to induce tau phosphorylation in the

brain of DM animals. Two distinct diabetic animal models were used; rats on free-choice

high-fat high-sugar (fcHFHS) diet that are insulin resistant and streptozotocin-treated rats

that are insulin deficient. The streptozotocin-treated animals demonstrated increased

tau phosphorylation in the brain as expected, whereas the fcHFHS diet fed animals

did not. Remarkably, neither of the diabetic animal models showed reactive microglia

or increased GFAP and COX-2 levels in the cortex or hippocampus. From this, we

conclude: 1. DM does not induce neuroinflammation in brain regions affected in AD, and

2. Neuroinflammation is not a prerequisite for tau phosphorylation. Neuroinflammation is

therefore not the mechanism that explains the close connection between DM and AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder characterized by
aggregation of Aβ and abnormal phosphorylation and aggregation of tau (Grundke-Iqbal et al.,
1986; Selkoe, 1991). Neuroinflammation is associated with the development and progression of
AD. Different genome-wide association studies identified genes involved in the innate immune
system as risk factors for AD; CR1, CD33, and TREM2, which are all expressed in microglia
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(Bertram et al., 2008; Harold et al., 2009; Lambert et al., 2009;
Jonsson et al., 2013). Moreover, microglia are activated early in
AD pathology (Hoozemans et al., 2005). Microglial activation
is already observed in patients with mild cognitive impairment
(MCI, Okello et al., 2009). Interestingly, the density of activated
microglial correlates inversely with cognitive performance of
AD patients (Combs, 2009). These data strongly indicate the
involvement of neuroinflammation in AD pathogenesis.

However, the exact underlying pathomechanism
of neuroinflammation in AD pathology is complex.
Neuroinflammation influences both the clearance and
production of toxic tau and Aβ species. Proinflammatory
cytokines reduce the clearance capacity of glial cells thereby
resulting in a disbalance of production and clearance of
accumulated proteins (Lee and Landreth, 2010). In addition,
BACE1 activity is increased by inflammation in vitro and is
reduced after using nonsteroidal anti-inflammatory drugs
in AD mice (Sastre et al., 2003, 2006; Lee et al., 2008). Tau
phosphorylation is increased by a shift in the balance of tau
kinase and phosphatase activity (Arnaud et al., 2006). The
activity of the tau kinases GSK3β, Cdk5, and p38-MAPK is
increased upon inflammation. In addition, a different pathway
of inducing tau pathology by neuroinflammation was described
by Arnaud et al. (2009) showing that inflammation leads to tau
cleavage into an aggregation-prone form known to seed tau
aggregation.

Epidemiological studies show that Diabetes Mellitus (DM) is
a risk factor for AD and that the incidence of AD is higher in
people with DM (Biessels et al., 2006; Kopf and Frölich, 2009).
Moreover, DM is associated with higher risk forMCI (Luchsinger
et al., 2007). DM is characterized by marked high levels of blood
glucose and occurs in two forms: type 1 DM (T1DM), which
results from insulin deficiency, and type 2 DM (T2DM) which
starts with overproduction of insulin due to insulin resistance
and over time results like T1DM in extreme hyperglycemia.
In transgenic AD models, both insulin deficiency and insulin

TABLE 1 | Overview of tau phosphorylation in diet-induced diabetic models.

Treatment Species Duration Tau phosphorylation Publication

DIET MODEL

HF Mice 12–16 weeks ↔ Becker et al., 2012

HF Mice 16 weeks ↔ Moroz et al., 2008

HF Mice 32 weeks ↓ To et al., 2011

HF Mice 18 weeks ↔ Ramos-Rodriguez et al., 2013

HF THY-Tau22 or WT Mice 5 months ↑ THY-Tau22, ↔ WT Leboucher et al., 2013

HF Rat 12 weeks ↔ McNeilly et al., 2012

HF Rat 8 weeks ↑ Zhang et al., 2010b

HF + HC Rat 8 weeks ↑ Bhat and Thirumangalakudi, 2013

DIET + STZ MODEL

HF + HS + HP + STZ Rat 16 weeks ↑ Yang et al., 2013

HF + STZ Rat 4 weeks ↑ Zhang et al., 2010a

HF, high-fat diet; WT, wild type; HC, high-cholesterol diet; HS, high-sugar diet; HP, high-protein diet; ↑, increase of tau phosphorylation; ↓, decrease of tau phosphorylation; ↔, no

change in tau phosphorylation.

resistance exacerbate tau pathology (Ke et al., 2009; Park, 2011).
Interestingly, various studies show induction of endogenous tau
phosphorylation in the brains of T1DM animal models (reviewed
by Park, 2011; El Khoury et al., 2014). An increased level of
endogenous tau phosphorylation is also reported in some animals
on high-caloric diet that develops insulin resistance. However,
this is not consistently observed (Table 1).

Interestingly, DM is characterized by low-grade systemic
inflammation. Inflammation has been implicated in the
progression and peripheral complications of both T1DM and
T2DM (King, 2008; Gustafson, 2010; Vykoukal and Davies,
2011). This peripheral inflammation can be accompanied by
neuroinflammation in specific regions of the central nervous
system. Reactive glial cells and activation of different cytokines
are reported in the hypothalamus of insulin deficient (Luo et al.,
2002) as well as insulin resistant animals and in obese humans
(Thaler et al., 2012). However, the adverse effects of insulin
deficiency or insulin resistance on regions of the brain involved
in cognition (cortex and hippocampus) are hardly investigated.
Therefore, we investigated whether neuroinflammation could be
the mechanistic trigger to induce tau pathology in the brain of
DM animals. Two distinct diabetic animal models were used to
study neuroinflammation in the cortex and the hippocampus,
brain areas primarily affected in AD. The first model mimics
T1DM by destroying the pancreatic β cells with streptozotocin
(STZ) resulting in insulin deficiency and extreme hyperglycemia
(Qu et al., 2011). In the second model, rats are fed a free-choice
high-fat high-sugar (fcHFHS) diet for 10 weeks to model obesity-
induced insulin resistance. Previously we showed that rats have
increased body weight, slight hyperglycemia, hyperinsulinemia,
glucose intolerance and a diminished insulin response to a
glucose load after a 4-week fcHFHS diet (la Fleur et al., 2011).
In this study, we investigated whether inflammation, a common
dominator in both insulin deficient and insulin resistant
animals, can lead to tau phosphorylation using these two animal
models.
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MATERIALS AND METHODS

Animals
This study was performed with male Wistar rats (250–350 g;
Charles River, Sulzfeld, Germany). Rats were individually housed
under a 12:12 h light/dark cycle (lights on 07.00 h) at 21–23◦C
with ad libitum access to standard chow (Special Diets Services,
Essex, United Kingdom) and tap water. Two distinct diabetic
animal models were used: an insulin resistance diet model
and insulin deficient model. Rats on fcHFHS diet received in
addition to the control groups a dish of saturated fat [beef
tallow (Ossewit/Blanc de Boeuf, Vandermoortele, Belgium)] and
a bottle of 30% sugar water (1M sucrose mixed from commercial
grade sugar and water) in the cage for 1 week (n = 6), 4
weeks (n = 6), or 10 weeks (n = 9). For the second diabetic
model, T1DM, rats received under anesthesia of isoflurane
subcutaneous an injection of STZ (experimental group) (Sigma
Aldrich, St. Louis, MO, USA; 65mg/kg in 0.3ml citrate buffer
pH 4.2) or vehicle (citrate buffer). Animals were sacrificed 20
days after injection (n > 5 animals per group). For western
blot analysis, animals were decapitated under CO2/O2 and
brains were quickly removed and collected on dry ice before
frozen in −80◦C. Subsequently, hippocampus and cortex were
dissected for protein lysates. For immunohistological analysis,
animals were transcardially perfused with phosphate-buffered
saline (PBS) followed by 4% paraformaldehyde under Nembutal
anesthetics (120mg/kg). Brains were embedded in paraffin.
During the experiment body weight, food and water intake
was measured 3 times a week. Glucose and insulin levels were
not determined since the therefore required clamp studies or
fasting of the animals both have a profound effect on the
brain and could interfere with our results (Faggioni et al., 2000;
Rummel et al., 2010; Lavin et al., 2011; Fuente-Martin et al.,
2012; Bowe et al., 2014; Routh et al., 2014; Vasconcelos et al.,
2014). However, previously fasting hyperinsulinemia and slight
increases in glucose levels have been shown in the fcHFHSmodel
used in this study (la Fleur et al., 2010, 2011; Harris and Apolzan,
2012). In STZ model trunk blood was collected to measure
plasma glucose concentration with the Biosen (EKF diagnostics,
Cardiff, UK) following the assay protocol. A significant increase
in plasma glucose levels without fasting of STZ-treated animals
compared to control rats was detectable due to the extreme
hyperglycemia levels of STZ-treated rats (6.28 ± 0.44mmol/L
basal glucose levels in control rats vs. 20.9 ± 4.95mmol/L basal
glucose levels in STZ-treated rats). The experiment was approved
by the Committee for Animal Experimentation of the Academic
Medical Center of the University of Amsterdam, the Netherlands.

SDS-PAGE and Western Blotting
Brain lysates were homogenized with a seirin needle and
incubated for 30min on ice in RIPA buffer (50mM TrisHCl,
150mM NaCl, 1% NP-40, 0.5% Sodium deoxycholate, 0.1%
SDS, 2mM EDTA) supplemented with protease and phosphatase
inhibitors. Subsequently, brain lysates were centrifuged for
15min at 20.000 × g at 4◦C. Supernatant protein content was
determined by BCA protein assay kit (Pierce, Rockford, IL, USA).
Equal amounts of protein were loaded on 10% polyacrylamide

gels and blotted onto nitrocellulose membrane (Millipore,
Billerica, MA, USA). Blots were pre-incubated with 5% bovine
serum albumin (BSA; Boehringer, Mannheim, Germany) in
TBS-T [0.05% Tween-20 in Tris buffered saline (TBS)] for
60min at room temperature and subsequently incubated at
4◦C overnight with primary antibodies. Membranes were
washed 3 × 10min in TBS-T and subsequently incubated with
species-specific secondary antibodies conjugated to horseradish
peroxidase (dilution 1:2000, Dako, Glostrup, Denmark). Reactive
protein bands were visualized using LumiLightPLUS Western
blotting substrate (Roche Applied Science). Results were
analyzed using Advanced Image Data Analyzer software (Raytest,
Straubenhardt, Germany) version 3.44.035 and using Image
Studio Version 2.0 software (Li-cor, Lincoln, NE, USA). Brain
samples from the experimental and the control group were all
loaded on the same SDS-PAGE gel. The primary antibodies and
their dilution factors are listed in Table 2.

Immunohistochemistry
Brains were cut into 5µm sagittal sections. The sections
were immersed in 0.3% H2O2 in TBS for 30min to quench
endogenous peroxidase activity. Sections were treated with
10mmol/l, pH 6.0, sodium citrate buffer (AT8) or with 10mM
Tris and 1mM EDTA buffer, pH 9.0 (IBA-1) for 10min at 99◦C
for antigen retrieval and subsequently incubated with primary
antibodies at 4◦C overnight. Antibodies (Table 2) were diluted
in TBS containing 0.5% triton-X-100. Negative controls for
all immunostainings were generated by omission of primary
antibodies. Sections were washed with TBS and subsequently
incubated for 120min with undiluted EnVision/HRP anti-
rabbit/mouse (Dako, Hamburg, Germany). Color was developed
using 3, 3′-diaminobenzidine (EnVision detection system/HRP
1:50, DakoCytomation, Glostrup, Denmark) as chromogen.
Sections were counterstained with haematoxylin and mounted
using Depex (BDH Laboratories Supplies, East Grinstead, UK).

Statistical Analysis
GraphPad Prism software was used for graphs and statistical
analysis. All data are compared to the control group. Two-
sided unpaired Student’s t-test was used for single statistical
comparison. No significance difference was defined as
P > 0.05.

TABLE 2 | Primary antibodies.

Antibody Species Dilution Company

ANTIBODIES FOR WESTERN BLOT ANALYSES

eEF2α Rabbit 1:1000 in 5% BSA/TBS-T Cell Signal, USA

p-tau (Ser396) Rabbit 1:1000 in 5% BSA/PBS-T Cell Signal, USA

Actin Mouse 1:1000 in 5% BSA/TBS-T Cell Signal, USA

GFAP Rabbit 1:1000 in 5% BSA/TBS-T DAKO, DE

COX-2 Mouse 1:1000 in 5% BSA/TBS-T Cayman chemical, USA

ANTIBODIES FOR IMMUNOHISTOCHEMISTRY

AT8 Mouse 1:200 Pierce, Rockford, USA

IBA-1 Rabbit 1:1000 Novus Biologicals, USA
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RESULTS

To investigate whether there is neuroinflammation in AD-
affected brain areas as a complication of diabetes we used a
STZ model and fcHFHS diet model. In both diabetic models
body weight gain was measured at the end of the experiment
to ensure effectiveness of the treatment. As expected, STZ

FIGURE 1 | Body weight gain in diabetic rats. Body weight gain 20 days

after citrate buffer (con) or STZ injection is shown (A). Data is presented as

mean ± SD of n = 6 animals per group. STZ treatment results in loss of

approximately 20 grams (g) of body weight from the start of the experiment.

Body weight gain after 10-weeks standard chow diet (con) or fcHFHS diet

(B) are shown as mean ± SD of n = 9 animals per group. Rats on fcHFHS diet

gain on average 50 g more weight than rats on standard chow diet. (*p < 0.01).

treatment reduced body weight (Figure 1A). In line with a 4-
week fcHFHS diet, body weight gain was significantly increased
after a 10-week fcHFHS diet compared to standard chow
diet (Figure 1B). We first investigated endogenous levels of
phosphorylated tau in the brain of both diabetic models.
Immunohistochemistry for phosphorylated tau using the AT8
antibody on brain tissue of rats after 10-weeks fcHFHS diet
showed no positive reactivity (Figure 2A). In contrast, the STZ
model showed increased tau phosphorylation in the cortex, as
previously reported in several studies (Park, 2011; El Khoury
et al., 2014). To ascertain that tau phosphorylation did not occur
as an adaptive response just after the start of the fcHFHS diet that
disappeared after adjustment to the diet, tau phosphorylation
was studied at earlier time points. Western blot analyses of
hippocampal protein lysates of rats fed a fcHFHS diet for 4-
weeks (Figure 2B) and 1-week (Figure 2C) were performed.
There was no increased tau phosphorylation at Ser396 observed
after 4-week or 1-week diet. As a positive control, western blot
analyses of tau phosphorylation at Ser396 were performed in
STZ-treated rats showing increased levels of phosphorylated tau
in the STZ model using this method as well (Supplementary
Figure 1). These results demonstrate that -in contrast to the
STZ model- the fcHFHS diet model does not induce tau
phosphorylation.

FIGURE 2 | Tau phosphorylation in diabetic rats. Sagittal brain sections of control rats (con), rats on 10-weeks fcHFHS diet and STZ-treated rats were stained for

tau using the AT8 antibody. Representative immunohistochemical images of the cortex are shown (A). Tau phosphorylation was observed in STZ-treated rats, but no

positive reactivity was found in the animals on the fcHFHS diet. Western blot analyses of hippocampus protein lysates of animals on fcHFHS diet for 4 weeks (B) or 1

week (C) did not show an increase in tau Ser396 phosphorylation (p-tau) compared to control animals on standard chow diet (con). Quantification of western blot is

presented as mean ± SEM of n = 6 animals per group.
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The differential effects of the STZ treatment and the
fcHFHS diet on tau phosphorylation provides the opportunity
to study whether neuroinflammation is inextricably linked to
increased tau phosphorylation. Inflammation has been associated
with the progression and peripheral complications of both
T1DM and T2DM (King, 2008; Gustafson, 2010; Vykoukal
and Davies, 2011). It is not known whether this is associated
with an inflammatory response in the brain as well, therefore,
we investigated neuroinflammation in the cortex and the
hippocampus in both models. IBA-1 staining was performed
to study the morphology of microglia. Reactive microglia are
clustered and characterized by shorter and thicker processes.
We did not observe a difference in microglial morphology
in the brains 20 days after STZ injection (Figure 3A) nor
did we observe a difference in microglial morphology in
animals after a 10-week fcHFHS diet compared to standard
chow diet (Figure 3B). Therefore, the cortex and hippocampus
did not show differences in reactive microglia. To exclude
that a moderate neuroinflammatory response is induced
cyclooxygenase-2 (COX-2) was studied. COX-2 is upregulated
in activated microglia and dynamically regulated by pro-
inflammatory signals (Minghetti et al., 1999). Western blot
analyses of COX-2 in STZ-treated animals (Figures 4A–C)
and in animals after 4-weeks fcHFHS diet (Figures 4E–G)
did not show upregulation of COX-2 in the cortex and the
hippocampus. Finally, glial fibrillary acidic protein (GFAP) was
studied as marker for reactive astrocytes. Also GFAP levels
in STZ-treated animals (Figures 4A,B,D) and in animals after
4-weeks fcHFHS diet (Figures 4E,F,H) were not increased in
the cortex and the hippocampus. A 4-week fcHFHS diet even
resulted in a significant decrease of GFAP levels. These data
demonstrate that neuroinflammation is not a complication of
diabetes in brain areas affected in AD. Moreover, increased tau
phosphorylation can occur independently of neuroinflammation
in insulin deficient and insulin resistant animal models.

DISCUSSION

The present study demonstrates absence of reactive microglia
and increased levels of GFAP and COX-2 in the hippocampus
and the cortex of two distinct diabetic animal models. This
indicates that DM does not directly lead to neuroinflammation
in AD-affected brain areas. An increased level of endogenous tau
phosphorylation was observed in STZ-treated rats demonstrating
that neuroinflammation is not a prerequisite for diabetes-
induced tau phosphorylation. The absence of increased tau
phosphorylation in our fcHFHS diet model is in accordance
with the literature (Table 1). Other studies using a high-fat
diet also did not observe an increased level of endogenous tau
phosphorylation (Moroz et al., 2008; To et al., 2011; Becker
et al., 2012; McNeilly et al., 2012; Leboucher et al., 2013; Ramos-
Rodriguez et al., 2013). The studies that did observe diet-induced
tau phosphorylation, used a tau transgenic mouse or combined
the diet with a STZ treatment at the end of the experiment to
mimic the hyperglycemic state of T2DM (Zhang et al., 2010a;
Leboucher et al., 2013; Yang et al., 2013). Only one study using
a high-fat diet with hyperglycemia levels to the extent observed

FIGURE 3 | No reactive microglia in diabetic rat cortex. IBA-1

immunohistochemistry was performed on sagittal brain sections of rats 20

days after injection of citrate buffer (con) or STZ (A) and of rats on a 10-week

standard chow diet (con) or fcHFHS diet (B). Representative images of the

cortex are showed of n = 9 animals per diet group and n = 6 animals per

injected group. No difference in microglial morphology is observed compared

to control group either in STZ-treated rats or in rats on fcHFHS diet.

in STZ-induced animals and one study with a high-fat and
high-cholesterol diet for 2 months reported an increased level
of endogenous phosphorylated tau (Zhang et al., 2010b; Bhat
and Thirumangalakudi, 2013). Overall, this suggests that insulin
resistance due to a high-caloric diet is not sufficient to induce
tau phosphorylation. Nevertheless, the observation that both
diabetic models regardless of tau phosphorylation showed no
neuroinflammation indicates that neuroinflammation is not the
mechanistic trigger to induce tau phosphorylation in the diabetic
brain.

Inflammation was reported in the hypothalamus of STZ-
treated animals and animals on a high-caloric diet (Luo
et al., 2002; Thaler et al., 2012). Microglial activation in the
hypothalamus, particularly in the arcuate nucleus, is already
observed after 1 day. The permeable blood brain barrier of
this area may explain the neuroinflammatory response whereas
other brain areas are less accessible for influences from the
periphery (Davidson et al., 2012). Indeed, bypassing of the
blood brain barrier by direct intracerebroventricular injection
of STZ results in glial activation and neuroinflammation in
the hippocampus and the cortex (Prickaerts et al., 1999; Chen
et al., 2013). This suggests that the adverse effects of STZ
resulting in neuroinflammation do not reach the AD-affected
areas after intraperitoneal STZ injection. Finally, some studies
show increased glial activation in the hippocampus or the cortex
after prolonged treatment. One study showed only astrocytic
activation in the cortex after 21-weeks of 41%-fat diet and
extensive neuroinflammation after 21-weeks of 60%-fat diet
(Pistell et al., 2010). In addition, increased astrocytic reactivity
was found in the hippocampus of mice 4-weeks after a single
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FIGURE 4 | No increased COX-2 and GFAP levels in diabetic rat cortex or hippocampus. Western blot analyses of protein lysates of STZ-treated animals

(A–D) and animals on 4-week fcHFHS diet (E–H) of the hippocampus (Hippo) (A,E) and cortex (B,F) were performed. Quantification of COX-2 levels in STZ model (C)

and diet model (G) did not show a difference compared to the control. Quantification of GFAP levels in STZ-treated animals did not show a change (D). GFAP levels

after 4-week diet even showed a decrease (H). Quantification of western blot is presented as mean ± SD of n = 5 or 6 animals per group. (*p < 0.01).

intraperitoneal STZ injection (Saravia et al., 2002). This indicates
that neuroinflammation in AD-affected brain areas upon diet
and STZ treatment occurs only upon prolonged and extensive
treatment. Since tau phosphorylation is already observed 20 days
after STZ treatment, neuroinflammation is also unrelated to
increased phosphorylated tau levels in these studies.

Although we demonstrate that neuroinflammation is not a
prerequisite for increased tau phosphorylation, our data do not
exclude that peripheral inflammation could have an effect on the
brain resulting in increased tau phosphorylation independent
of neuroinflammation. In addition, DM may alter the
neuroinflammatory response or even trigger neuroinflammation
after a priming stimulus and thus facilitate AD pathology.
As mentioned above there is a body of evidence to suggest
that neuroinflammation plays a role in the progression of AD
(Hoozemans and O’Banion, 2005; Bertram et al., 2008; Combs,
2009; Harold et al., 2009; Lambert et al., 2009; Okello et al., 2009;
Jonsson et al., 2013). Interestingly, in an AD animal model for
Aβ pathology neuroinflammation occurred after the increase
of Aβ levels, but before the onset of plaque formation (Hanzel
et al., 2014). Indeed, neuropathological and experimental studies
demonstrate that Aβ can activate the immune system including
the pro-inflammatory cytokine cascade (Eikelenboom et al.,
2012; Heneka et al., 2014). In addition, in transgenic animals
modeling tau pathology neuroinflammation was observed after
initiation of tau pathology and in turn, tau phosphorylation
was exacerbated by lipopolysacharide injections into the
brain (Zilka et al., 2009; Lee et al., 2010). This indicates that

neuroinflammation is a secondary response upon increased Aβ

and phosphorylated tau. Subsequently, neuroinflammation can
increase Aβ production and tau phosphorylation resulting in a
vicious cycle that accelerates AD pathology. This is in accordance
with our observations in the T1DM model, which mimics the
early phase of tau pathology and shows no neuroinflammation.

As neuroinflammation is not the trigger for increased
tau phosphorylation the question remains which mechanism
induces endogenous tau phosphorylation in the diabetic brain.
Interestingly, dysfunction in insulin signaling has been reported
in post-mortem AD brain material and in animal models of AD
(Steen et al., 2005; Lester-Coll et al., 2006; de la Monte, 2009;
Moloney et al., 2010; Talbot et al., 2012). Since increased tau
phosphorylation was not observed in both the STZ model and
fcHFHS diet model, insulin deficiency and insulin resistance may
have a differential effect on tau phosphorylation. In addition,
it should be mentioned that the STZ model has extreme
hyperglycemia to the extent of T1DM that may contribute to tau
phosphorylation whereas high-caloric diet models show slight
hyperglycemia not comparable with the final state of T2DM.
Finally, we previously reported increased tau phosphorylation
upon metabolic stress in a physiological hypometabolic model
in vivo indicating that also metabolic stress in DM could be the
trigger to induce tau phosphorylation (van der Harg et al., 2014).
Further research is needed to better understand the differences of
insulin deficiency and insulin resistance on tau phosphorylation
and to find the underlying mechanism for diabetic-induced tau
phosphorylation.
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In conclusion, our data demonstrate that increased tau
phosphorylation occurs independently of neuroinflammation.
Eliminating neuroinflammation as causal factor facilitates further
elucidation of the complex connection between DM and AD and
helps to put the multiple underlying mechanisms contributing
to AD in an integrated framework (van Dijk et al., 2015). Since
the incidence of both DM and AD is increasing due to the aging
population, better understanding of the connection between
these diseases is crucial. Further research is necessary to discover
the mechanistic trigger for increased tau phosphorylation in the
diabetic brain.
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