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Abstract
Food-borne infections are major causes of public health concern in developing and developed countries. During the past decade, the Institut

Hospitalo-Universitaire Méditerranée Infection has conducted or been involved in multiple investigations that aimed at identifying the sources

and strains responsible for food-borne diseases and therefore at improving the understanding, diagnosis, prevention and control of these

infections. Investigations were conducted in the Mediterranean area and in sub-Saharan Africa on more than 15 food-borne agents, 17

food products and 14 antibiotic resistance-associated genes. Multiple sources, including unexpected ones, and pathogens, including

emerging ones, were involved. Travelling in developing countries and zoonoses are major contributors to food-borne infections, while

food-borne transmission of resistance-associated genes is increasingly reported. However, risk factors and pathogens associated with

food-borne infections likely remain untapped and must be more extensively investigated, monitored and regularly reassessed. Diagnostic

tests based on new technologies and real-time surveillance tools based on microbiology laboratory data are promising approaches to

detect known food-borne infections and decipher new ones. Studies of the microbiota and its relationships with dietary patterns are also

worth being conducted.
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Introduction
Food-borne infections are major causes of public health
concern in developing and developed countries and can have a

considerable social and economic cost [1,2]. Nevertheless,
their global burden remains insufficiently documented. These

infections mostly involve bacteria, viruses and parasites that use
food as vehicle for their transfer from animals to humans and

can generate secondary transmissions between humans [3].
During the past decade the Institut Hospitalo-Universitaire
This is an open access arti
Méditerranée Infection has conducted or been involved in

multiple investigations that aimed at identifying the sources and
strains responsible for food-borne diseases and therefore at

improving the understanding, diagnosis, prevention and control
of these infections. We summarize here its contribution to the

study of food-borne infections.
Methods
We used the following keywords, cross-matched with names
from people of our institution, to search in PubMed, Google
Scholar and ISI Web of Science: food, food-borne, alimentary,

sausage, shellfish, meat, fish, fruit, vegetable, dairy product or
sauce; and infectious, infection, bacteria, virus, parasite,

microorganism, microbe, microbiology, virology, parasitology
or mycology.
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Bacteria
As emphasized by the example of the German outbreak due to

Escherichia coli O104:H4 [4], food-borne bacterial infections can
be due to the presence of bacterial toxins in food. Alternatively,
they can result from the presence of pathogenic bacteria in

food products. In our experience, such infections have been
suspected several times. In 2015, our laboratory data–based

surveillance system, PACASurvE (Provence-Alpes-Côte
d’Azur Surveillance Epidemiologic System) [5], detected several

consecutive abnormal increases in the number of Enterococcus
faecalis infections, especially community-acquired urinary tract

infections, in different areas of the Provence-Alpes-Côte d’Azur
French region [6]. Investigations led us to strongly suspect a

zoonotic origin for the outbreak, with chicken-based food as a
vehicle for the pathogen. Another example is that of Entero-
coccus cecorum, a bacterium rarely involved in human infections

but normally present in the intestinal tract of domestic animals,
which we identified in two patients receiving immunosuppres-

sive drug regimens hospitalized in Marseille public hospitals [7].
In this case, we finally hypothesized that the two infections

originated from food-mediated acquisition of the bacteria
facilitated by immunosuppression. Similarly, in 2016, we were

the first to identify Vagococcus lutrae, a bacterium initially
described in the common otter as a possible human pathogen,
in a hospitalized patient [8]. In this case we also hypothesized

that bacterial infection was food-borne, especially through
consumption of seafood products and possibly promoted by

poor hygiene. In another two studies investigating the epide-
miology of Coxiella burnetii, the zoonotic agent of Q fever,

among children hospitalized in a tertiary-care paediatric hos-
pital in Athens, Greece, and a C. burnetii outbreak in Southern

France, we clearly identified the role of cheese and unpas-
teurized dairy products in human infections [9,10]. Coxiella

burnetii DNA, but not viable bacteria, was also described in
dairy products in France [11].

Fortunately, all food-borne bacteria do not cause diseases in

humans. Most of the time, these bacteria colonize the human
gut without any detrimental impact to the host. Thus, yoghurts

and probiotic food are major sources of living bacteria [12].
Intriguingly, some of our works on food also allowed us to

identify new bacterial species in daily food products. Indeed, we
were the first to identify Gracilibacillus massiliensis sp. nov., a

moderately halophilic Gram-positive bacterium in commercial
table salt originating from the saline of Aigues-Mortes, Southern
France [13]. Moreover, we identified in fermented cow’s milk

products from Algeria a new strain of Lactococcus garvieae, a
bacterial species commonly used in the manufacture of fer-

mented milk products and meats [14]. Also, a study conducted
© 2018 The Authors. Published by Elsevier Ltd, NMNI, 26, S37–S42
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among 331 pilgrims departing from France to the 2011 Hajj

revealed that 8% of them had previously drunk camel milk,
most often in North Africa and Saudi Arabia; such milk has been

involved in several zoonotic infections in humans, including
brucellosis [15].
Antibiotic resistance genes and antibiotic-
resistant bacteria
Antibiotic resistance genes and antibiotic-resistant
bacteria in food-producing animals and vegetables
Our institute proved that food products and food-producing
animals from the Mediterranean Basin are reservoirs for anti-
biotic resistance genes (ARGs) and antibiotic-resistant bacteria

(ARB) (Fig. 1). Indeed, in Algeria and Lebanon, we identified
chicken, cattle and pigs as possible reservoirs for CTX-M, SHV,

TEM, CMY, VIM, OXA-23, OXA-58, aadA, qnrA, qnrB and mcr-
1 producing bacteria [16–22]. Moreover, our work performed

in Béjaïa, Algeria, allowed us to isolate from tomato, lettuce
and parsley freshly purchased in markets three Klebsiella

pneumoniae strains harbouring an OXA-48 carbapenemase
[23].

ARGs and ARB transmitted by food to humans
Some of our works on food and food-producing animals in the
Mediterranean Basin led us to suspect food-mediated trans-

mission of ARB that led to human infections. In a recent work,
we identified that seven extended spectrum β-lactamase–

producing Salmonella serotype Heidelberg detected in broiler
chickens (five strains) and hospitalized humans (two strains)

from Northeastern Algeria belonged to the same sequence type
(ST15), suggesting a possible food-borne transmission of this
strain between chicken and humans through the food chain

[20]. However, as mentioned above, not all food-borne bacteria
are responsible for diseases in humans. In these cases, ARGs

and ARB can be asymptomatically acquired by humans through
food consumption [24]. In our institute, asymptomatic food-

borne acquisition of ARGs and ARB are particularly studied
in pilgrims returning from the Hajj. In these populations, studies

of the gut and pharyngeal carriage of ARB and ARGs in pilgrims
before, during and after the Hajj enabled us to identify an in-

crease in asymptomatic carriage of some ARGs and ARB during
and after this pilgrimage, including blaOXA-51– like Acinetobacter
baumannii and plasmid-mediated mcr-1 and New Delhi metallo-

β-lactamase 5 ARGs [25]. These observations, coupled with the
fact that some pilgrims carried the same ARB clones after

returning from the Hajj [25], led us to suspect food as the main
common reservoir of the ARG/ARB.
nses/by-nc-nd/4.0/).
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FIG. 1. Countries from Mediterranean Basin, Africa and Middle East where identifications of food-borne pathogens in food and/or humans involved

teams from Institut Hospitalo-Universitaire Méditerranée Infection. Virus, bacteria and antibiotic schematics indicate that viruses, bacteria and/or

antibiotic-resistant bacteria/genes have been identified in food (food item schematic) and/or in asymptomatic carriers (green-person schematic) and/or

in diseased patients (red-person schematic). The food item schematic represents some examples of food items that may be involved in transmission of

infectious agents, but they are not necessarily those involved or suspected for a given geographical area/country.
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Parasites and fungi
Toxoplasma gondii–specific immunoglobulin G was found in the
Var Department, Southeastern France, in 17% of muscle
extract samples collected from 841 wild boars [26]. This in-

dicates that consumption of raw or undercooked meat from
wild boars is an important risk factor for infection with T. gondii.

In addition, a total of 18 fungal species from the Ascomycota,
Basidiomycota and Chytridiomycota phyla were detected in faeces

collected from a 27-year-old white woman living in Marseille,
France (16 by culture, seven by PCR), and many of these fungal

species, for which the clinical significance of their presence in
the human gut is unknown, may originate in food [27]. Eight

fungi (Aspergillus flavipes, Beauveria bassiana, Isaria farinosa,
Penicillium brevicompactum, Penicillium dipodomyicola, Penicillium
camemberti, Climacocystis sp. and Malassezia restricta) were

indeed found for the first time in human gut microbiota.
This is an open access artic
Viruses
Hepatitis E virus
During the past decade, research has revealed that hepatitis E
virus (HEV) has a porcine reservoir and has caused food-borne

autochthonous acute hepatitis. In France, we were the first to
describe in 2009 the presence of this virus in two thirds of the
pigs from a farm located in southeastern France [28]. Then in

2010 we linked HEV infection to consumption of pig liver
sausage, which are often consumed uncooked [29]. This was

largely confirmed afterward [30,31]. Consumption of pig liver
sausage purchased in southeastern France was linked to hepa-

titis E in Italy [32]. In southeastern France, consumption of pig
liver sausage was documented in approximately half of the HEV

infections [33]. We showed the stability of HEV prevalence
among farm pigs and the emergence in France of new genotypes
in these pigs and concurrently in humans [34]. Although HEV is
© 2018 The Authors. Published by Elsevier Ltd, NMNI, 26, S37–S42
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mostly documented as involved in likely waterborne outbreaks

in sub-Saharan Africa, we also detected HEV in farm pigs in this
geographical area [35]. Concurrent with being revealed as

having an extensive porcine reservoir, HEV was reported to
cause acute liver failure and death [36,37]. Furthermore, HEV

was shown to be capable of determining chronic hepatitis in
solid organ transplant recipients [38,39]. We found it to be
associated with cirrhosis [39], and it was thereafter confirmed

that HEV could cause cirrhosis as soon as 2 years after infection
[40]. Recently we described a case of hepatocellular carcinoma

in a cirrhotic patient with chronic hepatitis E [41]. Further-
more, HEV infections have been increasingly linked to neuro-

logical disorders [42,43].

Plant viruses
Although animal/human infections and vegetal infections are

distinct fields, there are hints that plants and animals can be
infected by the same, or at least similar, infectious agents. Plant-

associated bacteria and viruses have been found in the gut.
Notably, tobamoviruses were the most abundant RNA viruses

in human stool in one metagenomic study [44]. We further
identified pepper mild mottle virus (PMMoV) in 7% of the stool

samples from 304 adult patients from Marseille University
hospitals; the presence of this virus was associated with fever,
abdominal pain and pruritus [45]. Concomitantly, we found

that 57% of pepper samples or pepper-derived food products
were positive for PMMoV RNA, and PMMoV load was

dramatically high in Tabasco sauce. We then detected tobacco
mosaic virus in 100% of tobacco cigarettes and in the saliva of

45% of smokers [46]. These findings, as well as those from
other studies, question whether plant viruses from food are

only transient passengers in humans, or whether they could
interact with them [47].

Giant viruses
Mimiviruses, which are giant viruses of amoebae first described
in 2003 in our laboratory, were recently found in oysters from

Brazil [48,49]. These mimiviruses, which are common in water
and soil worldwide, have been suspected to cause pneumonia

and were isolated from bronchoalveolar fluid and stools from
patients with pneumonia [50,51].
Conclusion
Food-borne infections appear to involve multiple sources and
agents, and can be unpredictable in some cases. They require

researchers to conduct investigations to decipher or confirm
their sources and modes of transmission. Travel abroad is
© 2018 The Authors. Published by Elsevier Ltd, NMNI, 26, S37–S42
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/lice
highly involved in the transfer of pathogens from one

geographical area to another [52]. This is well exemplified by
investigations conducted on the carriage and transmission of

bacteria and viruses promoted by mass gatherings such as the
Hajj [25], and it warrants collaborations between countries on

both sides of the Mediterranean Sea, such as those (REMEDIER,
GIRAFE) involving our institute.

Zoonoses are other major contributors to food-borne in-

fections. Animal-derived products potentially harbouring
various bacteria and viruses can also travel from one continent

to another, as recently exemplified in our laboratory using
metagenomics for African simian bushmeat seized at a French

airport [53]. Thus, in this study, metagenomic sequencing of the
DNA and RNA viromes detected sequences related to bacte-

riophages from families Siphoviridae and Myoviridae that can
infect bacteria potentially pathogenic for humans such as Bacillus
spp., Enterococcus spp. or Staphylococcus spp. Many sequences

related to DNA from parasites such as Spirometra erinaceieur-
opaei, a tapeworm pathogenic for humans, were also identified.

In addition, food-borne transmission of resistance-associated
genes is increasingly reported.

Taken together, previous findings suggest that risk factors
and pathogens associated with food-borne infections remain

largely untapped and must be more extensively investigated,
monitored and regularly reassessed. Furthermore, they warrant

the implementation of new technology-based diagnostic tests,
approaches and strategies [12,54,55], including culturomics,
proteomics and genomics, to detect known infectious agents

and discover new ones. Moreover, real-time surveillance tools,
including some based on microbiology laboratory data such as

those set up by our institution in southeastern France and in
sub-Saharan Africa, deserve implementation [5,56]. Finally, the

exploration of the microbiota and its relationships with dietary
patterns is another important research field being explored at

the Institut Hospitalo-Universitaire Méditerranée Infection
[57,58].
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