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A B S T R A C T

Objective: Polyether ether ketone (PEEK), a biocompatible polymer, is being explored as an alternative to metallic
alloys for dental implants due to its aesthetic and mechanical properties. This study aimed to enhance the surface
biofunctionality through evaluating human MG-63 osteoblastic cell survival, proliferation, differentiation, and
mineralization.
Method: Following the sandblasting and plasma treatment of the 3D-printed PEEK discs, a layer of hyaluronic
acid (Hya) was coated onto the PEEK surface. Osteoblast cells were seeded onto the discs. The groups consisted of
Hya-coated PEEK, uncoated PEEK, and a control group. Cell viability, proliferation, differentiation, and
mineralization potential were examined after seven and twenty-one days of cell seeding using the MTT test, DAPI
staining technique, alkaline phosphatase activity (ALP), and alizarin red staining.
Results: Hya-coated PEEK increased cell viability (1.48 ± 0.13, 1.49 ± 0.09) compared to the uncoated group
(1.19 ± 0.06, 1.26 ± 0.07) and control group (0.98 ± 0.04, 1.00 ± 0.07) after 7 and 21 days. Proliferation rates
of coated group (60.50 ± 3.08) were greater than the uncoated (50.33 ± 2.58) and control group (38.33 ± 4.88)
at 21 days, respectively. Additionally, the ALP activity on Hya-coated PEEK disks (5.55 ± 0.65, 7.54 ± 0.64) was
notably higher than that of the uncoated group (1.08 ± 0.49, 2.59 ± 0.68), and control group (0.16 ± 0.09, 0.34
± 0.18) at both time periods. Alizarin red staining in the Hya-coated PEEK group (1.81 ± 0.23, 1.97 ± 0.20) was
significantly greater in comparison with uncoated group (1.12 ± 0.17, 1.14 ± 0.19) and control group (0.99 ±

0.10, 0.98 ± 0.05) at both time intervals.
Conclusion: Hya’s surface coating has enhanced the biofunctional properties of PEEK implant material, as
demonstrated by improved cell survival, proliferation, differentiation, and mineralization potential.

1. Introduction

Over the past several decades, implant dentistry has improved oral
rehabilitation for partial and total edentulism (George et al., 2023;
Ismail and Hasan, 2021; Mahmood and Mahmood, 2023; Yokoi et al.,
2023). Implant dentistry faces challenges in finding materials that
mimic human bone physiology, because dental implants transmit
external forces and are susceptible to fatigue failure. Effective implant
biomaterials must exhibit fracture resistance and elasticity (Zheng et al.,
2022).

The biocompatibility, mechanical characteristics, and osseointegra-
tion potential of titanium and its alloys make them ideal dental implant
biomaterials (Rupp et al., 2018). Allergic responses, implant flexibility
that is inconsistent with bone density, stress-shielding, cellular sensiti-
zation, an unappealing gray appearance, and radiography artifact

production are problems. These challenges emphasize the necessity for a
thorough evaluation and investigation of these material (Ananth et al.,
2015; Bosshardt, 2017). (Ananth et al., 2015; Bosshardt et al., 2017).

In cardiovascular, orthopedic, and dental devices, biocompatible
polymers and polymer-based composite materials are being employed as
metallic alloy substitutes (Krishnakumar and Senthilvelan, 2021; Li
et al., 2021). Polyether ether ketone (PEEK) is a commonly used sub-
stitute because of its biocompatibility, bioresistance, and aesthetic ap-
peal (Sacks et al., 2024). With mechanical qualities comparable to those
of human bone, this material has been used in traumatology, orthope-
dics, and spinal implants to reduce bone resorption and stress shielding
(Ananth et al., 2015; Chen et al., 2023).

A successful dental implant procedure involves osseointegration, a
multi-step process involving blood clot formation, mesenchymal tissue
emergence, bone production, and lamellar bone formation following
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implant insertion (Amengual-Peñafiel et al., 2021; Chatzopoulos and
Wolff, 2023). Initiation of osseointegration requires the adsorption of
plasma protein onto a hydrophilic surface. However, the bioinert and
hydrophobic surface of PEEK inhibits osteoblast adhesion, differentia-
tion, and proliferation. Fibro-integration creates a fibrous capsule
around the implant instead of bone. This impairs implant-bone inter-
action, causing failure and indicating the material is unsuitable (Reddy
et al., 2023; Ślusarczyk et al., 2024). Artificial implants must be
biocompatible and bioactive to prevent allergic reactions, chemical
integration, bone-like apatite layer development, and infections from
infiltrating surrounding tissues (Abdulghafor et al., 2024; Kannan et al.,
2024) Surface characteristics and biological components including
proteins, ions, and cells affect implant bone regeneration (Wang et al.,
2023).

Bioactive coatings, including osteoconductive, biocompatible, anti-
microbial, sustained antibiotic release, and corrosion-resistant coatings,
are promising for optimizing the surface properties of implant materials
(Zhou et al., 2023). Hyaluronic acid (Hya), an extracellular matrix
glycosaminoglycan, is being tested for implant use owing to its osteo-
conductivity, good interactions with bone progenitor cells, and sec-
ondary stability. (Luo et al., 2023). The purpose of this study was to
demonstrate the surface biofunctionality of Hya-coated PEEK by
analyzing the survival, proliferation, differentiation, and mineralization
of human MG-63 osteoblastic cells.

2. Materials and methods

2.1. Sample selection and preparations

Using a 3D printer (Essentium HS 240 T, College Station, Texas,
USA),10 mm diameter, 1 mm thick disks were made of PEEK (Victrex
Manufacturing Ltd., Lancashire, United Kingdom). The print settings
were 10 mm/s, 420 ◦C, 0.4 mm, and 0.2 mm for velocity, orifice
diameter, and layer thickness, respectively.

Subsequently, the PEEK disks were sandblasted 10 mm perpendic-
ular to the surface with 50 µm aluminum oxide particulate at 2.7 atm
pressure for 15 s. Distilled water was used to ultrasonically sanitize the
disks for 15 min to eliminate any remaining particles. The plasma sur-
face treatment of PEEK disks was carried out using low-pressure pure
oxygen plasma at 70C◦, 0.4 mbar pressure, and 200 W’ power for ten
minutes.

Hya solution was prepared by dissolving 1 mg of Hya sodium salt
(Mw = ~340 kDa from Streptococcus equi, Bloomage Freda Biopharm
Co. Ltd., Shandong, China) in 1mL of double-distilled water and 2.5 mg/
mL 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and 0.63
mg/mL N-hydroxysuccinimide (NHL) (Sigma Aldrich) were then added.
A PEEK disks was immersed in the solution for 6 h and allowed to dry at
ambient temperature. These samples were designated as Hya-coated
PEEK in the testing group. The cell studies were conducted using Hya-
coated PEEK, uncoated PEEK, and cells only as control group.

2.2. Surface characteristics of the samples

2.2.1. Surface free energy (hydrophilicity test)
The wettability of a material was assessed using the “sessile drop

technique” on four samples of Hya-coated and uncoated PEEK. The
contact angle of two drops of 5 μL deionized water was measured. Im-
ages were captured utilizing ZEISS CCD microscope cameras and Lab-
omed stereo microscopes. Photographs were taken 10 s after the liquid
was released to document a uniform downward motion. ImageJ contact
angle plugin was used to measure the angle.

2.2.2. Attenuated total reflectance - fourier transform infrared spectroscopy
(ATR-FTIR)

FT-IR spectra (600–4000 cm − 1) of uncoated and Hya-coated PEEK
samples in KBr pellets were recorded via a Nicolet 6700 FT-IR

spectrometer using Omnic 8.0 software (ThermoFisher Scientific, Wal-
tham, MA, USA). 64 scans with a spectral resolution of 2.0 cm − 1 were
obtained. The spectra were 11-point smoothed, baseline corrected, and
exported in ASCII format using Origin 6.0 (Microcal Origin, North-
ampton, MA, USA) graph preparation software. A second derivative
technique was used to calculate the shoulder position.

2.2.3. Atomic force microscope (AFM)
The samples’ roughness characteristics were investigated by AFM

using a Veeco SPM (digital instrument) microscope and estimated for
the scanned region (5 µm × 5 µm) using Gwiddyon software.

2.3. Cell culture

The National Center of Genetic Resources in Iran provided MG-63
cells (ATCC: C555) which were cultured in Dulbecco’s Modified Eagle
Medium (DMEM) (GIBCO ™ 41965039) with 10 % fetal bovine serum
(FBS), streptomycin sulfate (100 mg/mL), and penicillin (100 U/mL).
After incubation at 37 ◦C with 5 % CO2, cells were examined for foreign
bodies, contaminated medium, and nonviable cells. The cells were then
incubated for 7 days to achieve the desired density, and the medium was
changed every three days.

2.3.1. Cell viability (MTT assay)
The disks were placed in a 24-well plate, seeded with 5× 104 MG-63

cells per well, and incubated for 7 and 21 days at 37 ◦C. 100 µl of MTT
(MTT stock-diluted 1:10 in culture media) was applied to each well after
a stock solution of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetra-
zolium bromide (MTT) was prepared. The plates were incubated for 3–4
h at 37 ◦C. The assay detects the change in color when MTT (yellow) is
converted to formazan(purple) crystal, which can be used to determine
the percentage of viable cell. Following incubation, the cells’ superna-
tant was removed, and each well received 100 µl of dimethylsulfoxide
(DMSO) for 15 min, which helped to dissolve the crystal. The disks were
taken out of the wells following the DMSO solvent’s solution. A spec-
trophotometer was used to measure the absorbance at a wavelength
of 570 nm.The survival percentage of each treatment sample is deter-
mined as (treatment sample absorption / control sample absorption) ×
100.

2.3.2. Cell proliferation (DAPI staining protocol)
Cells were seeded in 24-well plates and cultivated for 21 days at

37 ◦C and 5 % CO2. After removing the media on day 21, they were
rinsed with phosphate-buffer saline (PBS) and fixed with 4 % para-
formaldehyde (Merck, Darmstadt, Germany) at 4 ◦C for 5 min. After
washing with sterile distilled water, the samples were incubated in 1 µg/
mL 4′,6-diamidino-2-phenylindole (DAPI) stain at 25 ◦C for 10 min.
Excess dye was rinsed with sterile water. All samples were visually
inspected using a fluorescent microscope (Olympus) at a magnification
of × 400, using the OLYSIA Bio Report Soft Imaging System GmbH,
Version: 3.2 (Build 670).

2.3.3. Alkaline phosphatase (ALP) activity
ALP production in osteoblast was measured using a commercial

enzyme-linked Immunosorbent assay (ELISA) kit for human ALP (Zell-
bio GmbH, Germany) according to the manufacture instruction.
Approximately 5 × 104 osteoblasts were cultured in 24-well plate for 7
and 21 days. Absorbance at 450 nm was measured in an ELISA plate
reader (Zellbio GmbH, Germany).

2.3.4. Alizarin red staining
After 7 and 21 days, the cells were washed in PBS, fixed for 10 min at

4 ◦C in 4 % paraformaldehyde (Merck, Darmstadt, Germany), and
stained for 10 min in PBS with 0.5 % Alizarin Red S. Bounded Alizarin
Red was dissolved for 2 h at 37 ◦C using 10 % cetylpyridinium chloride-
CPC in 10 mM Na2HPO4 (pH=7). Optical absorption was measured at
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630 nm using a spectrophotometer and a microplate reader (Biotek Plate
Reader, Winooski, VT, USA).

2.4. Statistical analysis

The data were analyzed using IBM SPSS Statistics for Windows 26.0,
confirming normality and homogeneity through Shapiro-Wilk and Lev-
ene’s tests, followed by one-way ANOVA and post hoc Tukey analysis,
with a P-value of less than 0.05 indicating statistical significance.

3. Results

3.1. Hydrophilicity test

Fig. 1 shows the contact angle data. The uncoated PEEK sample
exhibited the lowest wettability (94.5◦) and the wettability of Hya-
coated PEEK (22.9◦) significantly increased after sandblasting and
atmosphere-plasma treatment with low-pressure oxygen gas.

3.2. ATR-FTIR

Fig. 2 depicts the FTIR spectrum of Hya-coated PEEK, which is
differentiated by several peaks representing the intrinsic functional
groups of the component materials. PEEK shows aromatic C–H stretch-
ing at 2983.45 and 2921.74 cm–1, confirming the existence of aromatic
rings despite low intensity. The C=O ketone stretching at 1533.19 cm–1

may identify ketone groups in PEEK and carboxylic groups in Hya. Peaks
at 1398.19 cm–1 and 1014.41 cm–1 indicate Ether C-O-C stretching in
PEEK polymer chains and sugar moieties in Hya.

3.3. AFM

Fig. 3 shows the three-dimensional morphology of the Hya-coated
and uncoated PEEK disks by AFM. The uncoated and Hya-PEEK sur-
faces exhibited different morphologies. Before coating, the average
roughness (Ra) was 290.7 nm; after coating, it was 79.1 nm. After
coating, the root mean square (RMS) values of the samples decreased
from 337 nm to 100.3 nm. Comparison of the Hya- coated PEEK spec-
imen with the uncoated surface revealed that the roughness of the
former was reduced.

3.4. Cell viability (MTT protocol)

Table 1 shows results of cell viability, proliferation, ALP, and alizarin
red staining. Fig. 5A shows the effect of the Hya on cell viability in the
MTT assay. The viability of MG-63 cells increased in all the groups. The
Hya-coated group showed increased cell viability at 7 and 21 days
compared with the uncoated PEEK and control groups (P<0.001).

Throughout the incubation period, the uncoated PEEK group showed
considerably higher cell viability than the control group (P<0.02).

3.5. Cell proliferations (DAPI staining protocol)

Hya surface treatment increased MG-63 cell numbers and biocom-
patibility, which were statistically significant compared to the control
cells (P<0.001) and cells adhered to uncoated PEEK (P <0.002). The
growth of cells on uncoated PEEK was substantially greater than that of
control cells by day 21 (P<0.001). Phalloidin/DAPI immunofluores-
cence labeling revealed the proliferation of cells on the Hya-coated and
untreated PEEK surfaces (Fig. 4).

Fig. 1. Hydrophilicity test. (A) PEEK disk before Plasma surface treatment; (B). PEEK disk after plasma surface treatment.

Fig. 2. FTIR spectrum of Hya-coated PEEK obtained in ATR mode.

Fig. 3. AFM of the samples (a) uncoated PEEK disk;(b) Hya-coated PEEK.
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3.6. ALP activity

Fig. 5B shows the ALP activity of the MG-63 cells line on different
substrates. On days 7 and 21, the cells cultured on Hya-coated PEEK
disks showed significantly higher ALP activity than those cultured on
untreated PEEK disks and control cells (P <0.001). Cells grown on un-
coated PEEK disks showed greater ALP activity than control cells
(P<0.02).

3.7. Alizarin red staining

Alizarin red staining at 7 and 21 days was used to quantify the
sample mineralization potential (Fig. 5C). Cells grown on Hya-coated

PEEK showed stronger extracellular matrix mineralization than the
control and uncoated groups at both time points (P<0.001). Hya-coated
PEEK consistently outperformed the control and uncoated PEEK groups
in terms of mineralization (P<0.05).

4. Discussion

PEEK is biocompatible and chemically resistant, making it a feasible
substitute for metallic alloys in orthopedic treatments (Lecocq et al.,
2017). PEEK is used in dental implant infrastructures, abutments, and
fixtures but lacks osteoconductivity and is bioinert. Bioactive coatings
improve reliability of osseointegration. Few studies have used PEEK as a
dental implant, suggesting there is insufficient evidence to show that it
can replace titanium for dental implants, despite its promise.

The hydrophilicity test revealed increased hydrophilicity and sig-
nificant changes in surface roughness after Hya coating, confirming the
success of the coating process. Sandblasting and plasma surface treat-
ment are commonly used in industrial procedures because of their cost-
effectiveness and simplicity (Gravis et al., 2018). Oxygen plasma treat-
ment changes fluorine-free polymers. Plasma activated reactive oxygen
species exchange hydrogen atoms or break bonds on polymer surfaces,
creating hydroxyl, epoxy, carbonyl, and carboxyl functional groups
(Mozetič, 2020). These surface functional groups boost the polar surface
energy and wettability, and increased wettability boosts the coating
adherence to PEEK samples (Fukunaga et al., 2020). However, the exact
mechanism underlying this relationship remains unknown. Hya coating
reduced the surface roughness of the PEEK surfaces, similar to oth-
er bioactive and nanoparticle treatments (Liu et al., 2018). Biomaterial
surface roughness’s affects bacterial adherence and dispersion.
Smoother surfaces prevent infections from adhering and growing (Wu
et al., 2020).

After coating, AFM and ATR-FTIR showed Hya on the surface. The
PEEK polymer chain reveals the presence of Hya sugar moieties through
ether C-O-C stretching at 1398.19 cm–1 and 1014.41 cm–1, and the C=O
ketone stretching at 1533.19 cm-1 distinguishes ketone and carboxylic
groups in Hya. The absence of the O–H stretching peak around 3400
cm–1, attributed to hyaluronic acid’s hydroxyl groups, suggests a
chemical interaction between PEEK and hyaluronic acid. (Kwon et al.,
2018; Pan et al., 2017).

These findings indicate that Hya and plasma oxygen boost cell
growth and survival. This is crucial for the biological application of this
modified polymer. Hya inhibited apoptosis and promoted cell survival.
Cell viability on a substance requires cell adherence, making cell
migration, diffusion, proliferation, and differentiation feasible. This
enhances collagen production, wound healing, and tissue regeneration.
Hya may be degraded by reactive oxygen and nitrogen species, and its
surface energy, mechanical characteristics, wettability, and substrate
roughness can affect cell adhesion (Cai et al., 2020).

Research has shown that Hya-coated PEEK enhances osteoblast
viability, proliferation, ALP activity, and alizarin red staining, indicating
improved cellular differentiation and mineralization. Polymeric mate-
rials have better hydrophobicity and lower surface energies than
metallic and ceramic materials (Sundriyal et al., 2021). The greater

Table 1
The biological analysis results of the different studied groups.

biological tests Cells only
(control)

Uncoated PEEK Hya- coated PEEK

MTT assay
Level 7 days
Mean ± SD 0.98 ± 0.04 1.19 ± 0.06 1.48 ± 0.13
Median (Min. –
Max.)

0.99 (0.92–1.04) 1.18 (1.12–1.27) 1.47 (1.29–170)

Level 21 days
Mean ± SD 1.00 ± 0.07 1.26 ± 0.07 1.49 ± 0.09
Median (Min. –
Max.)

1.00 (0.88–1.11) 1.23 (1.18–1.36) 1.48 (1.37–1.63)

DAPI staining
assay

Level 21 days
Mean ± SD 38.33 ± 4.88 50.33 ± 2.58 60.50 ± 3.08
Median (Min. –
Max.)

38.00
(32.00–46.00)

51.00
(46.00–53.00)

61.50
(58.00–73.00)

ALP activity
Level 7 days
Mean ± SD 0.16 ± 0.09 1.08 ±0.49 table5.55 ± 0.65
Median (Min. –
Max.)

0.14 (0.07–0.30) 1.05 (0.29––0
1.75)

5.59 (4.81–6.35)

Level 21 days
Mean ± SD 0.34 ± 0.18 2.59 ± 0.68 7.54 ± 0.64
Median (Min. –
Max.)

0.29 (0.19–0.70) 2.60 (1.60–3.63) 7.66 (6.75–8.29)

Alizarin red
staining

Level 7 days
Mean ± SD 0.99 ± 0.10 1.12 ± 0.17 1.81 ± 0.23
Median (Min. –
Max.)

0.98 (0.90–1.14) 1.10 (0.88 – 1.36) 1.80 (1.57–2.18)

Level 21 days
Mean ± SD 0.98 ± 0.05 1.14 ± 0.19 1.97 ± 0.20
Median (Min. –
Max.)

1.00 (0.91–1.05) 1.12 (0.96 – 1.40) 1.95 (1.74–2.28)

PEEK: polyether ether ketone; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
2H-tetrazolium bromide; DAPI: 4′,6-diamidino-2-phenylindole; ALP: alkaline
phosphatase activity.

Fig. 4. Direct cell culture with DAPI (4′,6-diamidino-2-phenylindole)/phalloidin fluorescent imaging at 400 × after 21 days. (A) control; (B) uncoated PEEK; (C) Hya-
coated PEEK. Blue color is from DAPI for visualizing cell nuclei. Scale bar 20 µm.
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polarity of PEEK helps cell membrane receptors (integrin) adhere via
fibronectin and collagen (Peng et al., 2021). Surface roughness affect
cell survival if it does not promote bacterial accumulation, surface
poisoning, or cell death. Excessively rough surfaces can damage cells
(Deligianni et al., 2001).

Bacterial contamination significantly contributes to implantation-
associated infections, and strategies like biocide leaching, adhesion
resistance, bacteria repulsion, and contact killing have been employed
to minimize or avoid infection (Junter et al., 2016; Valverde et al.,
2019). Hya, a hydrophilic substance with potential for bacteriostasis,
has antibacterial properties due to its water-absorption capacity and
chemical modifications, enhancing its electrostatic bacteria-killing
properties (Junter et al., 2016; Lequeux et al., 2014).

The enzyme ALP regulates the metabolism of inorganic phosphate,
which is essential for bone growth, by hydrolyzing phosphate esters,
increasing the phosphate concentrations and promoting extracellular
matrix mineralization (Yu et al., 2020). Calcium nodules, a character-
istic of osteoblast populations, are typically identified using alizarin red
staining during the latter phases of differentiation in osteoblast cultures
(Kruger et al., 2011). Our results showed that the Hya-coated PEEK
substrate significantly stimulates osteogenesis compared to the un-
coated PEEK and the control, which is consistent with previous studies
(D’Amora et al., 2019, 2018; Ronca et al., 2018).

Factors such as composition, shape, roughness, hydrophilicity, and
functional groups of biomaterial surfaces significantly influence osteo-
blast differentiation, mineralization, osteoblast activities, and bone
formation (Le Guéhennec et al., 2007). Rougher surfaces with higher
hydrophilicity and surface energy may improve fibrin clot adhesion, cell
proliferation, and osteogenic differentiation, possibly improving bone

regeneration (Porrelli et al., 2021). The impact of biomaterial surface
roughness and hydrophilicity on the growth potential of human osteo-
sarcoma cell lines has been well-documented (Tseng et al., 2021).

Hya is widely used in medical fields such as tissue engineering
because of its ability to promote bone growth, cell adhesion, and
angiogenesis (Husseini et al., 2023a, 2023b; Liu et al., 2022). Carboxyl
groups increase cell migration and proliferation by increasing water
absorption and viscoelasticity (Agarwal et al., 2020). Hya inhibits BMP-
2 antagonists and ERK phosphorylation to increase the osteogenic
bioactivity of BMP-2 in MG63 cells. Its synergy with type I collagen may
increase the inhibition of ERK phosphorylation in human mesenchymal
stem cells and promote osteogenesis (Kawano et al., 2011).

Hya is broken down into fragments by hyaluronidases through hy-
drolysis of hexosaminidic β (1–4) linkages between N-acetyl-D-glucos-
amine and D-glucuronic acid. These fragments activate specific cell
responses, including fibroblast proliferation and new vessel formation
(Prosdocimi and Bevilacqua, 2012).

High-molecular weight Hya significantly impacts cellular activity,
regulating migration, differentiation, and adhesion. It improves
biocompatibility, viscosity, and residence duration (Li et al., 2020). In
this study, high molecular weight Hya played a crucial role in cellular
signaling and interactions with macromolecules.

Osseointegration requires at least 4 to 6 months. Histologically, Hya
is retained for 8 weeks in implanted collagen matrices. Hya-coated ti-
tanium implants produced acceptable results (Yurttutan et al., 2023).

Hya interacts with various cell receptors, including CD44, RHAMM,
TLRs, GHAP, ICAM-1, and LYVE-1(Itano, 2008). The primary Hya re-
ceptor is CD44, which affects cell division, proliferation (Johnson and
Jackson, 2021), and bone metabolism (Bonifacio et al., 2023). RHAMM

Fig. 5. A. The vitality rates of MG cell lines cultivated on several materials, including the control group, uncoated PEEK, and Hya coated PEEK, were compared. The
rate was assessed at two distinct time points: 7 days (blue) and 21 days (grey). B. ALP activity for a MG-63 cell line grown on materials that have been treated. The
absorbance at 450 nm is the measure of ALP activity. Each sample’s ALP level was tested on days 7 (blue) and 21 (grey). The ALP activity of the Hya-coated PEEK was
greater than that of the other two groups (P<0.0001), while the uncoated group’s ALP activity rate was higher than that of the control group (P<0.002), indicating a
substantial distinction between the groups. C. Extracellular matrix mineralization was measured using colorimetric methods, and the findings at 7 and 21 days (blue
and grey, respectively) indicate that the Hya-coated PEEK group had a greater level than the control and uncoated PEEK groups (P<0.001).
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regulates cell motility and growth factor response (Zhai et al., 2020).
Hya may activate receptors, cytokines, and signaling complexes simul-
taneously, creating a complicated path that initiates cell differentiation
and proliferation, and actives the appropriate genes (Zhao et al., 2016).
Most studies have focused on the mesenchymal cell receptors CD44,
RHAMM, and TLR4 (Lai et al., 2024). The interactions between Hya and
these receptors can lead to cell differentiation and proliferation.

This study had some limitations. A cell line resembling osteoblasts
was used in vitro, indicating the need for further in vivo studies to
confirm these results. Further research is required to understand bac-
terial adherence and development on PEEK, particularly peri-implanti-
tis, which is a significant issue affecting the long-term effectiveness of
dental implants. However, these findings suggest that Hya-coated PEEK
may be a viable substitute for dental implants.

5. Conclusion

This study revealed that Hya coating improves the surface bio-
functionality and biomedical potential of PEEK by enhancing cell
viability, proliferation, differentiation, and mineralization potential.
These findings suggest the need for further research to enhance the
osteogenic activity of PEEK materials, potentially expanding their ap-
plications in dental and orthopedic implantation.
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