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Abstract

Introduction: This study sought to determine whether adding cognition to a model

with Alzheimer’s disease biomarkers based on the amyloid, tau, and neurodegener-

ation/neuronal injury—AT(N)—biomarker framework predicts rates of cognitive and

functional decline in older adults without dementia.

Methods: The study included 465 participants who completed amyloid positron emis-

sion tomography, cerebrospinal fluid phosphorylated tau, structural magnetic reso-

nance imaging, and serial neuropsychological testing. Using the AT(N) framework and

a newly validated cognitive metric as the independent variables, we used linear mixed

effectsmodels to examine a4-year rate of change in cognitive and functionalmeasures.

Results: The inclusion of baseline cognitive status improved model fit in predicting

rate of decline in outcomes above and beyond biomarker variables. Specifically, those

withworse cognitive functioning at baseline had faster rates ofmemory and functional

decline over a 4-year period, evenwhen accounting for AT(N).

Discussion: Including a newly validated measure of baseline cognition may improve

clinical prognosis in non-demented older adults beyond the use of AT(N) biomarkers

alone.
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1 INTRODUCTION

In 2018 the National Institute on Aging and Alzheimer’s Association

(NIA-AA) workgroup proposed a research framework for biologically
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defining Alzheimer’s disease (AD) using a biomarker-based classifica-

tion scheme: amyloid, tau, and neurodegeneration/neuronal injury, or

“AT(N).”1 This research framework marked a shift from prior clinical

symptom staging (e.g., preclinical, mild cognitive impairment [MCI],
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dementia) approaches that used AD biomarkers to support likely eti-

ology (per the 2011 NIA-AA staging guidelines),2–4 to a classification

scheme based on biomarkers irrespective of clinical symptoms, cit-

ing evidence that AD pathologic changes may precede clinical symp-

toms/cognitive changes by decades.5 Using this framework, results

from a recent study6 showed that the inclusion of amyloid positron

emission tomography (PET), tauPET, and cortical thickness (N) resulted

in a small but statistically significant improvement in prediction of

memory decline in 480 non-demented older adults compared to a

model with cardiovascular, metabolic, and apolipoprotein E (APOE)

data only. One notable limitation of this studywas the absence of base-

line cognitive status in the analyses, thus potentially overestimating

the incremental prognostic value of AT(N) biomarkers. Given recent

evidence that subtle cognitive changes may be detectable during or

prior to the preclinical stage of amyloid accumulation,7,8 integrating

cognitive test performance with the AT(N) research framework may

add prognostic value above and beyond biomarkers alone.

The aim of the present study was to determine the incremental

valueof addingbaseline cognition to theAT(N) framework inpredicting

longitudinal rates of cognitive and functional decline in non-demented

older adults from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI).

2 METHODS

Data used in the preparation of this article were obtained from the

ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003 as

a public–private partnership, led by Principal Investigator Michael W.

Weiner, MD. The primary goal of ADNI has been to test whether serial

magnetic resonance imaging (MRI), PET, other biological markers, and

clinical and neuropsychological assessment can be combined to mea-

sure the progression of mild cognitive impairment (MCI) and early AD.

2.1 Participants

A detailed description of the enrollment criteria for ADNI has been

previously described.9 Briefly, participants met the following crite-

ria at enrollment: (1) 55–90 years old, (2) ≥ 6 years of education or

work-history equivalent, (3) Hachinski Ischemia Scale< 5, (4) Geriatric

Depression Scale < 6, (5) adequate vision and hearing to perform neu-

ropsychological tests, (6) generally good health and without history of

significant head trauma or neurologic disease, (7) stable on permitted

medications, (8) reliable study partner, and (9) fluent in either English

or Spanish.

Our study included 465 older adults without dementia, defined as a

ClinicalDementiaRating (CDR) global score<1,whohadbaseline neu-

ropsychological testing, structural MRI, florbetapir amyloid PET, and

cerebrospinal fluid (CSF) data. Dependent variables measured longi-

tudinally were ADNI Memory and Executive Functioning composite

scores,10,11 Alzheimer’sDiseaseAssessment Scale–Cognitive Subscale

(ADAS-Cog-13), Functional Activities Questionnaire (FAQ), and CDR

HIGHLIGHT

∙ A newly validated cognitive metric of predicted versus

measured cognitive test scores (DELTA score) at baseline

improved prediction of rates of memory decline beyond

biomarker data in non-demented older adults over a 4-

year period.

∙ DELTA also improved prediction of functional decline

beyond biomarker data.

∙ Considering baseline cognitive function may improve cog-

nitive and functional prognosis in non-demented older

adults beyond biomarker data.

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using conventional (e.g., PubMed) sources and meet-

ing abstracts and presentations. Previous research has

demonstrated the application of the AT(N) framework

proposed in 2018 by the National Institute on Aging-

Alzheimer’s Association. Building on this research we

examined the contributions of cognition in the amy-

loid, tau, and neurodegeneration/neuronal injury (AT[N])

framework.

2. Interpretation: Our findings led to a greater understand-

ing of how both baseline cognitive and biological mark-

ers can independently improve prognosis in older adults

at risk of dementia.

3. Future directions: The findings demonstrate the utility

of baseline cognition using a newly validated cognitive

measure in improving prognosis in older adults at risk for

dementia. This article proposes a framework for explor-

ing these models in more demographically and clinically

diverse samples.

Sum of Boxes (CDR-SB) for ADNI Baseline, Year 1, Year 2, Year 3, and

Year 4. See Section 2.3 for further details on dependent variable mea-

sures.

2.2 Independent variables

2.2.1 Cognitive status

We used a newly validated measure of cognition referred to as

the “DELTA” (Discrepancy-Based Evidence for Loss of Thinking Abil-

ities) score. The score was derived from and validated within the

ADNI sample.12 The DELTA score provides a composite metric of the
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discrepancy between predicted cognitive scores and measured cog-

nitive scores in memory, executive function, and language domains.12

Predicted scores were based on demographic factors (i.e., age, edu-

cation, sex) and estimated premorbid intellect based on word-reading

ability. Higher baseline DELTA scores (greater discrepancy) were asso-

ciated with faster rate of worsening functional status, higher PET-

amyloid beta (Aβ) standardized uptake value ratio (SUVR), and higher

CSF p-tau/CSF Aβ-42 ratio.12 Scores range from 0 to 15 with higher

scores suggesting greater evidence for cognitive decline.

Structural T1-weightedMR imaging

The details of ADNI MRI data acquisition and processing can be found

on ADNI’s website (adni.loni.usc.edu). Briefly, structural scans col-

lected at baseline and follow-up visits were motion corrected, skull-

stripped, segmented, and parcellated using FreeSurfer (version 5.1).

FreeSurfer-derived hippocampal volume was included as the marker

of neurodegeneration given its implication in early stages of AD (e.g.,

Braak stages I/II).13 Normalized hippocampal volume was created

by dividing absolute hippocampal volume by FreeSurfer-derived esti-

mated total intracranial volume and then multiplying the resulting

value by the intracranial volumemean of the sample.

Florbetapir PET

The18F-florbetapir tracerwasused toquantify corticalAβburdendur-
ing PET imaging. The details of data acquisition and processing ofADNI

florbetapir PET data are available on the ADNI website (adni.loni.usc.

edu); also see supporting information for more detail.

Cerebrospinal fluid

CSF biomarkers of AD were measured using Elecsys immunoassays

(adni.loni.usc.edu). Hyperphosphorylated tau (p-tau) was used as the

biomarker for tau.

Apolipoprotein E

All participants had APOE ε4 genotyping data available. APOE ε4 carri-

ers andnon-carriersweredeterminedbasedon thepresenceof at least

one ε4 allele. Of the 465 participants overall, 189 (40.6%) were ε4 car-

riers.

2.3 Dependent variables

2.3.1 ADNI memory and executive composite
scores

TheADNImemory composite (ADNI-MEM)10 includes sumof z-scores

from the following tests: Rey Auditory Verbal Learning Test (word list

learning trials, recall, and recognition), memory scores from the mod-

ified the Alzheimer’s Disease Assessment Acales (word list learning,

recall and recognition), Mini-Mental State Examination (word recall),

andWechslerMemory Scale–Revised LogicalMemory (immediate and

delayed recall trials). Higher ADNI-MEMscores indicate better perfor-

mances. The ADNI executive composite (ADNI-EF)11 is composed of

Wechsler Adult Intelligence Scale Revised (WAIS-R) Digit Symbol Sub-

stitution and Digit Span Backwards subtetsts, Trail Making Tests A and

B, Category Fluency, and Clock Drawing scores. Higher scores on this

measure indicate better performances. For more details on the psy-

chometric protocols for both the ADNI-MEM and ADNI-EF composite

scores, see adni.loni.usc.edu.

2.3.2 ADAS-Cog-13

ADAS-Cog-1314 is a version of the ADAS-Cog modified with the addi-

tion of a number cancellation task and a delayed free recall task. The

ADAS-Cog-13 is scored from 0 to 85, with lower scores indicating bet-

ter performance.

2.3.3 Clinical Dementia Rating15

The CDR is another assessment of everyday function and is a semi-

structured informant and patient interview. TheCDRglobal score clas-

sifies the severity of the patient’s impairment into one of five stages:

0 (normal), 0.5 (mildly impaired/MCI), 1 (mild dementia), 2 (moderate

dementia), 3 (severe dementia), though only participants with a CDR

Global Score of 0 or 0.5 were included at baseline. The CDR-SB pro-

vides a more granular score for patient functioning that ranges from

0 to 18, with low scores indicating better functional status.16 CDR-

SB ranges generally correspond with global score functional groups as

0= “normal,” 0.5–4.0=MCI, and> 4.0= “dementia.”16

2.3.4 Functional outcomes

The FAQ17 is an informant-based measure of the study participant’s

everyday functioning scored from 0 to 30 with lower scores indicat-

ing less difficulty performing instrumental activities of daily living func-

tioning.

2.4 Statistical analyses

Linear mixed effects (LME) modeling was used to examine the 4-year

longitudinal trajectories in five dependent variables (DVs): three of

cognition (ADNI-MEM, ADNI-EF, ADAS-Cog-13) and two of every-

day functioning (CDR-SB and FAQ). To account for overlap in the

cognitive measures included in the DELTA score and the ADNI-MEM

and ADNI-EF composites, we included the ADAS-Cog, CDR-SB, and

FAQ as outcome measures; these three measures are independent

of the measures included in the DELTA score and therefore ensure

that circularity in the specific measures was not driving any observed

findings related to the ADNI composite scores.

Our four independent variables (IVs) of interest are the three

biomarkers (i.e., amyloid-PET, CSF p-tau, and hippocampal volume) and

theDELTA score. Given recent evidence suggesting that dichotomizing

http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://adni.loni.usc.edu
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TABLE 1 Baseline sample characteristics

Mean (SD) or N Median (IQR) or % Range

Age 72.22 (6.87) 72.60 (67.75–77.05) 55–89

Education 16.28 (2.64) 16 (14–18) 9–20

Female 212 45.6% —

MMSE 28.38 (1.60) 29 (28–30) 23–30

Modified Hachniski score 0.62 (0.72) 1.00 (0–1) 0–4

APOE ɛ4 carrier 189 40.6% —

Amyloid-PET SUVR 1.19 (0.22) 1.09 (1.01–1.34) 0.84–2.03

CSF p-tau (pg/mL) 25.13 (12.99) 21.32 (16.47–30.42) 8–92

Hippocampal volume 7230.85 (1118.44) 7382.00 (6600.35–8123.4-8) 4214.30–10281.77

DELTA score 1.62 (2.24) 0.00 (0-3) 0–12

Memory composite 0.59 (0.69) 0.53 (0.10–1.08) −1.53–2.36

Executive composite 0.58 (0.88) 0.54 (−0.02–1.21) −2.01–2.99

ADAS-Cog-13 13.02 (6.37) 12 (8–17) 1–38

CDRGlobal Score of 0.5 335 72.0% —

CDR Sum of Boxes 1.05 (0.97) 1.00 (0–1.5) 0–4.5

Functional Activities Questionnaire 2.02 (3.43) 0.00 (0–3) 0-22

Abbreviations: ADAS-Cog, Alzheimer’s Disease Assessment Scale—Cognitive Subscale; APOE, apolipoprotein E; CDR, Clinical Dementia Rating; CSF, cere-

brospinal fluid; DELTA, Discrepancy-Based Evidence for Loss of Thinking Abilities; IQR, interquartile range; MMSE, Mini-Mental State Examination; n, num-

ber; PET SUVR, positron emission tomography standardized uptake value ratio; SD, standard deviation.

AD biomarkers (i.e., positive vs. negative status) may result in loss of

important prognostic information,18 we treated the three biomarker

variables as continuousmeasures. Allmodels adjusted for baseline age,

sex, education, and APOE ɛ4 carrier status. Variables were converted

to sample-based z-scores prior to analyses so that the parameter esti-

mates would be comparable. Given the possibility of both linear and

quadratic (i.e., accelerated) declines over time, both Visit and Visit2

were included asmain effects. Themodel fit was improvedwhen Visit2

was included as a main effect, but not when included in the interac-

tion terms, so interaction terms involving Visit2 were omitted from the

models. Intercept and slope were included as random effects and a

first-order autoregressive (AR [1]) repeated covariance structure was

used. Full informationmaximum likelihoodwasused to comparenested

models and to allow all available data to be included.

First, separate models were run examining the interaction of

time (Visit) with each of the three biological biomarkers (i.e., base-

line amyloid-PET, CSF p-tau, and hippocampal volume) and cognition

(DELTA score) to establish the independent contribution of each of

these four IVs on the rate of change of the five DVs across the 4-

year time frame. Next, the three biomarker × Visit interactions were

included in themodel together. Then, theDELTA×Visit interactionwas

added as a fourth interaction to themodel to determinewhether there

is addedutility of theDELTAscore for predicting change in the fiveDVs,

over and above the variance explained by baseline amyloid-PET SUVR,

CSF p-tau, and hippocampal volume.

Secondary analyses of all five models were run without including

the covariates (age, sex, education, and APOE status). The pattern of

results did not change and had a minimal impact on beta values; how-

ever, because some of the covariates did have significant effects in

the adjusted models, the results reported below are of the covariate-

adjustedmodels.

2.5 Data availability

ADNI data were retrieved from adni.loni.usc.edu. Data are available to

investigators in the scientific community who have been approved by

the ADNI Data Sharing and Publications Committee and who agree to

the terms of the ADNIData Use Agreement for purposes of replicating

procedures and results. Anonymized ADNI participant identification

numbers used in this article are available by request from any qualified

investigator.

3 RESULTS

Baseline sample characteristics are included in Table 1. Participants

had a mean age of 72 years and had a mean of 16 years of education.

On average, participants had global cognition that was in the normal

range and reported very few functional difficulties at baseline.

Differences in baseline sample characteristics (age, education, sex,

modified Hachinski Ischemic score, APOE ɛ4 status, global CDR score)

between participants who were missing (n = 189) or non-missing

(n = 276) at the Year 4 follow-up visit were examined. Analyses

revealed that only age differed between themissing (mean age=73.14

years, standard deviation [SD] = 6.65) and non-missing groups (mean

http://adni.loni.usc.edu
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TABLE 2 Independent contributions of amyloid, p-tau, hippocampal volume, and DELTA on rate of change

Memory Comp Executive Comp ADAS-Cog CDR-SB FAQ

β (SE) Δ -2LL β (SE) Δ -2LL β (SE) Δ -2LL β (SE) Δ -2LL β (SE) Δ -2LL

Amyloid x Visit −0.123

(0.011)***
97.35 −0.116

(0.014)***
65.45 0.162

(0.016)***
93.16 0.222

(0.021)***
100.87 0.167

(0.017)***
91.49

CSF p-tau x Visit −0.105

(0.012)***
68.78 −0.089

(0.014)***
38.01 0.149

(0.017)***
79.23 0.176

(0.022)***
59.74 0.164

(0.017)***
85.82

Hippocampal

volume x Visit

0.101

(0.012)***
63.47 0.086

(0.014)***
35.60 −0.125

(0.016)***
54.41 −0.208

(0.021)***
90.11 −0.149

(0.017)***
74.70

DELTA x Visit −0.119

(0.012)***
80.89 −0.074

(0.015)***
22.37 0.166

(0.017)***
89.93 0.249

(0.020)***
130.55 0.200

(0.017)***
131.96

***P < .001. Δ -2LL is the change in -2 Log Likelihood for each model when the independent biomarker or DELTA x Visit interactions are added to the model

relative to the initial model that adjusted for age, education, sex, APOE ɛ4 carrier status, Visit, Visit2, baseline amyloid-PET, CSF p-tau, Hippocampal volume,

andDELTA scores.

Abbreviations: ADAS-Cog, Alzheimer’s Disease Assessment Scale–Cognitive Subscale; CDR-SB, Clinical Dementia Rating–Sum of Boxes; CSF, cerebrospinal

fluid; DELTA, Discrepancy-Based Evidence for Loss of Thinking Abilities; FAQ, Functional Activities Questionnaire.

age = 71.59 years, SD = 6.95; t[463] = 2.40; P = 0.017). Sample char-

acteristics of participants who were present at Year 4 are included in

Table S1 in supporting information. We also ran additional exploratory

analyses to ensure that missing data at Year 4were not largely respon-

sible for theobservedpatternof findings. These analyses arepresented

in the Results section in supporting information.

Adjusted LME models examined the independent contribution of

eachof the threebaselineADbiomarkers and thebaselineDELTAscore

on rate of change of the Memory Composite, Executive Functioning

Composite, ADAS-Cog, CDR-SB, and FAQ. Table 2 shows the indepen-

dent effect of each IV × Visit interaction on each outcome measure

and change in model fit. When examined separately (i.e., the IV × Visit

interaction terms were added separately to the models with covari-

ates and main effects only), each interaction effect significantly pre-

dicted rate of decline in all five outcomes.Higher baselineDELTA score,

higher amyloid-PET SUVR, higher CSF p-tau, and lower hippocampal

volumes were associated with faster rates of cognitive and functional

decline.

Next, we examinedwhether theDELTA×Visit interaction predicted

rates of change after the amyloid×Visit, p-tau×Visit, andhippocampal

volume × Visit interactions were already included in the model. These

results are presented in the paragraphs that follow. Table 3 shows the

estimates of the finalmodels for all DVs after theDELTA×Visit interac-

tion was included and Figure 1 shows the trajectories by DELTA score.

For the ADNI-MEM model the biomarker × Visit interactions were

all significant such that higher amyloid (β = −0.065, 95% confidence

interval [CI], −0.092 to −0.038, P < .001, r = -.222), higher p-tau

(β=−0.042, 95%CI,−0.068 to−0.016, P= .002, r= –.153), and lower

hippocampal volume (β = 0.055, 95% CI, 0.032 to 0.078, P < .001,

r = .226) were all associated with faster rates of ADNI-MEM decline.

The addition of theDELTA×Visit interaction to themodel significantly

improved model fit (χ2(1) = 28.09, P < .001) such that a higher DELTA

scorewas associatedwith faster ADNI-MEMdecline (β=−0.067, 95%

CI,−0.092 to−0.043, P< .001, r= –.244).

For the ADNI-EF model, the biomarker x Visit interactions were

all significant such that higher amyloid (β = −0.076, 95% CI, −0.109

to −0.043, P < .001, r = –.215), higher p-tau (β = −0.033, 95% CI,

−0.065 to−0.001, P= .047, r= –.099), and lower hippocampal volume

(β = 0.052, 95% CI, 0.023 to 0.080, P < .001, r = .177) were all asso-

ciated with faster ADNI-EF decline. The addition of the DELTA × Visit

interaction (β = −0.024, 95% CI, −0.054 to 0.007, P = .132, r = –.072)

did not significantly improvemodel fit (χ2(1)= 2.27, P= .132).

For the ADAS-Cog-13 model, the biomarker × Visit interactions

were all significant such that higher amyloid (β = 0.076, 95% CI, 0.040

to 0.112, P < .001, r = .196), higher p-tau (β = 0.069, 95% CI, 0.034 to

0.104, P < .001, r= .187), and lower hippocampal volume (β=−0.062,

95%CI,−0.092 to−0.031, P< .001, r= –.191)were all associatedwith

faster ADAS-Cog-13 decline (higher scores = more errors). The addi-

tion of the DELTA × Visit interaction significantly improved model fit

(χ2(1) = 35.10, P < .001) such that higher DELTA scores were associ-

atedwith faster ADAS-Cog-13 decline/more errors (β= 0.100, 95%CI,

0.067 to 0.043, P< .001, r= .270).

For the CDR-SB model, the biomarker × Visit interactions were all

significant such that higher amyloid (β= 0.110, 95%CI, 0.064 to 0.155,

P < .001, r = .215), higher p-tau (β = 0.049, 95% CI, 0.005 to 0.094,

p = .030, r = .101), and lower hippocampal volume (β = −0.110, 95%

CI, −0.149 to −0.071, P < .001, r = –.256) were all associated with a

faster rate of functional decline (higher scores = more difficulty). The

addition of the DELTA × Visit interaction significantly improved model

fit (χ2(1)= 59.78, P< .001) such that higher DELTA scores were associ-

ated with faster functional decline/more difficulty (β = 0.162, 95% CI,

0.122 to 0.202, P< .001, r= .346).

For the FAQ model, the biomarker x Visit interactions were all sig-

nificant such that higher amyloid (β = 0.060, 95% CI, 0.023 to 0.098,

P = .002, r = .148), higher p-tau (β = 0.079, 95% CI, 0.042 to 0.115,

P < .001, r = .196), and lower hippocampal volume (β = −0.073, 95%

CI, −0.105 to −0.041, P < .001, r = –.214) were all associated with

faster functional decline (higher scores = more difficulty). The addi-

tion of the DELTA × Visit interaction significantly improved model fit

(χ2(1) = 58.43, P < .001) such that higher DELTA scores were associ-

ated with faster functional decline/more difficulty (β = 0.133, 95% CI,

0.100 to 0.166, P< .001, r= .348).
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TABLE 3 Parameter estimates for AD biomarkers andDELTA scores and rates of change by longitudinal outcome

Memory Comp Executive Comp ADAS-Cog CDR-SB FAQ

β (SE) β (SE) β (SE) β (SE) β (SE)

Intercept −0.045 (0.029) −0.072 (0.034)* 0.056 (0.029) 0.049 (0.030) 0.042 (0.031)

Age −0.013 (0.033) −0.184 (0.039)*** −0.040 (0.033) −0.136 (0.034)*** −0.124 (0.035)***

Education 0.124 (0.030)*** 0.117 (0.036)** −0.056 (0.030) −0.043 (0.032) −0.021 (0.032)

Female 0.177 (0.030)*** 0.018 (0.036) −0.078 (0.030)* −0.031 (0.032) −0.051 (0.032)

APOE ɛ4 carrier −0.056 (0.033) −0.019 (0.039) 0.028 (0.033) 0.041 (0.034) 0.034 (0.035)

Visit 0.063 (0.028)* −0.016 (0.033) −0.052 (0.035) 0.118 (0.035)** 0.198 (0.035)***

Visit2 −0.176 (0.028)*** −0.055 (0.034) 0.207 (0.036)*** 0.101 (0.034)** −0.012 (0.036)

Amyloid−PET −0.175 (0.038)*** −0.205 (0.045)*** 0.189 (0.038)*** 0.208 (0.039)*** 0.179 (0.041)***

CSF p−tau −0.142 (0.035)*** −0.047 (0.042) 0.129 (0.034)*** 0.089 (0.038)* 0.099 (0.038)*

HV 0.248 (0.034)*** 0.103 (0.041)* −0.264 (0.034)*** −0.255 (0.036)*** −0.250 (0.037)***

DELTA Score −0.412 (0.033)*** −0.356 (0.039)*** 0.447 (0.033)*** 0.356 (0.034)*** 0.338 (0.035)***

Amyloid×Visit −0.065 (0.014)*** −0.076 (0.017)*** 0.076 (0.018)*** 0.110 (0.023)*** 0.060 (0.019)**

p-tau×Visit −0.042 (0.013)** −0.033 (0.016)* 0.069 (0.017)*** 0.049 (0.023)* 0.079 (0.019)***

HV×Visit 0.055 (0.012)*** 0.052 (0.014)*** −0.061 (0.016)*** −0.110 (0.020)*** −0.073 (0.016)***

DELTA×Visit −0.067 (0.013)*** −0.024 (0.016) 0.100 (0.017)*** 0.162 (0.020)*** 0.133 (0.017)***

***P< .001; ** P< .01, * P< .05.

Abbreviations: AD, Alzheimer’s disease; ADAS-Cog, Alzheimer’s Disease Assessment Scale–Cognitive Subscale; APOE, apolipoprotein E; CDR-SB, Clinical

Dementia Rating–Sumof Boxes; DELTA, Discrepancy-Based Evidence for Loss of Thinking Abilities; FAQ, Functional ActivitiesQuestionnaire; HV, hippocam-

pal volume; PET, positron emission tomography.

F IGURE 1 Trajectories of cognitive and functional outcomes by DELTA score. Thememory composite (A), executive composite (B), ADAS-Cog
(C), CDR-SB (D), and FAQ (E) model predicted values displayed in z-scoremetric. The DELTA score categories shown in the figure of DELTA= 0
(n= 251), DELTA= 1–3 (n= 133), and DELTA= 4+ (n= 81) were used for graphing purposes only. The continuous DELTA score was used in the
models. Higher memory and executive composite scores are associated with better performance, while higher ADAS-Cog, CDR-SB, and FAQ
scores are associated with worse functioning. ADAS-Cog, Alzheimer’s Disease Assessment Scale–Cognitive Subscale; CDR-SB, Clinical Dementia
Rating–Sum of Boxes; DELTA, Discrepancy-Based Evidence for Loss of Thinking Abilities; FAQ, Functional Activities Questionnaire
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4 DISCUSSION

The current study investigated the value of incorporating cognition

into models using the AT(N) research framework to predict rates of

cognitive and functional decline among older adults without demen-

tia. The results showed that amyloid-PET SUVR, CSF p-tau level, and

hippocampal volume as continuous variables, as well as the DELTA

score were each independently associated with rates of cognitive and

functional decline after adjusting for demographic and genetic sus-

ceptibility variables. Importantly, we also found that baseline DELTA

score improved these prognostic models above and beyond the AT(N)

biomarkers for all cognitive and functional outcomes except for exec-

utive function. Our results showed that the incremental prognos-

tic value of the DELTA score was greatest for functional status (i.e.,

CDR-SB and FAQ). This result highlights the value of comprehen-

sive neuropsychological assessment for aiding patients, caregivers, and

providers in making important prognostic and life-planning decisions.

We chose to focus on cognition and function because declines in

these abilities are cardinal clinical features of most manifestations of

AD. Our study addresses the limitation of the absence of cognition,

in a previous study,19 by incorporating a newly validated measure

of cognition (DELTA) that we consider, based on previous findings,12

to be a robust indicator of individuals “at risk” of cognitive decline.

Moreover, cognitive evaluations are routinely performed in clinical

settings in the context of memory complaints in older populations

and so should be considered especially pertinent clinical data. The

question of whether baseline cognitive status improves prediction

of clinical decline over-and-above baseline biomarker status among

individuals at risk of developing dementia due to presumed AD has not

been well addressed. This may be due to a degree of consensus that

AD biomarkers auger development of AD dementia decades before

measurable cognitive decline occurs.3 Recent studies:7–8 however,

showed that subtle cognitive difficulties, objectively defined using

neuropsychological measures, may emerge earlier than expected and

be detectable during the stage of accelerated amyloid accumulation

and prior to entorhinal cortex neurodegeneration. These findings and

those of the present study highlight the prognostic importance of using

sensitive neuropsychological measures to improve prediction of future

memory and functional decline.

One challenge for researchers has been to develop cognitive met-

rics with greater sensitivity to early cognitive change and that can

reliably discriminate between normal and early pathological cognitive

aging.20 An emerging approach is to validate cognitive assessments

against biomarkers to increase confidence that evidence for cognitive

changes reflects somemeaningful biologic changes.21 For example, the

DELTA score incorporates several psychometric and interpretive prin-

ciples (e.g., low score base rates, multiple test scores from different

cognitive domains, key demographic and premorbid intellect factors)

and core AD biomarkers were used to establish its validity.

While the increasing availability of acquiring biomarker informa-

tion has rapidly accelerated neurodegenerative disease research, the

acquisition of PET and CSF biomarkers is not feasible in many clin-

ical settings given their extensive cost and burden to patients and

research participants. Blood-based biomarkers appear promising, par-

ticularly for detecting AD changes, but are still in development or not

yet widely available.22,23 This underscores the need for less expen-

sive and more accessible measures that aid prognostic formulations.

The current results highlight the prognostic value of cognitive metrics

like the DELTA score, and future work should incorporate such cogni-

tive composites with emerging blood-based biomarkers to fully opti-

mize their translation from research to clinical settings. Furthermore,

while these novel biomarkers will be critical for understanding under-

lying etiology and identifying treatment targets, any person-centered

treatment approach ultimately needs to also consider cognition, which

is more proximal to the clinical outcomes that ultimately impact peo-

ples’ lives.

4.1 Limitations

There are several limitations to the current study. First, using NIA-AA

recommended biomarkers as continuous variables limits direct com-

parison to other studies using a dichotomous classification scheme.

Recently published research by Mattsson-Carlgren et al;18 however,

demonstrated that different operationalizations of AT(N) biomark-

ers (i.e., p-tau versus tau PET) resulted in divergent results and that

dichotomization of biomarkers may result in loss of prognostic infor-

mation compared to using data as continuous variables. Using these

biomarkers on a continuous scale allows formore fine-tuned statistical

modeling focused on exploring patterns of associations in older adults

at risk for cognitive and functional decline.

Second, using a cognitive measure (i.e., the DELTA score) to predict

cognitive outcomes (i.e., ADNI-MEM and ADNI-EF composite scores)

raises the issue of shared variance/circularity and how this may super-

ficially magnify associations because it has long been established that

all cognitive abilities correlate with each other.24 All models; however,

were adjusted for baseline DELTA because our primary focus was on

examining rates of decline rather than themain effect associationswith

outcomes. Additionally, a similar pattern of findingswas revealed using

conceptually distinct functional outcome measures (i.e., CDR-SB and

FAQ), which further bolsters the robustness of the current study find-

ings.

Third, we did not account or control for cerebrovascular pathology,

which is common in older adults, 25 and early in AD.26 Indices of

cerebrovascular pathology, such as white matter hyperintensities,

have been shown to negatively correlate with memory,26 and exec-

utive functions.27–29 Furthermore, the presence of cerebrovascular

pathology may exacerbate or alter the presence of AD biomarkers,30

although the interaction or synergistic effect of various age-related

disease pathologies is not well understood. Notably, when we included

the main effect of the modified Hachinski score as a crude measure

of ischemia risk, as well as the Hachinski score by Visit interaction, in

the models, the pattern of results remained the same, likely due to the

relatively low variability of scores in this very healthy sample. Future

studies should examine the potential role of cerebrovascular biomark-

ers (e.g., white matter hyperintensities) in addition to the AT(N) model
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in understanding AD. The ADNI sample is predominantlyWhite, highly

educated, and has been screened to be very healthy at baseline, and is

therefore not representative of the US population, significantly limit-

ing the generalizability of these findings. Furthermore, as is common in

longitudinal studies, not all participants contributed data to follow-up

visits, whichmay reflect a survivor bias; however, exploratory analyses

revealed that missing data did not significantly impact the association

between the DELTA score and any of the outcome variables over time,

with the exception of the FAQ score in which missing data had a small

effect on this relationship. Future studies must extend and replicate

these approaches in more diverse samples.

5 CONCLUSION

Baseline cognition measured using a newly developed cognitive com-

posite score (DELTA) improved prediction of longitudinal cognitive and

functional changes above and beyond standard AD biomarkers. Inte-

grating cognition with AT(N) biomarkers may improve clinical progno-

sis for non-demented older adults.
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