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* amelie.gervais.bio@gmail.com

Abstract

Bumble bee communities are strongly disrupted worldwide through the population decline of

many species; a phenomenon that has been generally attributed to landscape modification,

pesticide use, pathogens, and climate change. The mechanisms by which these causes act

on bumble bee colonies are, however, likely to be complex and to involve many levels of

organization spanning from the community down to the least understood individual level.

Here, we assessed how the morphology, weight and foraging behavior of individual workers

are affected by their surrounding landscape. We hypothesized that colonies established in

landscapes showing high cover of intensive crops and low cover of flowering crops, as well

as low amounts of local floral resources, would produce smaller workers, which would per-

form fewer foraging trips and collect pollen loads less constant in species composition. We

tested these predictions with 80 colonies of commercially reared Bombus impatiens Cres-

son placed in 20 landscapes spanning a gradient of agricultural intensification in southern

Québec, Canada. We estimated weekly rate at which workers entered and exited colonies

and captured eight workers per colony over a period of 14 weeks during the spring and sum-

mer of 2016. Captured workers had their wing, thorax, head, tibia, and dry weight measured,

as well as their pollen load extracted and identified to the lowest possible taxonomic level.

We did not detect any effect of landscape habitat composition on worker morphology or

body weight, but found that foraging activity decreased with intensive crops. Moreover,

higher diversity of local floral resources led to lower pollen constancy in intensively cultivated

landscapes. Finally, we found a negative correlation between the size of workers and the

diversity of their pollen load. Our results provide additional evidence that conservation

actions regarding pollinators in arable landscapes should be made at the landscape rather

than at the farm level.
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Introduction

Bumble bees are economically important pollinators worldwide. Their morphology and

behavior make them sturdy pollinators, able to forage in colder and wetter conditions than

most pollinating insects [1]. Through buzz pollination, they excel at pollinating a variety of

crops such as tomatoes [2], cranberries [3], blueberries [4], apples [5], and haskaps [6]. More-

over, some species can be reared like honey bees for commercial purposes [7] to pollinate

crops in greenhouses [2] or in fields [8]. Currently, there are ~ 250 known species worldwide,

most of them found in temperate, alpine or arctic zones [9].

The global conservation status of bumble bees is unfortunately alarming, as not only popu-

lations but entire species are experiencing steep declines or even facing extinctions. For

instance, Cameron et al. [10] found that the relative abundance of four bumble bee species has

declined by up to 96% within the last 20 years in the United States. Besides, the limits of the

southern range of most of the 67 species investigated by Kerr et al. [11] have shrunk across

continents within the last 110 years. These falloffs do not appear to be random given that some

species are more at risk than others [12,13]. Scientists attribute these declines to a combination

of factors, including climate change [11], intensive use of pesticides [14–18], diseases, parasites

and predation [19–21], as well as landscape simplification [22,23] and the subsequent decrease

in local floral resource availability [21,24,25].

Landscape habitat composition has been found to impact bumble bees at different levels of

organization, likely through mechanisms that alter both the amount and quality of nesting and

foraging habitats. Indeed, bumble bees have been found to show a trait-dependent vulnerabil-

ity to landscape simplification characterized by larger fields of fewer crop types, simplified

crop rotations and less marginal, non-crop habitats [23,26]. Species forming smaller colonies,

building above-ground nests, and having long life-cycles and late queen emergence, were less

abundant in more simplified landscape [23]. The amount of high-value foraging habitats was

also found to positively impact the abundance of colonies and the survival of family lineages

[22,27–29]. Furthermore, colony growth and reproduction are also superior in landscapes

showing higher proportions of natural [24,30] or suburban areas [31,32]. Even at the individ-

ual level, workers found in simplified landscapes were smaller than those inhabiting more

complex landscapes [33]. Landscape habitat composition thus seems to impact bumble bees at

different scales of organization, spanning from communities down to populations, colonies

and even individuals.

Empirical evidence regarding the influence of landscape configuration on bumble bees is

divergent partly because of the diversity of configuration metrics used across studies. For

example, landscape connectivity was not found to impact performance (mass and reproduc-

tion) of colonies [34]. Field size, a proxy of landscape simplification, was found to reduce the

survival of family lineages [27] and the body size of workers [33]. Also, bumble bee abundance

was found to increase with edge density, while species richness decreased with mean area of

forest patches [35]. Bumble bees foraging in fragmentated landscape visited more flowers, flew

longer total distances and tended to stay longer in fragments, compared to those foraging in

unfragmented landscape [36]. The identification of overarching trends from previous studies

is impeded by several other limitations. First and foremost, the lack of a clear theoretical

framework regarding how landscape structure should affect the ecology of organisms [37].

Second, landscape configuration depends partly on landscape habitat composition. Third,

studies vary simultaneously in the metrics and spatial scales used to quantify landscape config-

uration, as well as in the species and levels of organization targeted (i.e., community, popula-

tion, colony or individual).
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Key aspects related to landscape structure, usually investigated outside this concept given

that they require measurements of greater resolution, include the effect of abundance and

quality of floral resources and their spatio-temporal distribution on bumble bees. Virtually all

studies that have examined the impact of floral resources (i.e. diversity, species richness, qual-

ity and/or abundance) have found a positive relationship between them and colony perfor-

mance as measured through gyne and worker production, as well as colony mass [24,31,34,38–

41]. These aspects are clear determinants of the fitness of colonies, but their effects could oper-

ate through individuals, notably workers for which ecological information remains sparse

despite their pivotal role. Floral resource availability may not only dictate the number, size and

morphology of workers that a colony should produce to maximise its fitness, but also the for-

aging behavior of workers [42–44]. In fact, workers of bumble bee nests placed next to mass-

flowering crops, like Phacelia tranacetifolia Benth., made foraging trips of lower duration than

those of nests placed elsewhere [44]. Just as trip duration, trip distance was reduced when colo-

nies were placed in landscapes with more floral resources [45]. Given this, it would be reason-

able to think that workers surrounded by a locally food-rich landscape should carry pollen

loads that reflect the species composition of their local plant community, all other things being

equal. Conversely, workers inhabiting locally poor landscapes likely need to forage farther and

may thus encounter and carry pollen from plant species different from those found near their

colonies. Such relationships have rarely been addressed [42] and could be complicated by the

fact that flower selection is also influenced by floral resources. Workers indeed specialize in a

few plant species (i.e., show flower constancy) when floral resources are abundant, which

makes them more efficient at extracting pollen [46] (but see [47]). On the other hand, in poor

floral habitats, workers tend to broaden their use of flower species likely as a way to reduce

search costs for pollen sources [43,48–50].

Empirical evidence suggests that colony performance also increases with worker body size

[51] and that larger workers outperform smaller ones at various tasks, including foraging

[52,53]. Thus, colonies comprising mainly large workers will presumably acquire more

resources and produce more workers and gynes than colonies with smaller workers [33,47,54–

56]. Yet, larger workers are likely more costly to produce as their size seems to be directly

linked to the quantity of food ingested during the larval stage [57,58]. The body size of workers

should therefore be influenced by the landscape in which they were raised, especially in the

first generations. To our knowledge, the only study that assessed the impact of landscape struc-

ture on the body size of bumble bee workers found that individuals captured in simplified

landscapes were smaller [33]. Hence, colonies founded in landscapes characterized by a low

floral resource availability may end up trapped in a vicious cycle, with small workers bringing

less or lower quality food that would constrain the body size of the next generation of workers,

a phenomenon that would ultimately result in the colony producing fewer or lower quality

gynes.

Here, we quantify the influence of landscape composition and configuration, as well as of

local floral resources, on 1) the body size and morphology, 2) the rate of entries and exits at the

colony, and 3) the pollen loads of Bombus impatiens (Cresson) foraging workers. We also

assess the correlation between worker size and pollen load diversity. We predicted that colo-

nies experimentally placed in landscapes with a high proportion of intensively cultivated row

crops would produce smaller workers with pollen loads more diverse and less similar to the

local plant community, while those placed in landscapes with a high proportion of flowering

crops and local floral resources would produce larger workers with pollen load less diverse and

more similar to the local plant community. Finally, we hypothesized that larger workers would

be more flower constant, which would result in more homogenous pollen loads than those col-

lected by smaller workers.
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Methods

Study sites

The study was carried out in Montérégie and Estrie, two regions of southern Québec (Canada).

The study area (45˚12’45”- 45˚57’53”N; 71˚24’70”–73˚23’38”W; S1 Fig) is characterized by an

east-west gradient of agricultural intensification. The eastern part is home to dairy and small-

scale farms largely composed of hayfields and pastures, which are gradually replaced by large-

scale, continuous, and intense row cropping farmlands mostly devoted to maize, soybean, and

wheat to the west [59]. Forests follow a similar gradient whereby large expanses of forest in the

east become gradually fragmented with increasingly smaller and more isolated forest patches

in the west [60]. Also following the same gradient is the level of surface water contamination

by pesticides, notably glyphosate and atrazine herbicides as well as several neonicotinoid insec-

ticides, found in the streams and rivers of the western part of the study area [61,62].

Colonies

A total of 20 commercial quads (Koppert Biological Systems©), each containing 4 colonies of

Bombus impatiens (Cresson), were installed on 20 different farms on 3 May 2016, and moni-

tored once a week until the natural death of colonies. Commercial colonies were provided

with a vacuum sealed bag holding supplemental sugar water solution to help them survive

through early spring conditions and give time for workers to learn their new spatial environ-

ment. Hence, the responses of bumble bees we measured should not be masked by habitat-spe-

cific adaptations and merely result from phenotypic plasticity. Farms were randomly selected

from a haphazard sample of 40 interested producers with the constraint that they had to be

spaced by> 5 km from each other (mean nearest-neighbor distance ± SD: 69 ± 37 km). The

20 farms covered a large portion of the potential range of combinations between the relative

amount of extensive, flowering and intensive cultures that could be found within a 1-km

radius around a given farm of our study area.

Workers

Once a week, worker entries and exits from each colony were counted for 15 min. Counts

were made between 9h00 and 16h00 and colonies were visited at different times across weeks

to avoid confounding time effects. Starting two weeks after the colony was placed in the field,

we captured one returning worker per colony per week whenever possible. Since most colonies

survived up to 10 weeks, a maximum of 8 workers per colony was captured throughout the

growing season mainly to ensure that colony performance would not be affected by the loss.

We simply used a 50-ml Falcon™ conical centrifuge tube to capture workers. Workers were

then put on ice and frozen at -20˚C upon return to the lab until further processing. After hav-

ing removed their pollen loads (see Pollen sub-section below), we preserved sampled workers

in 70% ethanol until morphometric measurement.

We measured several functional traits key to the role of workers: thorax dorsal (intertegu-

lar) width, wing length, marginal cell length, width and length of the head, and length of the

tibia (pollen corbicula). Thorax dorsal width is positively correlated with the size of flight mus-

cles and consists in the most common measure of bumble bee size [63]. The larger the thorax,

the further a bumble bee can fly [64,65]. In the same vein, wing length, or wingspan, is gener-

ally positively associated with flight range in many pterygote insects [66], including bumble

bees [67]. We also measured the width and length of the head, which are related to feeding

habits [68]. Bumble bees with wider heads can be limited by the type of corolla they are able to

access, while those with longer heads can feed on flowers with deeper corollas [69]. Finally, we
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measured tibia length because a larger pollen corbicula is likely indicative of a greater capacity

to collect pollen and bring larger loads back to the colony. Measurements (± 0.001 mm) were

taken with an electronic Olympus SZX7 microscope fitted with a numeric Olympus IX-TVAD

camera and its associated software (Olympus stream basic). Each trait was measured three

times to ensure repeatability (max 0.1 mm between any two measures). Measurements were

then averaged for all analyses. Lastly, we dried sampled bumble bees at 50˚C for 4 days before

weighing (Adam Equipment, model AAA250L, ± 0.0001 g) individuals with no missing body

parts.

Pollen loads

We removed and colored the pollen carried by workers following Moisan-Deserres et al. [4].

We used repeated 70% alcohol rinses and a mounting needle over a 50-ml Falcon™ conical cen-

trifuge tube to remove all the pollen found on a worker’s body. Tubes were then centrifuged at

3,000 rpm for 12 min to isolate the pollen. The supernatant was then retrieved and the remain-

ing liquid was left to evaporate overnight. We added 5 ml of tween 0.05% to the dry pollen and

20 μl of the solution was then put on a slide and colored using fuchsin-stained glycerin gelatin

[70]. For each slide, a haphazard sample of 150 pollen grains was finally identified to the lowest

taxonomic level possible by a melissopalynology expert equipped with microscope (1000x),

namely Mélissa Girard [71,72].

Landscape characterization

We conducted ground surveys to characterize the habitat composition of the landscapes sur-

rounding experimental sites once during the summer (in August). All polygons (fields, roads,

forests) delineated using orthophotos (scale, 1:15 000) were identified within a 1000-m radius

of each colony. We considered a radius of 1000 m because it should include most of the bum-

ble bees’ foraging ranges [73]. We then calculated the proportion of land covered by the fol-

lowing land use types with QGis [74]: forest, water, urban area, intensive crops (i.e. crops

generally treated with significant quantities of pesticides, such as corn, soybean, wheat and

other small cereals, apples, strawberries), extensive crops (e.g. hay, pastures) and flowering

crops (i.e. nectariferous crops not requiring substantial amounts of pesticides, if any, such as

alfalfa, clover) (S2 Fig). This categorization was assumed to reflect the vegetation structure, the

potential at providing nectar and pollen, and the contamination level by pesticides of the dif-

ferent land use types. We also considered the length of habitat margins (edges) within a

1000-m radius of each colony. Every ecotone delimiting any two land use types we used was

considered and total margin length was computed by QGIS. This landscape metric was used

since a vast array of floral resources of interest to pollinators such as bumble bees can generally

be found within these margins and thus affect food resource availability [9]. Furthermore,

margin length is often positively associated with agricultural landscape structural complexity,

which is deemed favorable on many aspects to farmland biodiversity [26].

Local floral resources

On each weekly visit, we identified to the lowest taxonomic level possible all blooming plants

within a 100-m radius from colonies, and this, in order to estimate the weekly species richness

of flower-bearing plants easily available to bumble bees (i.e., with low travel costs). For the

analyses we used the mean species richness found locally within 10 weeks (number of weeks

where all the colonies were still alive). Although we could not estimate the amount of nectar

and pollen that each plant species could provide to bumble bees, something rather difficult to

do in the field, our index is nevertheless in line with the recommendations of Szigeti et al. [75]

PLOS ONE Landscape influences foraging behavior of Bombus impatiens Cresson (Hymenoptera: Apidae) workers

PLOS ONE | https://doi.org/10.1371/journal.pone.0234498 June 25, 2020 5 / 22

https://doi.org/10.1371/journal.pone.0234498


regarding field measurements of food resource availability based on visual units reflecting the

pollinators’ perspective.

Statistical analyses

Model selection. We first ran models assessing the influence of landscape variables on

each response variable (morphology, foraging activity, pollen load richness and habitat/pollen

similarity) at each of two spatial scales, 500 and 1000 m, in order to determine at which of

these two scales landscape structure was more likely to affect bumble bee workers. We made

this comparison based on the second-order Akaike information criterion (AICc; [76]) using

the most complex models we deemed justifiable to fit (see below). This led us to exclude mod-

els with landscape variables measured at 1000 m because those based on the 500-m scale per-

formed systematically better, except for the thorax (mean ΔAIC = 0.29; S1 Table). Note that we

restricted analyses regarding the morphology of workers to individuals captured at least four

weeks after their colony was placed in the field to ensure that the potential effects on morpho-

metrics would be associated to landscape variables, not the commercial rearing process. We

standardized (zero mean and unit variance) all explanatory variables prior to analyses. We also

assessed the level of collinearity among all explanatory variables used in models based on Pear-

son’s correlation coefficients and variance inflation factors (S2 Fig). Landcover variables being

compositional variables in the sense that they sum to a constant and are implicitly correlated

among one another, it was not surprising that we had to exclude some of these from our analy-

ses. This was the case of the proportion of forest as well as total margin length since they were

collinear with the proportion of intensive crops, a central variable to our main research ques-

tions. Given that compositional variables also reduce the number of true alternative hypothe-

ses that can be considered through a modeling exercise, we further excluded the proportion of

extensive crops. We considered this landcover to be more neutral than others with respect to

bumble bees as hayfields and pastures are rarely treated with pesticides and are characterized

by a much lower food resource availability than alfalfa and clover fields (flowering crops), for

example. Given this, it was difficult to make clear predictions as to the potential effects of

extensive crops. Lastly, we excluded the proportion of urban area since it represented a low

proportion of the area surrounding colonies and was not the focus of this research.

Lastly, we compared the performance of five candidate models for each response variable

based on AICc (Table 1). The set of candidate models first included a null model (intercept

only or intercept + confounders) in order to determine if landscape structure had any bearing

on response variables. The second and third model assessed the influence of intensive and

flowering crops and the additional information that could be provided by local flower species

richness, respectively. The fourth model assessed the possibility that the influence of flowering

crops can be modulated by the amount of intensive crops in the landscape. The fifth and last

model allowed us to determine whether the influence of either intensive or flowering crops

could be additionally modulated by local flower species richness. Large scale effects may

indeed end up being less important in locally rich environments. All mixed models (see below)

were fitted with the lme4 package (v.1.1–21 [77]) in R (v.3.5.0; [78]). The glmmTMB package

(v.0.2.3; [79]) was however used for the foraging activity models because these converged

more easily with this package. Model predictions and coefficients were model-averaged using

the AICcmodavg package (v.2.2–2; [80]) and are reported with their 95% unconditional confi-

dence intervals [76]. Residuals from the most complex model (#5; Table 1) for each response

variable were tested against spatial coordinates using Moran’s Index to assess potential spatial

autocorrelation problems using the DHARMa R packages (v.0.3.1; [81]). No autocorrelation

was found for any of the response variables.
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Morphology. We modeled the influence of landscape variables on the morphology (tho-

rax, wing, head, tibia) and dry weight of bumble bee workers using linear mixed models. All

models included Julian date as a potential confounding variable given that workers’ size varies

through the course of the season [82]. Site (quad) identity was included as a random factor in

all models. We also considered the identity of the colony of origin as an additional random fac-

tor, here as well as for other response variables, but this prevented some models to converge.

Colony identity was therefore left out of all models. Since some workers had missing body

parts, sample size varied among response variables that were analysed. Besides, we only used

sites where at least five workers were collected after the fourth week of the experiment. We

also applied a principal component analysis (PCA) on standardized morphology and weight

measures in order to determine whether we could distinguish different morphological types

based on a combination of functional traits. The PCA was computed with the vegan package

(v. 2.5–1; [83]) in R. Only the workers with no missing body parts and captured after the fourth

week of the experiment were used in the PCA.

Foraging activity. The influence of landscape variables on the foraging activity of bumble

bee workers (total of entries and exits per 15 min) was determined with generalized linear

mixed models including a Poisson distribution and log link function. Potential confounding

variables included in all models comprised temperature (˚C), time of day (24 hour-clock sys-

tem) and Julian date. We used an observation-level random effect in addition to site (quad)

and colony identity to control for overdispersion [84].

Pollen. We modeled the influence of landscape variables on the number of plant species

found in pollen loads carried by bumble bee workers using generalized linear mixed models

with a Poisson distribution and log link function. Sites where less than 5 workers carrying a

pollen load could be captured were excluded from the analyses. We again used site (quad)

identity and observation-level random effects to take potential overdispersion into account

[84]. We further determined if landscape variables affected the difference in flower species

composition of pollen loads and that found within 100 m of colonies as estimated by dissim-

ilarity coefficients (Hellinger distances) computed from presence-absence matrices of the

plant species present in both the pollen loads and the local environment [85]. Dissimilarity

coefficients were computed with the adespatial package (v.0.3–7; [86]) and then regressed

on landscape variable with a linear model. Finally, we assessed whether the flower species

richness of pollen loads was correlated to worker morphology using generalized linear

mixed models with a Poisson distribution and log link function. One model was fitted for

each morphological trait (standardized) as an explanatory variable and included the site and

hive as random effects and the local floral richness (standardized) as an additional fixed

effect.

Results

A total of 264 workers from 76 colonies (20 quads) were captured, measured and had their pol-

len load removed during the experiment in 2016. Among them, 205 workers were also dried

and weighed.

Morphology

Bumble bee foraging workers showed little variation in size with coefficient of variation

ranging between 5.9% and 8.80% (except for dry weight: 36.1%) across functional traits

(mean ± SD): thorax (intertegular) width: 3.943 ± 0.318 mm; wing length: 10.076 ± 0.887 mm;

head length: 3.115 ± 0.185 mm; head width: 2.389 ± 0.144; tibia: 3.981 ± 0.350 mm; dry weight:

0.0490 ± 0.0177 g. All linear trait measurements were highly correlated among one another
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(0.82� r� 0.94) and with (log-transformed) dry weight (0.68� r� 0.77). Since marginal cell

length and head width were highly correlated with wing length (r = 0.97) and head length

(r = 0.93), respectively, their relationships with landscape variables were not investigated to

avoid duplication. None of the traits we considered was related to landscape habitat composi-

tion nor to local floral species richness (Table 2). In fact, the best model was the null for all

traits (0.76� w� 0.82), except for wing length (w = 0.20; Table 1). Although the second-best

model was systematically the one that included simple effects of crop covers and local floral

species richness across traits, Akaike weights remained relatively low (0.12� w� 0.15), again

with the exception of wing length (w = 0.49; Table 1). Lastly, we did not find different morpho-

logical types of bumble bee foraging workers as no distinct groups of observations arose in the

unconstrained multivariate space formed by all functional traits (Fig 1), inasmuch as the total

inertia (i.e., sum of the total variance) of the PCA was only 0.0002. The first two axes displayed

77.01% of the total variance.

Foraging activity

The number of bumble bee workers entering and exiting a colony in 15 min was best explained

by the model that only included time of day and temperature (w = 0.66) and the one that only

included main effects of crop covers (w = 0.20; Table 1). Yet, we only found a negative effect of

intensive crops on foraging worker activity (Table 2; Fig 2). Model selection thus provided no

evidence that the effects of crop covers or local floral resources were modulated by one

another. Finally, we found that foraging activity decreased over the course of the season

(Table 2).

Table 2. Model-averaged coefficients and their unconditional 95% confidence intervals. Model-averaged coefficients were estimated by multimodel inference follow-

ing model selection (see Table 1) and computed with standardized explanatory variables (zero mean and unit variance). Parameters for which their confidence interval

does not overlap zero are shown in bold text. The number of sites (S) and of workers (W) used in analyses are shown where applicable.

Morphology Foraging behavior

Explanatory

variables

Thorax width (S:

19; W:176)
Wing length
(S: 15; W:95)

Head length (S:

19; W; 177)
Tibia length (S:

19; W:165)
Weight (S: 19;
W: 147)

Activity (S:

20)
Pollen load richness
(S: 19; W: 201)

Difference pollen vs
habitat (S: 20)

INT (models

2,3,4,5)

0.01; [-0.05, 0.06] -0.07; [-0.32,

0.18]

-0.01; [-0.05,

0.02]

-0.03; [-0.09,

0.03]

0.00; [0.00,0.00] 0.17; [-0.32,

-0.01]

-0.07; [-0.18, 0.05] 0.02; [0.01, 0.07]

FLO (models

2,3,4,5)

0.00; [0.00, 0.00] 0.00; [0.00,

0.00]

0.00; [0.00,

0.00]

0.00; [0.00,

0.00]

0.00; [0.00,0.00] 0.09; [-0.06,

0.25]

0.00; [0.00, 0.00] -0.01; [-0.02, 0.01]

LOC (models

3,4,5)

0.00; [0.00, 0.00] 0.00; [0.00,

0.00]

0.00; [0.00,

0.00]

0.00; [0.00,

0.00]

0.00; [0.00,0.00] 0.04; [-0.02,

0.01]

0.00; [0.00, 0.00] 0.01; [-0.01, 0.02]

INT X FLO

(models 4,5)

0.00; [-0.06, 0.07] -0.16; [-0.50,

0.17]

0.00; [-0.04,

0.04]

0.00; [-0.07,

0.07]

0.00; [0.00,0.00] 0.03; [-0.14,

0.20]

0.07; [-0.10, 0.25] -0.03; [-0.04, -0.02]

FLO X LOC

(model 5)

0.00; [0.00, 0.00] 0.18; [-0.12,

0.47]

-0.01; [-0.05,

0.03]

-0.04; [-0.11,

0.03]

0.00; [0.00,0.00] -0.02; [-0.09,

0.05]

0.08; [-0.04, 0.20] -

INT X LOC

(model 5)

0.00; [-0.09, 0.09] -0.30; [-0.07,

0.10]

-0.04; [-0.09,

0.01]

-0.02; [-0.12,

0.08]

0.00;

[-0.01,0.00]

-0.01; [-0.10,

0.08]

0.19; [0.03, 0.34] -

JJ (models

1,2,3,4,5,6)

-0.02; [-0.09,0. 05] -0.02; [-0.36,

0.04]

0.00; [-0.04,

0.04]

0.04; [-0.03,

0.12]

0.00; [0.00,0.00] -0.89;

[-0.97,

-0.81]

0.21; [0.11, 0.30] -

JJ X INT (model

5)

-0.01; [-0.09,0.06] 0.16; [-0.31,

0.63]

-0.02; [-0.06,

0.02]

-0.03; [-0.11,

0.04]

0.00; [0.00,

0.00]

- 0.04; [-0.06,0.14] -

Temp. (models

1–6)

- - - - - -0.01; [-0.09,

0.07]

- -

TOD (models

1–6)

- - - - - 0.01; [-0.05,

0.08]

- -

https://doi.org/10.1371/journal.pone.0234498.t002
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Pollen

Bumble bee workers collected pollen from 41 different species (morphotypes) of plants across

the entire study area and over the entire study duration (S1 Table). While the species richness

of pollen loads averaged 5.9 ± 1.7 across experimental sites, the number of species detected in

pollen loads carried by individual workers had a mean of 5.8 ± 4.2 species. The species most

frequently collected were Picea sp. (found on 56.6% of workers), Taraxacum officinale (60.5%),

and Salix sp (62.9%). Species richness was best explained by the model that only included

main effects of crop covers (w = 0.45), followed by the one that also included local floral species

richness (w = 0.23; Table 1). Yet, we also found evidence that the effect of intensive crops was

modulated by local floral resources (Table 2; Fig 3). Pollen load species richness decreased

with intensive crop cover at low local floral species richness, but remained relatively stable

when the latter was high (Fig 3).

The difference in plant species composition between pollen loads and the colony’s sur-

rounding (100-m radius) was best explained by the model including crop covers, local floral

species richness, and the interaction between intensive and flowering crops (w = 1.00;

Table 1). All of the other models were barely supported by the data (Table 1). Differences in

species composition increased with intensive crops when the amount of flowering crops was

low, but this effect decreased in size as the cover in flowering crops increased and was about

null at high flowering crop covers (Table 2; Fig 4).

Finally, we looked at the correlation between the morphology of workers and the species

richness of their pollen loads. The size of functional traits was negatively correlated with spe-

cies richness, indicating that larger workers collected pollen loads composed of fewer plant

species. When taking into account the local floral richness at each site, the functional traits

Fig 1. Principal component analysis (PCA). Plot showing the multivariate variation among 80 Bombus impatiens
workers with respect to their morphometric measurements. Vectors indicate the direction of the functional trait to the

overall distribution. The first two principal axes explained 77.01% of the variance.

https://doi.org/10.1371/journal.pone.0234498.g001

PLOS ONE Landscape influences foraging behavior of Bombus impatiens Cresson (Hymenoptera: Apidae) workers

PLOS ONE | https://doi.org/10.1371/journal.pone.0234498 June 25, 2020 10 / 22

https://doi.org/10.1371/journal.pone.0234498.g001
https://doi.org/10.1371/journal.pone.0234498


best correlated with pollen load species richness were wing length (slope estimate: -0.15; 95%

CI [-0.21, -0.08]) and thorax width (-0.09; 95%CI [-0.15, -0.03]), and to a lesser extent, tibia

length (-0.08; 95%CI [-0.14, -0.02]), marginal cell length (-0.07; 95%CI [-0.13, -0.01]), head

length (-0.06; 95%CI [-0.12, 0.00]) and head width (-0.06; 95%CI [-0.12, 0.00]). Pollen load

species richness was not found to be related to dry weight (-0.01; 95%CI [-0.13, 0.11]; Fig 5).

Discussion

Morphology

The morphology and size of Bombus impatiens workers were not influenced by either land-

scape habitat composition nor local floral species richness. This lack of relationship contradicts

our predictions as well as the results from other research. Landscape simplification, habitat

fragmentation and pesticide use were indeed previously found to lead to the production of

smaller bumble bee workers and solitary bees [33,87–89]. Moreover, B. impatiens workers are

known to show an important size difference (up to tenfold) even within a given colony [58].

This variation partly stems from the position of larvae in the nest, which in turn dictates the

amount of food resources fed to future workers [58]. Greater food availability for the larvae

also generally translates into larger workers [9,57,90]. Larger workers usually end up being for-

agers, and smaller ones manage the nest and raise the brood. In the event of a shortage of large

foragers and deficient foraging, smaller workers should switch roles and begin to forage [9].

This is not the pattern we observed as foraging workers barely varied in morphology and body

size, even among contrasting landscapes. One possible explanation for this could be that we

used commercially reared bumble bee colonies, which were thus likely to be genetically similar.

Fig 2. Influence of intensive crops (500-m radius) on the foraging activity (log(entries and exits in 15 min)) of

Bombus impatiens workers. Data from the 20 clusters composed of 4 experimental colonies (quads) of Bombus
impatiens monitored in 2016 in Southern Québec, Canada. Model-averaged predictions under average conditions are

shown with 95% unconditional confidence intervals.

https://doi.org/10.1371/journal.pone.0234498.g002
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A reduced genetic variance among colonies may have in turn induced lower levels of pheno-

typic variance or plasticity [91,92]. This being said, the decrease in worker body size of 4 bum-

ble bee species over 125 years in New Hampshire, USA, as well as the fact that this decrease

was more pronounced for the 2 largest species, which populations are also declining [93], cer-

tainly stress the need for further research regarding how landscape modification may affect

bumble bee morphology and fitness, and ultimately population dynamics.

Foraging activity

As predicted, the proportion of intensive crops had a negative impact on the foraging activity

of bumble bee workers (Fig 2). Although studies addressing the influence of landscape struc-

ture on bumble bee foraging remain scarce, several studies have found that the occurrence of

arable fields and pesticides in the landscape surrounding colonies can impact the foraging

behavior and distance travelled by workers [45,94–98]. Evidence shows that pesticides, and

notably neonicotinoid insecticides, can kill individuals or, when absorbed in sublethal doses,

lead to disorientation, memory loss, and slower learning processes in bumble bees, honey bees,

and stingless bees [17,94–96,99]. The negative effects of pesticides on bees, which are known

to be weather- and landscape-dependent [100], may thus result in a less effective working

force, and ultimately impact the foraging and fitness of colonies. Empirical support for these

contentions is accumulating. For instance, Arce et al. [95] found that colonies exposed to

clothianidin had lower return rates of foraging bees than control ones. Also, experimental

bumble bee colonies established in intensively cultivated areas, generally show reduced weight

Fig 3. Species richness found in pollen loads of 205 Bombus impatiens workers as a function of the interaction

between the proportion of intensive crops (500-m radius) and local floral richness (100-m radius). Workers were

captured from 20 clusters composed of 4 experimental colonies of Bombus impatiens monitored in 2016 in Southern

Québec, Canada. The dotted and solid lines represent pollen load richness when local floral richness was low (<8) and

high (�8 species), respectively. Model-averaged predictions under average conditions are shown with 95%

unconditional confidence intervals.

https://doi.org/10.1371/journal.pone.0234498.g003
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gains and survival rates [15,16,18,32,101]. Although we did not measure the levels of pesticide

contamination in our experimental sites, the cover in intensive row crops has been found to be

related to pesticide concentrations, including that of several neonicotinoids, in surface water

[61,62] and insects [102] within our study area. Furthermore, the presence of arable fields in

the landscape increased the foraging distance of all five bumble bee species studied by Redhead

et al. [45], a consequence that may also lead to fewer and longer foraging trips [97], and ulti-

mately contribute to less activity at the entrance of the colony.

We hypothesized that increasing amounts of flowering crops and local floral species rich-

ness would increase foraging activity by providing closer and more abundant food sources. In

fact, Redhead et al. [45] found that a semi-natural habitat and flower density decreased the for-

aging distance of five bumble bee species, which should reflect positively on the activity level at

the entrance of colonies, by encouraging workers to perform more frequent and shorter trips,

[44]. Furthermore, mass flowering crops, such as oilseed, alfalfa and clover, were found to be

beneficial to bumble bee colonies [103]. Yet, we found no effect of flowering crops or local

plant richness on foraging activity. This could be explained by the fact that flowering crops are

only in bloom for a shorter time than the period during which we monitored colonies and

their workers’ activity level. After blooming, flowering crops like alfalfa and clover could repre-

sent a relatively neutral habitat, where there is no harm aside from increasing distances, but

also no food. Hence, flowering crops could have a positive, neutral or negative impact on the

foraging activities of bumble bees depending on their own blooming phenology and that of

alternative floral sources.

Fig 4. Difference (Hellinger distance) in plant species composition of pollen loads of Bombus impatiens workers

and surrounding habitat (100-m radius) as a function of the interaction between the proportion of intensive and

flowering crops (500-m radius). Workers were captured from 20 clusters composed of 4 experimental colonies of

Bombus impatiens monitored in 2016 in Southern Québec, Canada. The dotted and solid lines represent cases where

the proportion of flowering crops was low (<15%) and high (�15%), respectively. Model-averaged predictions under

average conditions are shown with 95% unconditional confidence intervals.

https://doi.org/10.1371/journal.pone.0234498.g004
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Pollen

Providing sufficient abundance, pollen diversity is beneficial to bees because it allows them to

select flowers according to their nutritional needs [40,41]. In fact, bumble bees are known to

show flower constancy in presence of a generous supply of flowers [48,104], a high level of

flower richness [48], and a short travel distance to or among flowers or groups of flowers [50].

We hence expected greater flower constancy from workers and a resulting decrease in flower

species richness of their pollen loads with more abundant floral resources, especially when

local. However, flowering crops did not affect flower constancy. Moreover, intensive crops had

barely any effect on the level of flower constancy when local floral resources were species-rich

but provoked an increase in flower constancy that became more important as local floral

resources became species-poor (Fig 3). Although flower constancy is advantageous for plants

because it increases their chances of passing along their pollen grains to a nearby plant of the

same species, the benefits of flower constancy for bees are still unclear. Two non-mutually

exclusive hypotheses, the “learning” and the “memory” hypotheses, have been put forward to

address such benefits. The first implies that pollinators require a substantial amount of time to

learn to recognize and handle different types of pollen, while the second suggests that pollina-

tors are limited in their ability to recognize or manipulate more than a few flower types [104].

Either way, it seems more adaptive for workers to focus on a single or very few plant species in

presence of sufficient appropriate food resources as they can then become more efficient at

finding and extracting pollen and nectar from the plants [105,106]. Our results suggest that

such learning and memory constraints may have been exacerbated by the presence of the neo-

nicotinoid pesticides [94,107] associated to intensive row crops in our study area. Note that

Fig 5. Matrix of correlation between pollen richness, weight, thorax width and wing length of 205 Bombus
impatiens workers captured from 80 colonies placed on 20 sites during the summer of 2016 in Southern Québec,

Canada.

https://doi.org/10.1371/journal.pone.0234498.g005
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our results do not support the possibility that workers switched their pollen selection towards

row crops as we did not find significant quantities of cereal pollen in their pollen loads (S2

Table). Future studies will thus face the challenge of not only considering local floral richness

as we did, but also attempt to take into account the abundance, quality and pesticide contami-

nation of flowers at various spatial scales.

We expected that the difference in flower species composition of pollen loads and the sur-

rounding local plant community would decrease with (overall) floral resource availability, and

especially when flowers are abundant locally. Although there was no effect of flowering crops,

our results are in line with this prediction as we found a positive influence of intensive crops

on species composition differences that increased in magnitude as flowering crop cover

decreased (Fig 3). When flowers were abundant within 500 m, bumble bee workers likely

tended to forage closer to the nest [44] and may have thereby reduced the differences in species

composition between their pollen loads and locally available plants. In contrast, when sur-

rounded by low proportions of flowering crops, workers probably had to forage further, espe-

cially at high intensive crop covers, and thus may have been more likely to encounter or more

constrained (see previous paragraph) to use a larger array of plant species. Differences in spe-

cies composition of pollen loads and surrounding plant communities have mostly been inves-

tigated to estimate the distance reached by foraging bees [108] or to evaluate pollen selection,

but at the colony level [109,110]. To our knowledge, only one other study compared the plant

species composition of pollen loads at the worker level to that of their local plant communities

but did not address the understudied determinants of such differences [42].

Lastly, we found as expected a positive correlation between the flower constancy of a bum-

ble bee worker and its body size. The two functional traits most correlated with flower con-

stancy were thorax (intertegular) width and wing length, which both show an allometric

relation with body mass [63,111]. Larger workers, at least in Bombus terrestris, are considered

better at different tasks, including foraging [47,53,55]. Furthermore, larger workers have big-

ger eyes, which makes them better at detecting flowers and foraging under lower light intensity

[112,113]. Hence, larger workers may be able to discriminate and find specific flowers more

easily, which thereby allows them to be more flower constant. In spite of this apparent advan-

tage, producing larger workers is not without costs to a colony. For instance, although the larg-

est B. terrestris workers are better at gathering resources, their life expectancy and rearing costs

are such that the best trade-off for a colony lays with intermediate-size workers [56]. Similarly,

intermediate-size Megachile rotundata females were found to carry the largest pollen loads

[68]. There is clearly a complex trade-off involving the number and size of workers as well as

their foraging efficiency, survival and production costs. It would be interesting to determine

the role of flower constancy in this trade-off and investigate how landscape structure may

modulate the optimal solution(s).

In conclusion, we aimed to investigate the importance of landscape context and local floral

resources for bumble bee foraging workers. We found no evidence that worker morphology

or size was influenced, likely as a result of low genetic variance or plasticity associated with

their commercial rearing, but we observed that their foraging behavior, both in terms of

activity and pollen collection, was affected by landscape composition and local floral

resources. We also found that bigger workers collected fewer pollen types, which could be an

indication of size-dependent foraging behavior or efficiency. It would be interesting to redo

the experiment, but with natural colonies to ensure genetic diversity and thus, variability.

Furthermore, we bring additional evidence that conservation actions concerning pollinators

in agricultural contexts should target landscape-level objectives rather than limit themselves

to the farm level.
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96. Gómez-Escobar E, Liedo P, Montoya P, Méndez-villarreal A, Guzmán M, Vandame R, et al. Effect of

GF-120 (Spinosad) Aerial Sprays on Colonies of the Stingless Bee Scaptotrigona mexicana (Hyme-

noptera: Apidae) and the Honey Bee (Hymenoptera: Apidae). J Econ Entomol. 2018; 111: 1711–

1715. https://doi.org/10.1093/jee/toy152 PMID: 29868713

97. Gill RJ, Raine NE. Chronic impairment of bumblebee natural foraging behaviour induced by sublethal

pesticide exposure. Funct Ecol. 2014; 28: 1459–1471. https://doi.org/10.1111/1365-2435.12292

98. Kenna D, Cooley H, Pretelli I, Ramos Rodrigues A, Gill SD, Gill RJ. Pesticide exposure affects flight

dynamics and reduces flight endurance in bumblebees. Ecol Evol. John Wiley & Sons, Ltd; 2019; 9:

5637–5650. https://doi.org/10.1002/ece3.5143 PMID: 31160987

99. Stanley DA, Russell AL, Morrison SJ, Rogers C, Raine NE. Investigating the impacts of field-realistic

exposure to a neonicotinoid pesticide on bumblebee foraging, homing ability and colony growth. J

Appl Ecol. 2016; 53: 1440–1449. https://doi.org/10.1111/1365-2664.12689 PMID: 27867216
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