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Toll-like receptor (TLR)-7 is an endosomal innate immune sensor capable of detecting 
single-stranded ribonucleic acid. TLR7-mediated induction of type I interferon and 
other inflammatory cytokine production is important in antiviral immune responses. 
Furthermore, altered TLR7 expression levels are implicated in various autoimmune 
disorders, indicating a key role for this receptor in modulating inflammation. This review 
is focused on the regulation of TLR7 expression and localization compared to that of 
the other endosomal TLRs: TLR3, 8, and 9. Endosomal TLR localization is a tightly 
controlled and intricate process with some shared components among various TLRs. 
However, TLR-specific mechanisms must also be in place in order to regulate the induc-
tion of pathogen- and cell-specific responses. It is known that TLR7 is shuttled from the 
endoplasmic reticulum to the endosome via vesicles from the Golgi. Several chaperone 
proteins are required for this process, most notably uncoordinated 93 homolog B1 
(Caenorhabditis elegans), recently identified to also be involved in the localization of the 
other endosomal TLRs. Acidification of the endosome and proteolytic cleavage of TLR7 
are essential for TLR7 signaling in response to ligand binding. Cleavage of TLR7 has 
been demonstrated to be accomplished by furin peptidases in addition to cathepsins 
and asparagine endopeptidases. Moreover, triggering receptor expressed on myeloid 
cells like 4, a protein associated with antigen presentation and apoptosis in immune 
cells, has been implicated in the amplification of TLR7 signaling. Understanding these 
and other molecular mechanisms controlling TLR7 expression and trafficking will give 
insight into the specific control of TLR7 activity compared to the other endosomal TLRs.

Keywords: toll-like receptor 7, single-stranded ribonucleic acid, endosomal trafficking, uncoordinated 93 homolog 
B1 (Caenorhabditis elegans), furin peptidases, asparagine endopeptidases

iNTRODUCTiON

Toll-like receptors (TLRs) are a class of pattern recognition receptors that recognize bacterial 
or viral pathogen-associated molecular patterns (PAMPs), playing a key role in innate immune 
responses (1, 2). This family includes plasma membrane receptors identified in mice and humans: 
TLR1, TLR2, TLR4, TLR5, TLR6, and TLR10 (2, 3), nucleic acid-sensing endosomal receptors also 
identified in mice and humans: TLR3, TLR7, TLR8, and TLR9, and murine-specific endosomal 
receptors: TLR11, TLR12, and TLR13 (4–7). The TLR family members have been well reviewed as 
mediators of innate immunity, as well as being extensively linked to autoimmunity (8–14).

Of the endosomal TLRs, TLR3 recognizes dsRNA and TLR9 recognizes dsDNA. Alternatively, 
TLR7 and the closely related TLR8 respond to purine-rich single-stranded ribonucleic acid (ssRNA) 
to elicit an immune response to pathogens which are recognized in the endosome (15–17). Thus, 

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.01075&domain=pdf&date_stamp=2017-09-04
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.01075
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:kgee@queensu.ca
https://doi.org/10.3389/fimmu.2017.01075
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.01075/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.01075/abstract
http://loop.frontiersin.org/people/455392
http://loop.frontiersin.org/people/455436
http://loop.frontiersin.org/people/446786


FigURe 1 | Toll-like receptor (TLR)-7 trafficking from the endoplasmic reticulum (ER) to the endosome. In response to pro-inflammatory cytokine signaling, TLR7 
transcription is induced via nuclear factor (NF)-κB. TLR7 protein is synthesized in the ER where ER-resident chaperone proteins, gp96 and protein-associated with 
TLR4 (PRAT4A), are required to facilitate proper folding of TLR7 before exiting the ER. Upon cellular stimulation (e.g. imiquimod) or infection, leucine-rich repeat 
(LRR) containing protein 59 (LRRC59) promotes uncoordinated 93 homolog B1 (Caenorhabditis elegans) (UNC93B1)-mediated packaging of TLR7 into coat protein 
complex II (COPII)-coated vesicles to exit the ER and translocate to the Golgi. In the Golgi, UNC93B1 ubiquitinates TLR7 and HRS/ESCRT machinery sorts 
ubiquitinated TLR7 for endolysosomal transport. Adaptor protein (AP)-4 and AP-3 deliver TLR7 from the Golgi to lysosome-related organelles, such as “NF-κB 
endosomes” and “IRF-7 endosomes,” respectively. Once TLR7 reaches the endosome, endosomal acidification occurs for proteolytic cleavage by proteases, 
including furin proprotein convertases (PC). TLR7 cleavage separates the N-terminal ectodomain (darker circle) from the C-terminal ectodomain, transmembrane 
domain, and cytosolic region. The N terminal region forms disulfide bonds with the C-terminal region and remains in the endosome for optimal signaling.
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localization of these TLRs to the endosome is a requirement for 
detection of viral and bacterial nucleic acids that are endocy-
tosed. Control of the trafficking pathways of these TLRs to the 
endosome is a regimented process involving several steps. In 
the literature, there is a greater emphasis on the regulation of 
TLR9 localization, while knowledge of the mechanisms control-
ling TLR7 localization is mostly deduced from TLR9 studies 
(18–20). The steps involved in endosomal localization of TLR7 
are outlined in Figure 1 and are discussed in detail in this review.

TLR7 and TLR8 are often referred to together in the lit-
erature due to their high degree of homology and similarity in 
function. However, in comparison to TLR7, the mechanisms 
controlling TLR8 localization are less understood, likely due 
to a lack of appropriate murine model systems for study-
ing TLR8. For example, the commonly used synthetic RNA 
analog resiquimod (R848) triggers human TLR7 and TLR8 
signaling and murine TLR7 signaling, but not murine TLR8  
(15, 21). Moreover, many of the studies delineating the 
mechanisms behind TLR7 localization have been performed 
in murine models and few studies have focused solely on 
human cells. Therefore, throughout this review, the studies 
discussed were performed in murine models unless otherwise 
specified. As well, much of the published work has examined 
TLR7 responsiveness, leaving a void in the literature regarding 
TLR8-specific mechanisms. Herein, we provide an in-depth 

commentary on the regulation of TLR7 expression and function 
and include additional highlights on mechanisms which control 
TLR8 localization.

expression Patterns of TLR7
The distribution of TLR7 expression among various cell types 
is differentially regulated. Constitutive expression of TLR7 is 
predominant in human and murine plasmacytoid dendritic 
cells (pDCs) and B cells compared to other circulating immune 
cells (22–24). Low levels of TLR7 have also been observed in 
non-immune cells such as hepatocytes, epithelial cells, and 
keratinocytes (25–28). Unlike TLR7, TLR8 is more strongly 
expressed in myeloid cells and to a lesser degree in pDCs  
(22, 29). Under certain circumstances, TLR7 expression is 
inducible in cells expressing low to undetectable basal TLR7 
levels, including immune cells such as macrophages and 
myeloid DCs, and non-immune cells such as hepatocytes and 
keratinocytes (25, 28, 30–32). For example, interferon (IFN)-γ 
stimulation of human macrophages resulted in the induction 
of TLR7 mRNA expression and consequently enhanced TLR7 
responsiveness (16). As well, infection with viruses such as 
hepatitis C virus (HCV), human immunodeficiency virus 
(HIV), and influenza A virus (IAV) also result in upregulation 
of TLR7 expression in hepatocytes, circulating immune cells, 
and primary macrophages, respectively (25, 30, 33). Under 
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these circumstances, it is likely that the cytokines induced 
by virus infection are responsible for triggering the induc-
tion of TLR7 expression. Indeed, influenza virus infection of 
human primary macrophages results in upregulation of TLR7 
mRNA in a type I IFN-dependent manner (33). Furthermore, 
augmented TLR7 expression is observed in cancer and autoim-
mune diseases such as rheumatoid arthritis and systemic lupus 
erythematosus (SLE) (31, 34, 35). Other cytokines and PAMPs 
released during inflammation as a result of infection or disease 
likely play a role in the regulation of constitutive and inducible 
TLR7 expression.

Given that the expression levels of TLR7 are relatively well 
documented under both normal and pathogenic conditions, 
it is surprising that the molecular mechanisms involved in 
the signaling pathways controlling TLR7 induction during 
virus infection or autoimmune conditions have not been 
well-described. As well, the regulation of constitutive TLR7 
expression is relatively understudied. In a study by Lee et al., 
the TLR7 putative promoter sequence was cloned and charac-
terized (36). Through computer analysis of the human TLR7 
gene sequence (accession number: NT_011757), binding sites 
for the following transcription factors were identified: nuclear 
factor (NF)-κB, C/EBPα, C/EBPβ, GR, IFN regulatory factor 
(IRF)-1, MIG1, NF-1, Oct-1, RAP1, RSRFC4, RxR-β, SRF, SP1, 
and SRY (36). Using a human liver cell line as a model system, 
TLR7 expression induced by tumor necrosis factor (TNF)-α 
and interleukin (IL)-1 treatment was shown to require NF-κB 
activation but not that of IRF-7 (36). Further investigation of 
the signaling pathways regulating TLR7 expression is war-
ranted in both immune and non-immune cells, particularly in 
inflammatory conditions.

Antiviral Functions of TLR7
Immune responses to ssRNA viruses include production of 
TLR7-mediated type I IFNs, a family of key antiviral cytokines 
that induce a variety of genes collectively known as IFN-inducible 
genes. Viruses have adapted a number of evasive strategies to 
avoid and/or shut down type I IFN responses, and there are a 
variety of innate viral sensors responsible for induction of type I 
IFN; these include melanoma differentiation-associated protein 
5 (MDA5), laboratory of genetic and physiology 2 (LGP2), 
mitochondrial antiviral-signaling protein (MAVS), stimulator 
of IFN genes (STING), and retinoic acid inducible gene (RIG)-I 
(37). The role of these molecules during virus infection has been 
reviewed in detail elsewhere (37, 38). It is interesting to note 
that these sensors often work in tandem with each other and/
or TLR7 to respond to infection. For example, it has been shown 
that TLR7 ligation induces expression of the cytoplasmic viral 
RNA-sensing helicase, RIG-I, in order to clear virus infection, 
thereby linking TLR7 and RIG-I function (39). Specifically, pDCs 
generally express low RIG-I but upon stimulation with the TLR7 
agonist imiquimod, RIG-I is upregulated and thus this allows for 
cooperative RIG-I- and TLR7-mediated viral clearance (39).

TLR7 is well-established to bind viral ssRNA; specific exam-
ples include vesicular stomatitis virus (VSV), IAV, HIV-1, hepati-
tis B virus, and HCV (25, 40–43) or synthetic guanine-rich RNA 
sequence analogs such as R848, gardiquimod, loxoribine, and 

most notably the human papillomavirus treatment, imiquimod 
(15, 44, 45). Upon virus infection or agonist stimulation, ssRNA 
enters the endosome via autophagy or receptor-mediated endo-
cytosis, as discussed in detail further below (46, 47). Dimeric 
TLR7 then interacts with the ssRNA which subsequently initi-
ates signal transduction (48, 49). Signal transduction of TLR1-10 
has been thoroughly reviewed in the literature (1–3, 8, 50–53). 
Similar to all TLRs, TLR7 contains a Toll/IL-1 receptor domain 
that associates with myeloid differentiation primary response 
gene 88 (MyD88) for signal transduction, aside from TLR3 which 
signals via the MyD88-independent pathway (20, 54). Unlike 
TLR8 and TLR9, which exist as preformed dimers (55–57), TLR7  
dimerizes upon ligand binding in the endosome to initiate 
TLR7-mediated MyD88 signal transduction (58). This results in 
the subsequent activation of mitogen-activated protein kinase 
(MAPK) cascades, NF-κB activation (53, 59), as well as IRF-7 
(60, 61) and IRF-5 (62, 63) activation via IL-1 receptor-associated 
kinases (IRAK)-1/2/4 and TNF receptor-associated factor-3/6 
(61, 64, 65). Signaling in human immune cells by TLR7 has 
been documented to trigger production of pro-inflammatory 
cytokines including TNF-α, IL-6, IL-1β, IL-12, and IFN-α  
(61, 66–69). Although the specific signaling pathways triggered 
by TLR7 activation have been described (53, 60, 61), the underly-
ing mechanisms controlling TLR7 trafficking to the endosomal 
compartment are now coming into the limelight.

TLR7 eNDOSOMAL LOCALiZATiON

Like the other endosomal TLRs, TLR7 can only bind and 
respond to its ligand in the endosome to prevent recognition of 
self-genomic information (70). TLR7 is directed to the endosome 
by an intricate shuttling process mediated by several chaperone 
proteins as illustrated in Figure 1. Furthermore, proteolytic cleav-
age must occur for ligand recognition (71, 72). Details regarding 
TLR7 localization compared to that of the other endosomal TLRs 
are discussed below.

exit of TLR7 from the endoplasmic 
Reticulum (eR)
TLR7 is initially produced as an inactive protein in the ER and 
must be correctly folded prior to exiting the ER. Two ER-resident 
chaperone proteins, the heat shock protein gp96 and protein-
associated with TLR4 (PRAT4A), are involved in the folding of 
TLR7 as well as other TLRs, with the exception of TLR3 (Figure 1) 
(73–75). In the absence of functional gp96, macrophages, and 
B cells are unable to respond to TLR7 ligation (73, 74). As well, in 
PRAT4A-deficient macrophages, TLR7 responsiveness was com-
pletely impaired (75). A different ER-resident chaperone protein, 
leucine-rich repeat (LRR) containing protein 59 (LRRC59), was 
demonstrated to mediate TLR8 localization as well as TLR3 and 
TLR9 in human cells (76). Other experiments from the same 
study also imply that TLR8 and TLR9 endosomal localization 
requires LRRC59, as the absence of this protein resulted in 
decreased TLR8 and TLR9 signaling; however, TLR8 and TLR9 
localization was not directly measured (76). LRRC59 could 
also be required for TLR7 signaling, however, such studies are 
necessary for confirmation. On the other hand, it is interesting 
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to speculate that regulation of TLR7 localization diverges from 
the other TLRs and evidence to support this is outlined in the 
sections below.

One of the more researched ER-resident chaperone pro-
teins, uncoordinated 93 homolog B1 (Caenorhabditis elegans) 
(UNC93B1), has a clearly defined role in the export of nucle-
otide-sensing TLRs from the ER to the Golgi and endosomes 
(77–81). UNC93B1 interacts with the TLRs to mediate packaging 
into coat protein complex II (COPII)-coated vesicles. The COPII 
complex is composed of conserved coat proteins and is involved 
in promoting anterograde protein transport from the ER to the 
Golgi; thus TLR-containing COPII vesicles bud from the ER 
for transport to the Golgi (19, 79). UNC93B1 is thought to be 
involved in ubiquitination of TLR9 and potentially TLR7 in a 
post-ER compartment to facilitate transfer and interactions with 
other chaperone proteins (82). Once in the Golgi, HRS/endo-
somal sorting complex required for transport (HRS/ESCRT) 
machinery sorts ubiquitinated TLR7 for endolysosomal transport 
through the non-canonical ESCRT pathway to maintain receptor 
stability within the endosome (Figure 1) (70, 82).

In murine models, different mutations of the UNC93B1 gene, 
Unc93b1, highlight the role of this protein in TLR shuttling. The 
UNC93B1 H412R mutation, also called the 3D (or triple D)  
mutation, causes inefficient processing of TLR3, TLR7, and 
TLR9 and results in enhanced susceptibility to virus infection 
(19, 77–79, 81). Similarly, the “loss of endosomal TLR response” 
(Letr) mutation, a 54-amino acid deletion in exon 4 of murine 
Unc93b1, leads to increased viral load of IAV (83), likely due to 
compromised TLR7 trafficking out of the ER. Interestingly, in 
pDCs, macrophages, B  cells, and conventional DCs, the D34A 
mutation of UNC93B1 leads to increased cytokine production 
upon TLR7 activation, while cytokine production upon TLR9 
activation was decreased and that of TLR3 was unaffected  
(84, 85). Taken together, these studies suggest that modulation of 
TLR-UNC93B1 binding capacity may fine-tune specific endoso-
mal TLR responses.

UNC93B1 mRNA expression and protein levels are upregu-
lated upon IFN-α, -β, or -γ stimulation of murine macrophages 
(86), indicating that antiviral IFN production may, in turn, 
enhance endosomal TLR7 localization and downstream signal-
ing. However, the direct effect of type I IFN signaling on TLR7 
localization has not been well documented. Furthermore, 
while in the ER, TLR7 competes with TLR9 for interaction 
with UNC93B1, and TLR9 generally prevails (84, 85, 87). Thus, 
IFN-mediated upregulation of UNC93B1 represents a poten-
tial mechanism to enhance TLR7 trafficking to endosome by 
increasing the likelihood of TLR7-UNC93B1 interaction over 
that of TLR9. Additionally, stimulation with imiquimod, as well 
as with TLR9 or TLR4 agonists, triggers UNC93B1-dependent 
TLR7 endosomal localization in murine myeloid cells (79). 
Furthermore, modeling in the human embryonic kidney 
(HEK)-293 cell line demonstrated that stimulation via other 
TLRs, in particular that of TLR8, as well as non-specific induc-
tion of endocytosis, enhances LRRC59 binding to UNC93B1 
(76), indicating that endocytic events, such as virus invasion, 
may augment endosomal TLR localization to enhance the 
antiviral response.

Packaging TLR7 in the endosome
Compared to other chaperone proteins, UNC93B1 appears to be 
unique in that it also leaves the ER to accompany the TLR in transit 
to the endosome. Other proteins are required for TLR-UNC93B1 
transit to the endosome, these include the adaptor protein (AP) 
family (AP-1–4), which function to sort membrane proteins (88). 
Interactions between the APs, UNC93B1, and TLRs appear to be 
complex, with evidence for direct interaction between APs and 
UNC93B1 (19, 81) and APs with TLRs (19). Differential require-
ments for AP-1, AP-2, AP-3, and AP-4 have been proposed for 
the individual endosomal TLRs. Specifically, AP-4 binds TLR7 to 
sort into COPII vesicles for transport to the Golgi in macrophages 
(Figure  1) (19). TLR7 directly translocates from the Golgi to 
the endosome, accompanied by both UNC93B1 and AP-4 (19). 
Unlike TLR7, TLR9 is first shuttled from the Golgi to the plasma 
membrane, then to the endosome in an AP-2-dependent manner 
(19). Type I IFN induction in response to TLR7 ligation was found 
to depend on AP-3 for shuttling to specialized lysosome-related 
organelles (LRO) (89). These LRO, called “IRF-7 endosomes,” are 
lysosome-associated membrane protein (LAMP)-1+/LAMP2+ 
and signal via IRF7 to produce type I IFN (89). In contrast, pro-
inflammatory cytokine production occurs upon TLR ligation in 
vesicle-associated membrane protein-3+/LAMP2− LRO that sig-
nal by NF-κB, called “NF-κB endosomes” (89). AP-3 deficiency 
abrogated TLR7-mediated type I IFN production in pDCs, while 
NF-κB-induced cytokine production was maintained, indicating 
a specific role for AP-3 in shuttling TLR7 to IRF-7 endosomes 
(89). Interestingly, Lee et  al. demonstrated a direct interaction 
between UNC93B1 and AP-2, but not AP-1, 3, or 4, as well as a 
direct interaction between TLR7 and AP-4, but not AP-1, 2, or 3 
(19). This suggests that other sorting proteins may be required to 
facilitate TLR7 travel to IRF-7 endosomes in tandem with AP-3. 
Furthermore, requirements for the targeting of TLR7 to NF-κB 
endosomes have not been elucidated and thus represent a focus 
for future research.

TLR7 CLeAvAge

Restriction of nucleic acid-sensing TLRs to the endosome, as well 
as the dependence on cleavage for activation both help prevent 
recognition of self-DNA/RNA (90, 91). Like all endosomal TLRs, 
prior to gaining the capacity to bind and respond to ligands,  
TLR7 must be proteolytically cleaved (92). In general, endosomal 
TLRs are cleaved by a common mechanism initiated by decreased 
endosomal pH, required for enzymatic activity. The cleavage events 
are a complex process and are thought to involve a combination 
of asparagine endopeptidase (AEP) and/or multiple cathepsins  
(71, 72, 90, 92). The majority of studies focusing on the regulation 
of cleavage events used a TLR9-expressing murine macrophage 
cell line (RAW cells) as a model system. Indeed, the initial role 
for cathepsins in TLR9 was suggested by Ewald et al.; however, at 
the time, this group was unable to experimentally block cathepsin 
activation efficiently, and they concluded that a combination of 
proteases were likely responsible (90). Later, the same group 
demonstrated that in RAW cells and murine conventional DCs, 
TLR cleavage was a two-step event. The initial cleavage event 
could be performed by either AEP or cathepsin, indicating a 
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redundant role for these proteins (72). The second cleavage step 
for optimal signaling responses is referred to as TLR trimming 
and appears to rely exclusively on cathepsin activity (72). In the 
same report, TLR7 cleavage was shown to require both AEP 
and cathepsin activity (72). The need for AEP-dependent TLR7 
cleavage was further highlighted by inefficient TLR7 signaling in 
DCs, which was linked to poor induction of adaptive immune 
responses during IAV infection of AEP-deficient mice (92).

Interestingly, Hipp et al. found that the furin-like proprotein 
convertases (PC), part of the family of serine endoproteases 
including furin, PC5/6, and PC7, cleave human TLR7 in the endo-
some for the generation of competent TLR7 signaling responses 
(Figure  1) (93). This study demonstrated a novel mechanism 
for cleavage of human TLR7 compared to the numerous studies 
focused on murine endosomal TLR7 cleavage by cathepsins and 
AEP (71, 72, 90, 92). Likewise, furin-like proteases have also been 
implicated in TLR8 proteolysis in primary human monocytes 
and macrophages (94). Thus, the use of furin-like proteases may 
be specific to TLR7 and TLR8 and may represent an alternative 
mechanism regulating TLR7 cleavage, in addition to AEP and 
cathepsins. The dependence for TLR7 cleavage on AEP, cath-
epsins, or furins could be dictated by cell type and differences in 
human and murine cell models.

With regards to the specific amino acid sequences for cleav-
age sites, TLR7 is susceptible to proteolysis between two LRR 
domains (LRR14–15) which correspond to residues 450–479 
containing asparagine 478, required for AEP-mediated cleavage 
(92). The role of cleavage in TLR7 localization versus signaling 
was demonstrated using a model of murine fibroblasts and 
bone marrow-derived DCs (BMDC) transfected with wild type 
or mutated TLR7. Mutation of asparagine 478 to glutamine 
(N478Q) did not hinder TLR7 localization; however, down-
stream signaling in response to imiquimod was inhibited (92). 
This cleavage site separates the N-terminal (ectodomain) from 
the C-terminal (ectodomain, transmembrane, and cytosolic 
regions) that remains in the endosome for downstream signal-
ing; it is suggested that the TLR7 N-terminus is cleaved but 
linked to the C-terminus by disulfide bonds and is required for 
endosomal localization and ligand binding in both murine DCs 
and human cell lines (THP-1; HEK-293T) (Figure 1) (95, 96). 
Crystallography studies of human TLR8 and studies in primary 
human myeloid cells also demonstrate N- and C-terminal 
association after cleavage (57, 94). Taken together, this informa-
tion combined with that on the enzymatic cleavage highlights 
the complexity of how processing of TLR7, as well as TLR8,  
is regulated.

Ligand Delivery to TLR7
Like the regulation of TLR7 trafficking, ligand delivery to TLR7 
is also an intricately regulated process. Upon infection, agonist 
stimulation, or damage/apoptosis to neighboring cells, ligands 
must enter the endosome to trigger TLR7 activation. Receptor-
mediated endocytosis can deliver virus or purified TLR7 ligands 
to endosomal TLR7 (48, 49, 97–99). In autoimmunity, delivery 
of self-ligand to the endosome relies on proteins such as high 
mobility group box 1 protein and the cathelicidin, LL37 (100). 
Thus, TLR7 responses are regulated during inflammatory disease 

conditions by release or overexpression of these molecules; for 
example, increased LL37 expression is associated with exacer-
bated TLR7-mediated cytokine production during autoimmune 
disease (101). As well, B  cells bearing B  cell receptors (BCR) 
specific for DNA, and pDCs bearing the Fc receptor FcγRIIa 
(CD32), were shown to internalize self-DNA for delivery to TLR9 
in SLE (102, 103). This sequential engagement of BCR and TLR9 
was recapitulated for TLR7 where autoreactive BCRs were shown 
to bind and internalize ssRNA for delivery to TLR7 in a model 
of SLE (104).

While viral ssRNA may reach the endosome as a result of  
endocytosis, murine pDCs have also been shown to utilize 
autophagy, a homeostatic process whereby damaged or unneces-
sary cellular material from the cytoplasm is degraded in lysosomes, 
to serve an endosomal delivery platform for viral RNA-TLR7 
ligation (46, 105, 106). Autophagosomes are formed by a sequen-
tial series of steps, each involving autophagy-related gene (ATG) 
proteins; the process is initiated by phagophore formation,  
a double-membrane vacuole that expands into an autophago-
some (107). Once the autophagosome fuses with the endosome 
or lysosome, autolysosomes are formed for degradation of cellu-
lar material (108). A role for autophagy and TLR7 ligand delivery 
during viral infection is prominent in murine pDCs since these 
cells exhibit TLR7-dependent type I IFN production in response 
to virus infection (47). Lee et  al. demonstrated that murine 
ATG5-deficient pDCs infected with VSV were unable to produce 
IFN-α (47). A few years later, two other groups demonstrated that 
autophagy was required for TLR7-mediated IFN-α production 
in primary human pDCs infected with HIV-1 or paramyxovirus 
simian virus 5 (109, 110). Of note, autophagy has also been 
implicated in ssRNA delivery to TLR7 in murine B cells in SLE 
(111). Preference between endocytosis and autophagy for ligand 
delivery during virus infection may depend on several factors, 
such as the mode of breaching the cell (endocytosis vs membrane 
fusion), replication strategies, and expression of viral inhibitory 
factors. In addition to the role for autophagosome-mediated 
delivery of TLR7 ligands to the endosome, a role for TLR7 sign-
aling in the induction of autophagy has also been investigated 
(46). Upon examination of TLRs 1 through 9, ligation of TLR7 
demonstrated the most potent induction of autophagy in murine 
macrophages (46). Furthermore, similar to TLR4, TLR7 induces 
Beclin 1 (mammalian homolog of yeast ATG6) interaction with 
MyD88 for enhanced autophagosome formation in murine 
macrophages (46, 112, 113). These studies provide evidence for a 
potential positive feedback mechanism between TLR7 signaling 
and autophagy-mediated viral recognition.

Modulation of TLR7 Signaling
Investigations into the roles for the triggering receptor expres sed on 
myeloid cells (TREM) receptor family and associated ligands have 
identified these proteins as novel constituents involved in modu-
lating TLR signaling and responsiveness (114–117). Recently, 
TREM like 4 (TREML4) has been characterized to amplify TLR7 
signaling in murine and human cells (Figure 1) (118). Little is 
known regarding TREML4 functions; it is predominantly found 
on splenic macrophages as well as CD8+ DCs, and it has been 
shown to bind apoptotic cells and enhance antigen presentation 
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to T  cells (119, 120). In Treml4-deficient BMDC, decreased 
TLR7 endosomal localization and TLR7-MyD88 interaction was 
observed with a concomitant decrease in activation of TLR7-
mediated signaling and cytokine production (118). Knockdown 
of Treml4 in human macrophages also resulted in decreased 
cytokine induction in response to gardiquimod (118). Together, 
this indicates that upon TLR7 ligation TREML4 may function 
to stabilize the TLR7-MyD88 interaction, thus promoting signal 
transduction and resulting cytokine production. Interestingly,  
a role for TREML4 was also suggested for TLR9 and TLR13 sign-
aling (118), however, the direct impact of TREML4 deficiency on 
TLR9 or TLR13 association with MyD88 or endosomal locali-
zation was not investigated. The cellular localization patterns 
of TREML4 have not been identified and whether TREML4 is 
recruited to the endosomes with TLR7 or if it directly interacts 
with TLR7 remains unknown. Interestingly, stimulation of splenic 
macrophages with gardiquimod or CpG DNA, a TLR9 agonist, 
resulted in enhancement of TREML4 mRNA expression (118), 
although stimulation of splenic DCs with TLR3, TLR4, or TLR9 
agonists did not impact TREML4 expression in another study 
(119). This suggests that TREML4 may play a role in a positive 
feedback loop for TLR7 signaling and may also have differential 
effects depending on the cell type. These studies signify a novel 
mechanism for TLR7 signal amplification in the endosome and 
this represents an enticing new avenue for investigation to deline-
ate signaling requirements for endosomal TLRs.

Another mechanism to modulate TLR signaling occurs 
upon multiple subsequent exposures to ligand, which results 
in abrogation of TLR responsiveness. This is best character-
ized with TLR4 stimulation using lipopolysaccharide (LPS), 
whereby LPS (endotoxin) tolerance is characterized by reduced 
TNF-α and IL-6 production upon repeated LPS stimulation in 
comparison to a single exposure to LPS (121). Interestingly, 
TLR7 tolerance has been observed in murine macrophages 
repeatedly exposed to TLR7 agonists; repeated exposure to 
imiquimod induced a refractory state whereby cells did not 
respond to subsequent TLR7 stimulation, due to elevated 
MyD88 pathway inhibitors: IRAK-M and Src homology 2 
domain-containing inositol-5-phosphatase-1, and impaired 
activation of NF-κB, MAPK p38, and c-Jun N-terminal kinase 
(122, 123). TLR “hetero-tolerance,” accomplished by exposure 
to one TLR agonist resulting in decreased responsiveness to 
secondary stimulation by an agonist for a different TLR, also 
serves as a general mechanism to control TLR responses. For 
example, in vivo intravenous administration of LPS in human 
subjects followed by ex vivo leukocyte challenge with TLR7 

ligand (S-27609) led to suppressed secretion of TNF-α, IL-6, 
IL-1β, and IL-10 compared to S-27609 stimulation alone 
(124). Moreover, TLR7 ligand stimulation reduces subsequent 
responses to other TLR agonists. For example, human and 
murine myeloid cells cultured with R848 or loxoribine exhib-
ited decreased TLR4-responsiveness (125–128). Furthermore, 
pretreatment of human macrophages with R848 inhibits sub-
sequent induction of TLR2, TLR4, TLR5, and TLR7 signaling 
(125). Interestingly, costimulation of murine macrophages with 
the TLR7 agonist, gardiquimod, and the TLR9 agonist, CpG 
DNA, resulted in a suppressor of cytokine signaling-1-mediated 
reduction of TNF-α and IL-6 (129). These studies demonstrate 
multiple mechanisms that regulate TLR responsiveness and 
further indicate that TLR7 activity can modulate responses to 
other TLR molecules and vice versa.

FUTURe PeRSPeCTiveS

Elucidating the mechanisms controlling TLR7 localization is 
critical to further our understanding of key elements that dictate 
TLR7 ligand binding and downstream signaling. TLR7 and 
TLR8 appear to be redundant, and although there is a paucity of 
information on the regulation of TLR8 localization, subtle differ-
ences do exist between TLR7 and TLR8 regarding the regulation 
of endosomal localization and function. Thus, understanding 
precisely how TLR8 is differentially regulated from TLR7 is a key 
area for future research. Moreover, gaining a better understand-
ing of the differential requirements for localization of each of the 
different endosomal TLRs will facilitate identification of mecha-
nisms controlling ligand delivery. Ultimately, in-depth analysis 
of the complex processes regulating the localization and function 
of TLR7 will garner further information on fine-tuning immune 
responses in virus infection, cancer, and autoimmune diseases for 
the development of novel therapeutics.
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