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Introduction
The incidence of type 2 diabetes mellitus (T2DM) is increas-
ing worldwide because of obesity, a sedentary lifestyle, and 
widespread senescence.1 T2DM is associated with various 
chronic complications (eg, neuropathy, nephropathy, and retin-
opathy), and macrovascular complications (eg, cardiovascular 
heart disease, stroke, and peripheral artery disease), all of which 
increase mortality.2

Various classes of antidiabetic drugs have been developed to 
treat T2DM. Most of the researches thus far have been focused 
on the development of incretin-based therapies, which have 
become widely used treatment options in clinical practice. The 
2 types of incretin-based therapies are glucagon-like peptide 
(GLP)-1 receptor agonists, and inhibitors of the incretin-
degrading enzyme dipeptidyl peptidase-4 (DPP-4).3

Since the first DPP-4 inhibitor was approved to treat T2DM 
in 2006, 10 types of DPP4 inhibitors have become available 
worldwide.4 DPP-4 inhibitors lower blood glucose levels by 
blocking the degradation of active GLP-1 secreted from intesti-
nal L cells and enhancing meal-stimulated insulin secretion from 
pancreatic β-cells.5,6 DPP-4 inhibitors also have various non-
glycemic actions because of their ubiquitous distribution and 
numerous substrates/ligands.7,8 In particular, recent studies have 
revealed the protective effect of DPP-4 inhibitors against vascu-
lar senescence.9-11 In this article, we review the non-glycemic sys-
temic actions of DPP-4 inhibitors beyond glycemic homeostasis, 
including and anti-aging effect on vascular endothelial cells, and 
discuss future clinical implications of these actions.

Dipeptidyl Peptidase-4
DPP-4, also known as T-cell activation antigen cluster of dif-
ferentiation (CD)-26, or as the adenosine deaminase (ADA)-
binding protein was first discovered in 1966.12-15 This unique 

aminopeptidase is a member of the serine peptidase/prolyl oli-
gopeptidase gene family subclassified by structure and function 
into membrane-bound peptidase, fibroblast activation protein/
seprase (DPP-8 and DPP-9), nonenzymatic members (DPP-6 
and DPP-10), and prolyl endopeptidase.16 DPP-4 is a 100-
kDa transmembrane peptidase that cleaves the N-terminus of 
peptides containing proline or alanine at the penultimate posi-
tion with high selectivity.17 DPP-4 is present soluble form in 
plasma, seminal fluid, cerebrospinal fluid, bile, and synovial 
fluid; it is present in membrane-bound form in the kidneys, 
intestinal mucosa, hepatocytes, and vascular endothelial cells.18 
DPP-4 is expressed on T-cells, B-cells, natural killer cells, sub-
sets of macrophages, and hematopoietic progenitor cells; it also 
acts as a modulator of T-cell proliferation.19

DPP-4 Inhibitors and GLP-1 Degradation
The rapid degradation of native GLP-1 by DPP-4 is inhibited 
when a DPP-4 inhibitor is administered, thereby increasing 
the plasma level of active GLP-1. Active GLP-1 is secreted 
from L-cells in the distal portion of the intestine and circulates 
as GLP-1(7-37) and GLP-1(7-36)NH2; these peptides are 
cleaved by DPP-4 within minutes to generate GLP-1(9-37) 
and GLP-1(9-36)NH2, respectively.20 GLP-1(9-36)NH2 is 
the predominate circulating form of DPP-4-cleaved GLP-1 
and dose not perform typical actions of intact GLP-1, such as 
enhancing glucose-stimulated insulin secretion and suppress-
ing glucagon secretion, appetite, and gastric emptying.21,22 
Rather, GLP-1 (9-36) and GLP-1 (28-36) are cleaved from 
GLP-1 by DPP-4; they exert beneficial cardiovascular func-
tions, such as improving left ventricular function, vasodilation, 
and improving intrahepatic lipid metabolism.23-25 Thus, the 
inhibition of DPP-4 cancels the positive effects of the GLP-1 
degradation products, and the actual effect of inhibiting DPP-4 
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on the beneficial effects of GLP-1 degradation products on the 
cardiovascular system is unknown.

The plasma level of intact GLP-1 increases in DPP4−/− 
mice. In contrast to control group, genetic inactivation of 
DPP-4 leads to reduced N-terminal degradation of GLP-1 
and increased plasma level of intact GLP-1, increased levels of 
insulin, and improved glucose tolerance in DPP4−/− mice group 
in vivo study.26 Furthermore, circulating plasma DPP-4 levels 
in patients with T2DM are significantly higher (approximately 
33%) than in controls, and the inhibition of circulating DPP-4 
leads to increases in the concentration of active GLP-1 and 
decreases glycated hemoglobin in patients with T2DM.27,28 
These gliptins are orally available; neutral or minimally active 
with respect to body weight, blood pressure, and lipid profile; 
and are well tolerated with a low risk of hypoglycemia.29,30

The Pleiotropism of DPP-4 Inhibitors
Numerous endocrine peptides, chemokines, and neuropeptides 
contain an alanine or proline at the N-terminus start site and 
can be DPP-4 substrates. Therefore, many biological actions of 
DPP-4 are not related to the control of glucose homeostasis 
because of variety of substrates and widespread expression of 
DPP-4.31 This article focuses on the pleiotropic actions of 
DPP-4 inhibitors, including their strong beneficial effects 
against stress induced accelerated senescence (SIAS) of vascu-
lar endothelial cells, and the possible clinical implications.

DPP-4 inhibition and stromal cell-derived factor 
(SDF)-1α, brain natriuresis protein (BNP), 
Neuropeptide Y (NPY), and peptide YY (PYY)

SDF-1α, which is alternately derived from SDF-1β by a sin-
gle SDF-1 gene, is widely expressed in numerous cell types 
and tissue 32,33; its expression and secretion are often induced 
by cellular damage.34 SDF-1α is cleaved by soluble or trans-
membrane DPP-4 into SDF-1α (3-67), thus inactivating its 
antiviral and chemotactic properties.35,36 Because the main 
role of SDF-1α and its receptor CXCR4 is to enhance migra-
tion of hematopoietic stem cells, bone marrow-derived 
endothelial progenitor cells are mobilized from the bone 
marrow into the blood stream in response to SDF-1α, which 
is released from damaged tissue.37,38 Therefore, the inhibition 
of DPP-4 activity reduces degradation of SDF-1α and poten-
tiates the SDF-1α/CXCR4 signaling pathway, resulting in 
greater hematopoietic progenitor cell mobilization to the 
ischemic injury site.37 In addition, administration of granulo-
cyte colony-stimulating factor (G-CSF) increases enzymatic 
cleavage of SDF-1α by DPP-4 in the bone marrow and gen-
erates a circulation/bone marrow SDF-1α gradient, which 
mobilizes stem cells into circulation.39,40 The combined strat-
egy of G-CSF and a DPP-4 inhibitor ameliorates vascular 
remodeling and wound healing after myocardial infarction via 
direct antiapoptotic effects on ischemic myocardium and 
indirect effects on enhancement of mobilizing stem cells 

from bone merrow which circulate to the damaged heart, 
where they homing via SDF-1α/CXCR4 signaling path-
way.37,41,42 Moreover, the DPP-4 inhibitor vildagliptin 
enhanced the wound closure rate over 12 weeks in patients 
with T2DM and complicated peripheral artery disease, com-
pared with controls.43 In another retrospective analysis, 
DPP-4 inhibitor users exhibited a lower risk of peripheral 
arterial disease and lower extremity amputation, compared 
with nonusers.44 Furthermore, the SDF-1α/CXCR4 signal-
ing pathway plays an important role in protecting kidney 
function by decreasing oxidative stress, ischemia, and fibrotic 
processes.45-47 Recently, Zhu et al48 revealed that DPP-4 inhi-
bition by DPP-4 inhibitor anagliptin enhances bone marrow-
derived hematopoietic stem cell activation and inflammatory 
cell production via an Adrβ3 (β3-adrenergic receptor)/
CXCL12 (C-X-C motif chemokine 12) signal dependent 
mechanism in mice under chronic restrain stress.

Secretion of BNP increases in patients with heart failure, 
thus promoting natriuresis. BNP is synthesized as a 134-amino 
acid precursor protein (preproBNP) that is subsequently pro-
cessed into proBNP, active BNP (1-32), and NT-proBNP 
(1-76).49 All of these forms have a proline in the second 
N-terminal position; therefore, they can be DPP-4 substrates. 
Low levels of BNP are observed in patients with obesity, insu-
lin resistance, and diabetes, which may contribute to the 
increased cardiovascular risk in these populations.50 However, 
no significant changes in BNP or NT-proBNP levels are 
observed after treatment with linagliptin or sitagliptin in 
patients with T2DM or healthy subjects, respectively.51,52 
Further studies are needed to evaluate the effects of inhibiting 
DPP-4 and lowering BNP on subsequent cardiovascular 
protection.

NPY and PYY are a members of the pancreatic polypeptide 
family that exert opposing actions on the control of food 
intake.53 Inhibition of DPP-4 activity results in changes in 
receptor affinities of DPP-4-cleaved NPY (3-36) and PYY 
(3-36) from the Y1 receptor to the Y2 and Y5 receptors.54,55 
Although the effects of inhibiting DPP-4 on NPY and PYY 
have been extensively studied in experimental models, inte-
grated in vivo responses to these peptides after DPP-4 inhibi-
tor therapy are not fully evaluated and further studies are 
needed.

DPP-4 inhibition and immune system

DPP-4 has been associated with the control of lymphocytes 
and immune function, cell migration, viral entry, cancer metas-
tasis, and inflammatory reactions.56 Two mechanisms used by 
DPP-4/CD26 to exert its effects on the immune system: one is 
the enzymatic activity of DPP-4, which degrades a targeted 
substrate into inactive and active fragments with subsequent 
actions on the immune system; the other is DPP-4/CD26, 
which acts as a potent co-stimulatory factor of T-cell prolifera-
tion and signal transduction.57
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DPP-4 degrades and regulates the activities of many 
cytokines, such as fibroblast growth factor 2, interleukin-3, 
GM-CSF, G-CSF, and erythropoietin. These cytokines are 
truncated by DPP-4, which reduces their activity and func-
tion.58-60 Inhibition of DPP-4 activity is associated with 
changes in tumor growth, enhanced metastasis, and invasive 
behavior.61,62 The interaction between DPP-4 and adenosine 
deaminase (ADA) is regulated in a more complex manner by 
factors/immune cells, rather than direct degradation. The 
ADA/DPP-4 interaction is a co-stimulatory signal during 
T-cell receptor signaling, which results in enhanced secretion 
of interferon-γ and tumor necrosis factor-α. However, the 
functional importance of the ADA/DPP-4 interaction remains 
incompletely understood.

DPP-4 inhibition and stroke

DPP-4 inhibitors reduce brain damage and improve functional 
parameters after stroke in various animal models via several 
mechanisms including reduction of inflammation, endothelial 
leakage and excitotoxicity, oxidative stress, and apoptosis and 
neuronal damage, independent of their control of glucose 
homeostasis.63-66 Although the effects of DPP-4 inhibitors on 
the development of cardiovascular disease (including stroke) 
and death are neutral,67 the efficacies of DPP-4 inhibitors on 
functional outcomes after stroke have not been fully studied.68 
The DPP-4 substrate, SDF-1α, is an important factor during 
neovascular remodeling after stroke in the brain.69-72 Chiazza 
et al73 showed that administrating the DPP-4 inhibitor lina-
gliptin specifically increases active SDF-1α (but not GIP or 
GLP-1) in the brain, and linagliptin improves functional out-
comes of stroke in a manner dependent on the SDF-1α/
CXCL4 signaling pathway. Further studies are needed deter-
mine the mode of action of DPP-4 inhibitors in the brain and 
the effects of DPP-4 on functional recovery after stroke.

Results of cardiovascular outcome trials (CVOT) 
and other clinical trials

DPP-4 inhibitors truncate numerous substrates, which are car-
dioprotective and immunoprotective. Thus, DPP-4 inhibitor 
treatment may have a favorable effect preventing and recover-
ing cardiovascular damage after ischemic insult through glyce-
mic control and direct regulation of the cardiovascular system. 
However, large CVOTs of the DPP-4 inhibitors saxagliptin, 
alogliptin, sitagliptin, and linagliptin have failed to show an 
association between DPP-4 inhibitor use and reduced risk of 
major adverse cardiovascular events (MACEs).

The Saxagliptin Assessment of Vascular Outcomes 
Recorded in Patients with Diabetes Mellitus-Thrombolysis in 
Myocardial Infarction (SAVOR-TIMI 53) study recruited 
16,492 patients with T2DM who had a history of or were at 
risk for cardiovascular events. The study was designed to detect 
the superiority of saxagliptin over placebo for mean interval of 

2.1 years.74 Although the rate of the composite primary end-
point was not different (73% and 72% of patients taking saxa-
gliptin and placebo, respectively), saxagliptin was associated 
with a significant increase in the hospitalization rate for heart 
failure.

The Examination of Cardiovascular Outcomes with 
Alogliptin versus Standard of Care (EXAMINE) trial included 
5,380 patients with T2DM who had experienced recent acute 
coronary syndrome requiring hospitalization within 15 to 
90 days; it compared the effect of alogliptin with placebo.75 
During a median 18-month follow-up period, alogliptin did 
not increase the MACE rate, suggesting safety and non-inferi-
ority over placebo.

The Trial Evaluation Cardiovascular Outcomes with 
Sitagliptin (TECOS) study was designed to investigate the 
superiority of sitagliptin, compared with placebo; it included 
14,671 patients with T2DM who had cardiovascular disease.76 
Sitagliptin did not appear to increase the risk of MACE or 
hospitalization for heart failure during a median follow-up 
interval of 3.0 years. However, the study only demonstrated the 
noninferiority of sitagliptin.

No significant difference in the risk of cardiovascular events 
between a DPP-4 inhibitor and placebo or comparator 
groups—was observed in a large meta-analysis of 69 trials.77 
Another meta-analysis showed a similar safety profile of 
DPP-4 inhibitors, compared with placebo, except for weak evi-
dence indicating an increased risk of heart failure.78

The Cardiovascular and Renal Microvascular Outcome 
Study with Linagliptin in Patients with Type 2 Diabetes 
Mellitus (CARMELINA) trial was a randomized, double-
blind, placebo-controlled study that compared linagliptin with 
placebo in patients with T2DM who had high cardiovascular 
risk or existing chronic kidney disease.79 This study was the 
only CVOT designed to demonstrate cardioprotection focused 
on patients with diabetes who had increased CV risk; however, 
linagliptin proved only to be non-inferior to placebo.

The Cardiovascular Outcome Study of Linagliptin Versus 
Glimepiride in Patients with Type 2 Diabetes (CAROLINA) 
study was designed to evaluate the cardiovascular superiority of 
the DPP-4 inhibitor linagliptin compared with the sulfonylu-
rea glimepiride.80-82 Although, sulfonylurea was associated 
with an increased risk for hypoglycemia, no significant differ-
ence in cardiovascular outcomes was observed during this 
head-to-head active comparative study.

No CVOT has been performed for vildagliptin, but the 
Vildagliptin in Ventricular Dysfunction Diabetes (VIVID) 
trial was designed to determine the effect of vildagliptin on left 
ventricular ejection fraction in patients with T2DM who had 
heart failure.83 No significant change in left ventricular ejection 
fraction was observed during 1 year of treatment.

Although the results of pooled analyses and meta-analyses 
of previous, smaller trials using DPP-4 inhibitors have sug-
gested a reduction in the risk of MACEs with DPP-4 inhibitor 
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treatment, the results of major CVOTs did not reveal increased 
cardiovascular safety. This discrepancy may be related to differ-
ences in study design (CV outcome vs CV safety trials) and 
patient characteristics (selected for high CV risk, typically 
older with longer duration of diabetes, greater impairment of 
renal function, higher comorbidity).84 In addition, longer dura-
tion of CV safety trial increases the risk for missing data and 
loss of beneficial effect of DPP4 inhibitors.85-87

Protective effects of DPP-4 inhibitors against 
vascular disease in SIAS

Cellular senescence is classically characterized as irreversible 
cell cycle arrest. Cells alter gene expression, resulting in the 
production of proinflammatory, and matrix-degrading mole-
cules known as the senescent-associated secretory phenotype 
(SASP).88,89 Cells can exhibit SIAS because of DNA damage, 
oxidative stress, oncogenic insults, and chemotherapeutic-
induced toxicity.90 The potential involvement of cellular senes-
cence in aging and age-related disorders has been supported, 
such as in cardiovascular diseases.91,92 Senescent vascular 
endothelial cells accelerate the formation and progression of 
plaque, and vascular disease development through chronic 
inflammation and tissue remodeling.93,94 Thus, senolytics (ie, 
bioactive compounds that selectively target and eliminate 
senescent cells) are emerging as a new treatment modality for 
cardiovascular disease.95,96

DPP-4 inhibitors have direct cardiovascular effects, such as 
the capacity to attenuate vascular inflammation, improve lipid 
metabolism and endothelial function, and reduce of oxidative 
stress.8,97-99 We found that inhibition of DPP-4 by anagliptin 
reduces the SIAS of human vascular endothelial cells 
(HUVECs) under oxidative or glucolipotoxic stress by reduc-
ing endoplasmic reticulum stress, reactive oxygen species gen-
eration, and nucleotide-binding oligomerization domain-like 
receptor protein 3 (NLRP3) inflammasome signal transduc-
tion.100 Treatment of Zucker diabetic fatty rats with vildaglip-
tin reduces reactive oxygen species-induced senescence and 
DNA damage through the cAMP/protein kinase A (PKA) 
signaling pathway.101 In other studies, inhibition of DPP-4 has 
been shown to prevent vascular aging in mice under chronic 
psychological stress by modulating oxidative stress and inflam-
mation.102 Chen et al10 revealed that the inhibition of DPP-4 
improves endothelial senescence by activating the AMP-
activated protein kinase/NDA-dependent deacetylase sirtuin-
1(SIRT-1)/nuclear factor erythroid-2-related factor 2 (Nrf2) 
signaling pathway. A study in apo E-deficient mice under 
chronic stress condition, DPP-4 inhibition attenuated vascular 
aging mediated by increased GLP-1 and adiponectin.103 In 
immobilized mice, DPP-4 inhibition improved FeCl3-induced 
thrombosis of carotid artery via the improvement of 
ADAMTS13 and oxidative stress.104 DPP-4 inhibitor gemi-
gliptin attenuates the proliferation and migration of vascular 

smooth muscle cells VSMCs via p62–Keap1–Nrf2 pathway in 
mouse carotid arteries which enhanced neointimal hyperplasia 
induced by ligation injury.105 In a study of adenosine-induced 
chronic kidney disease model mice, DPP-4 inhibitor gemiglip-
tin attenuated vascular calcification and osteogenic trans-dif-
ferentiation in vascular smooth muscle cells through various 
mechanisms including downregulation of PiT-1 expression 
and suppression of reactive oxygen species generation, phos-
pho-PI3K/AKT, and the Wnt signaling pathway.106 Novel 
DPP-4 inhibitor, evogliptin attenuates vascular calcification by 
preventing the insulin-like growth factor-1 (IGF-1) inactiva-
tion and potentiating IGF-1 receptor-dependent signaling 
pathway.107 In a study of calcific aortic valve disease (CAVD) 
animal model, evogliptin attenuated valvular calcification and 
CAVD progression via inhibiting inflammatory cytokine 
expression, fibrosis, and calcification.108 Taken together, the 
findings thus far indicate that DPP-4 inhibitors can be used 
novel therapeutic target or treatment strategies for stress-
related vascular disorders, although further studies are needed 
for clinical application.

DPP-4 Inhibitors and COVID-19
It is known that underlying diabetes, especially T2DM is recog-
nized as a risk factor for developing the more severe form of 
coronavirus disease 2019 (COVID-19) and worse disease out-
comes, including high mortality.109-111 Recently, it raised the 
possibility that the DPP-4 is recognized as coronavirus receptor 
protein to intracellular entry of severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), although angiotensin-
converting enzyme 2 (ACE2) is recognized as the main 
receptor.111-113 In a study using human bronchial epithelial cells, 
there was no blocking effect on the entry of coronavirus into cells 
with DPP-4 inhibitors sitagliptin, vildagliptin, or saxagliptin.114

As mentioned above, DPP-4 has not only an important role 
in glucose homeostasis, but also central role in the immune sys-
tem as a marker of activated T lymphocytes and regulator of 
numerous chemokines. Furthermore, DPP-4 inhibitors have 
anti-inflammatory properties and vascular protective effects 
though various mechanisms such as reducing oxidative stress 
and endoplasmic reticulum stress. These finding indicates a 
possibility of DPP-4 as a potential treatment strategy of 
SARS-CoV-2 infection.115 However, there have been no clear-
cut conclusions about the role of DPP-4 inhibitors on the 
clinical outcomes associated with SARS-CoV-2 infection.116 
In a multicenter, retrospective, case-control study in Northern 
Italy hospitals including 338 patients with COVID-19 under-
lying T2DM, sitagliptin treatment during hospitalization was 
associated with reduced mortality and improved clinical out-
comes.117 In another single center, case series involving 
COVID-19 patients revealed the association between DPP-4 
inhibitor and lower risk of mortality.118 On the other hand, 
DPP-4 inhibitor treatment was associated with worse outcome 
in 27 patients with T2DM treated with DPP-4 inhibitors than 
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in 49 treated with other anti-diabetic agents.119 Thus, prospec-
tive randomized clinical trials (RCTs) are necessary, and cur-
rently at least 3 parallel-group RCTs investigating the potential 
survival benefits of DPP-4 inhibitors diverse populations with 
T2DM and COVID-19.

Conclusions and Future Perspectives
We schematically summarized the endocrine pathways that 
change during DPP4 inhibition in response to selective DPP4 
inhibitors in Figure 1. DPP-4 inhibitors have been widely used 
to treat T2DM because they have good safety and tolerability 
profiles with low incidences of adverse events, such as hypogly-
cemia. However, evidence from recent CVOTs has produced a 
paradigm shift in the guidelines and recommendations. The 
published ADA/EASD 2019 Consensus Report Update98 
emphasized the importance of treating patients with T2DM 
and high risk of atherosclerosis with a GLP-1 receptor agonist 
or a sodium-glucose cotransporter 2 inhibitor. Nevertheless, 
DPP-4 inhibitors remain important in diabetes treatment 
because of their safety and pleiotropic effects unrelated to gly-
cemic control. We wish to further elucidate the mechanisms of 
the pleiotropic effects of DPP-4 inhibitors and demonstrate 
whether the actions confirmed in preclinical studies can be 
reproduced in clinical practice. In particular, additional research 
is needed regarding the development and utilization of DPP-4 
inhibitors as therapeutic target or modality against SIAS.
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