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Abstract

Background: NF-kB is an evolutionarily conserved transcription factor that controls the expression of genes involved in
many key organismal processes, including innate immunity, development, and stress responses. NF-kB proteins contain a
highly conserved DNA-binding/dimerization domain called the Rel homology domain.

Methods/Principal Findings: We characterized two NF-kB alleles in the sea anemone Nematostella vectensis that differ at
nineteen single-nucleotide polymorphisms (SNPs). Ten of these SNPs result in amino acid substitutions, including six within
the Rel homology domain. Both alleles are found in natural populations of Nematostella. The relative abundance of the two
NF-kB alleles differs between populations, and departures from Hardy-Weinberg equilibrium within populations indicate
that the locus may be under selection. The proteins encoded by the two Nv-NF-kB alleles have different molecular
properties, in part due to a Cys/Ser polymorphism at residue 67, which resides within the DNA recognition loop. In nearly all
previously characterized NF-kB proteins, the analogous residue is fixed for Cys, and conversion of human RHD proteins from
Cys to Ser at this site has been shown to increase DNA-binding ability and increase resistance to inhibition by thiol-reactive
compounds. However, the naturally-occurring Nematostella variant with Cys at position 67 binds DNA with a higher affinity
than the Ser variant. On the other hand, the Ser variant activates transcription in reporter gene assays more effectively, and
it is more resistant to inhibition by a thiol-reactive compound. Reciprocal Cys,-.Ser mutations at residue 67 of the native
Nv-NF-kB proteins affect DNA binding as in human NF-kB proteins, e.g., a Cys-.Ser mutation increases DNA binding of the
native Cys variant.

Conclusions/Significance: These results are the first demonstration of a naturally occurring and functionally significant
polymorphism in NF-kB in any species. The functional differences between these alleles and their uneven distribution in the
wild suggest that different genotypes could be favored in different environments, perhaps environments that vary in their
levels of peroxides or thiol-reactive compounds.
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Introduction

The transcription factor NF-kB regulates a broad range of

biological processes including innate and adaptive immunity, cell

growth, differentiation, apoptosis, and tumorigenesis [1]. In addition,

NF-kB is involved in mediating cellular responses to numerous

environmental stressors. Stressors that can activate the NF-kB

pathway in insects and vertebrates include pathogens, ultraviolet

light, oxidative stress, and shear stress. Given that the same stressors

can activate the NF-kB pathway in insects and vertebrates, the role of

NF-kB in combating stress must predate the radiation of triploblastic

animals, a process that was already well underway during the

Cambrian explosion (542–525 million years ago).

The NF-kB signaling pathway is primarily controlled by subcellular

location. In response to an appropriate stressor or stimulus, NF-kB is

released from a latent cytoplasmic state and enters the nucleus to

activate the transcription of a diverse set of effector genes including

ones encoding antimicrobial peptides, mucin, heat-shock factors, and

anti-oxidant proteins [1,2]. Target genes of NF-kB contain DNA-

binding sites (‘kB sites’) in their promoters/enhancers.

NF-kB binds to a kB site as a dimer via sequences in the

conserved DNA-binding/dimerization domain called the Rel
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homology domain (RHD) [3]. The presence of an RHD

characterizes a superfamily of proteins that includes the Rel/

NF-kB family and the NFAT family. Multiple RHD proteins have

been identified in the genomes of individual protostomes and

deuterostomes. The human genome encodes ten RHD proteins

(NF-kB1, NF-kB2, Rel, RelA, RelB and NFAT1-5), and the

Drosophila genome encodes four RHD proteins (Dorsal, Dif, Relish,

and NFAT). No RHD proteins are encoded in the sequenced

genomes of fungi or the choanoflagellate Monosiga brevicolis,

suggesting that the RHD domain originated early in metazoan

evolution [4,5]. A single RHD-containing NF-kB-like protein was

identified in the demosponge Amphimedon queenslandica [4];

however, no NFAT-like protein has yet been found in Amphimedon

or any other sponge. The presence of distinct NF-kB and NFAT

proteins in two cnidarians—the sea anemone Nematostella vectensis

and the coral Acropora millepora—indicates that the RHD proteins

had begun to diversify prior to the cnidarian-triploblast diver-

gence, which occurred ,700 million years ago [6,7].

NF-kB dimers bind to DNA with high affinity and make multiple

contacts with the kB site [8]. One highly conserved element

required for DNA binding by all NF-kB proteins is a DNA

recognition loop, which has the consensus sequence RFRYXCEG.

Almost all known members of the Rel/NF-kB subfamily, including

the NF-kBs of Amphimedon and Acropora, have Cys at position 6 of this

sequence (Figure 1; Figure S1). Only the Relish protein in several

insects and the previously reported Nematostella NF-kB protein (Nv-

NF-kB) have Ser at position 6 [6,9,10]. All known NFAT proteins

have Thr at this position (Figure 1).

In some human RHD-containing proteins, a Cys-to-Ser

mutation at position 6 of the DNA recognition loop has functional

Figure 1. Phylogenetic relationships among major metazoan lineages and sequence of the DNA recognition loop in Rel Homology
Domain proteins. The phylogeny depicts the evolutionary relationships among taxa whose genomes have been sequenced. Multiple RHD proteins
are encoded in the genomes of all of these animals except the nematode Caenorhabditis elegans, which appears to lack RHD proteins entirely, and
the sponge, Amphimedon queenslandica, which appears to possess only a single RHD protein with similarity to NF-kB. The amino acid sequence of the
DNA recognition loop is shown for every known RHD protein in these animals.
doi:10.1371/journal.pone.0007311.g001
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consequences. A Cys-to-Ser mutation at this position in human

RelA or c-Rel greatly increases the DNA-binding activity of each

protein [11–13]. In addition, certain thiol-reactive compounds can

inhibit DNA binding by wild-type Cys-containing RelA or c-Rel,

but the same compounds do not affect the corresponding Cys-to-Ser

mutants [12–16]. Furthermore, conversion of the Cys to Ser can

render NF-kB proteins resistant to redox regulation. The thiol

group in the Cys of the DNA recognition loop has been shown to be

important for DNA binding [11,17,18], with this residue (Cys62 in

human p50) being a known site of redox control [14,18–23].

In this paper, we show that two Nv-NF-kB alleles encoding

proteins with different DNA-binding and transactivation properties

are present in wild Nematostella populations. Both alleles are widely

distributed along both the Atlantic and Pacific coasts of the US. This

is the first demonstration of a highly prevalent functional

polymorphism within an NF-kB protein in any species. The

functional differences between these variants suggest that departures

from Hardy-Weinberg equilibrium observed in natural populations

are due, at least partially, to selection acting on this locus.

Results

The presence of multiple NF-kB alleles in Nematostella
When we initially identified NF-kB transcripts among Nematos-

tella expressed sequence tags (ESTs) that were generated as part of

the genome-sequencing project [24], we noted a Cys/Ser

polymorphism at residue 67 (position 6 of the DNA recognition

loop). Three of the eight NF-kB ESTs encode a Cys at this

position (RFRYPCEG), while the other five ESTs encode a Ser

(RFRYPSEG). This polymorphism is of interest because the

presence of either Cys or Ser in this position of the DNA

recognition loop has been previously shown to impact DNA-

binding activity [11–13], redox regulation, and the effect of thiol-

reactive compounds [12–16] in certain vertebrate RHD proteins.

To determine whether there are additional differences between

these two alleles, we cloned and sequenced cDNAs for the entire

protein-coding region for each allele from laboratory animals. This

analysis revealed 19 nucleotide differences between the two

cDNAs within the coding region, ten of which result in amino

acid substitutions (Figure 2A; Figure S2). For simplicity, we will

refer to these two alleles as the Cys and Ser variants.

As the degree of evolutionary conservation can predict which

sequence variants are likely to have the most pronounced

phenotypic consequences [25], we compared all of the Nv-NF-

kB protein-coding polymorphisms against the homologous posi-

tions in other taxa [6]. Five of the amino acid polymorphisms in

Nematostella reside in relatively rapidly evolving portions of the

protein that cannot be unambiguously aligned with homologous

positions in distantly related animals (22:Q/R, 208:S/N, 400:D/E,

423:P/S, 433:S/L; Figure 2). Four of the polymorphisms reside at

Figure 2. Location of polymorphic positions in the Nv-NF-kB protein and gene. (A) As indicated, ten protein-coding differences were identified in
a comparison of laboratory strain-derived Ser67 and Cys67 alleles. Six of the variable residues are in the highly conserved Rel Homology Domain (RHD). At
each variable position, the amino acid encoded by the Cys67 allele is depicted above the diagram, and the amino acid encoded by the Ser67 allele is
depicted below the diagram. The full-length Nv-NF-kB protein is 440 amino acids long (scale bar at bottom). (B) The locations of polymorphic amino acids
are shown relative to the structure of the Nv-NF-kB gene. (C) The region of the Nv-NF-kB gene amplified in the population genetic survey extends from
exon two to exon four, including two introns. The variable nucleotide positions identified in this survey are numbered from 1–7.
doi:10.1371/journal.pone.0007311.g002
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positions that vary among human NF-kB/Rel proteins (216:E/Q,

218:V/A, 226:E/K, 269:A/E). By contrast, the Cys/Ser polymor-

phism at position 67, which resides within the DNA recognition

loop, occurs at one of the most evolutionary conserved positions in

the RHD superfamily of proteins. The homologous position is

occupied by a Cys in every other reported member of the NF-kB/

Rel family, with the exception of the Relish protein of several insect

species (Figure 1; Figure S1).

We were also able to align seven of the ten polymorphic residues

in Nv-NF-kB with a partial protein sequence from the coral

Acropora millepora; this is the most closely related species to

Nematostella for which a published NF-kB sequence is available

(Figure S3). At four of these seven variable positions, including the

Cys/Ser polymorphism in the DNA recognition loop, the coral

sequence is identical to the Cys allele of Nematostella. At one

position, the coral protein is identical to the Ser allele, and at the

final two positions, the coral protein differs from both Nematostella

alleles. If we root the evolution of the Nematostella alleles using the

coral sequence, we can infer that the Ser allele of Nematostella is

derived from an ancestral Cys allele, and that the Ser allele

experienced non-conservative substitutions at positions 216, 226,

and 229 (Figure 3).

Different Nv-NF-kB alleles are present in wild populations
of Nematostella

Most laboratory strains of Nematostella and all of the ESTs

generated by the genome sequencing project were derived from a

long-standing laboratory culture initiated with animals collected

from Rhode River, Maryland, ,20 years ago [26]. To determine

whether Cys and Ser alleles are both represented in natural

populations and if so, to characterize the natural distribution of

these alleles, we compared a 159-nucleotide fragment of the Nv-

NF-kB gene from 403 animals collected from 23 populations

throughout Nematostella’s global range (Table 1; Figure S4).

The 403 animals sequenced in this study harbored polymor-

phisms at seven different positions within a 159 bp stretch of NF-

kB (Table 2; Figure S4). Five of these polymorphic positions reside

in intronic regions (#’s 1–4, 7; Figure 2C). One of the two exonic

polymorphisms is silent (#5), and the other is the Cys/Ser coding

polymorphism.

Together, the seven polymorphic positions define five distinct

alleles, four alleles that encode Cys at position 67 (C1-C4) and one

allele that encodes Ser (Table 2; Figure S5). Two of the five alleles

were geographically widespread. The most common allele (C1)

was recovered from every estuary sampled, and exhibited a global

frequency of 77% (Tables 1, 2). The second most abundant allele

(S1) was recovered from eight different estuaries in Nova Scotia,

Massachusetts and California. The global frequency of the S1

allele was 15%. The remaining three alleles (C2-C4) are slight

variants of C1 that differ at one or both of the flanking SNP

positions (positions 1 and 7; Table 2; Figure 4), both of which

reside in introns. These alleles have a more limited distribution,

with allele C3 occurring only in Baruch, South Carolina, allele C4

occurring only in Nova Scotia, and allele C2 occurring only in

Nova Scotia and England (Table 1; Figure 4).

The two major Nv-NF-kB alleles show variable
geographic distribution

Because the differences among the four Cys alleles do not affect

the protein sequence and are therefore unlikely to have fitness

Figure 3. Inferred evolution of polymorphic positions. A partial coding sequence of the coral Acropora millepora was used to root a
phylogenetic tree relating the two Nematostella alleles. A neighbor-joining tree was constructed using the computer program Phylip (version 3.6).
Distances between sequences were computed using the first 330 amino acids of the alignment (shown in Figure S3) and the JTT distance matrix.
Numbers below branches indicate phylogenetic distance (in units of expected number of substitutions per residue). Positions that are polymorphic in
Nematostella are shown to the right. The Acropora sequence was identical to one of the two Nematostella variants at five positions (double-headed
arrows). For each of these five positions, substitutions were mapped to either the branch leading to the Ser allele or the branch leading to the Cys
allele, assuming that the condition found in Acropora is the ancestral state.
doi:10.1371/journal.pone.0007311.g003
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consequences, we pooled all of the Cys alleles and then evaluated

the geographic distribution of Cys versus Ser alleles and genotypes

(Table 1; Table 3; Figure 5). Of the 403 animals we genotyped, we

identified 309 Cys/Cys homozygotes, 23 Ser/Ser homozygotes,

and 71 heterozygotes (Table 1). The global FST value (0.56)

indicates a high degree of genetic differentiation among subpop-

ulations for this polymorphism (far fewer heterozygotes were found

than expected if there were random mating among all individuals),

which is consistent with previous population genetic studies on this

species [27,28]. However, the FIT value (20.19) is negative (there

were more heterozygotes than expected within individual

subpopulations). The excess of heterozygotes is particularly

pronounced at Crescent Beach and Mahone Bay in Nova Scotia,

and in the two California sites. The only wild populations that

exhibited a deficit of heterozygotes were in Nova Scotia (Noel and

Peggy’s Cove). In Noel, the only Ser alleles identified were

recovered from a single homozygous individual. In Peggy’s Cove,

eight of nine individuals were Ser/Ser homozygotes, and the

remaining individual was Cys/Cys. The Peggy’s Cove site is

noteworthy for having by far the greatest excess of Ser/Ser

homozygotes. In the laboratory population, which was originally

collected from Rhode River, Maryland but has been reproducing

under laboratory conditions for several years, all three genotypes

were present at their expected frequencies under Hardy-Weinberg

equilibrium.

Proteins encoded by the two alleles differ in DNA-
binding and transactivation abilities

To determine whether there are differences in the activities of

the proteins encoded by the two Nv-NF-kB alleles, we first

subcloned their complete coding sequences into a mammalian cell

expression vector (pcDNA) such that each protein would have an

epitope tag (FLAG) at its N terminus. Transfection of A293

human cells with these vectors resulted in expression of the

appropriately sized proteins, as determined by anti-FLAG Western

blotting. Of note, the protein encoded by the Cys67 allele migrates

slightly slower than the Ser67 protein on SDS-polyacrylamide gels

(Figure 6A). We next used extracts of A293-transfected cells to

compare the DNA-binding activities of the two Nv-NF-kB

proteins in an electrophoretic mobility shift assay. Nv-NF-kB-

Cys bound the kB-site probe approximately four times better than

Nv-NF-kB-Ser (Figure 6A). On the other hand, in a kB-site

reporter gene assay, Nv-NF-kB-Ser activated transcription ap-

proximately two times more strongly than Nv-NF-kB-Cys

(Figure 6B). These results demonstrate that the proteins encoded

by the two Nv-NF-kB alleles have distinct activities.

To determine whether the Cys/Ser polymorphism at residue 67

is entirely responsible for the different DNA-binding activities of

the two Nv-NF-kB proteins, we created cDNAs encoding the

relevant single amino acid changes at position 67 (i.e., Nv-NF-

kBC67S and Nv-NF-kBS67C). As shown in Figure 7A, the Nv-

Table 2. Different Nv-nfkb alleles and their allele frequencies.

SNP# 1 2 3 4 5 6 7

Position in
alignment 6 15 33 36 51 64 158 n Freq.

Allele C1 G G A G G T C 618 0.77

Allele C2 A G A G G T C 47 0.06

Allele C3 A G A G G T G 18 0.02

Allele C4 G G A G G T G 6 0.01

Allele S1 G T T T A A G 117 0.15

doi:10.1371/journal.pone.0007311.t002

Figure 4. Haplotype tree depicting the relative abundances and mutational distances between the five nfkb variants. The evolution of
the 5 Nematostella nfkb variants can be explained by two mutation events at SNP1, two events at SNP7, and five separate events at SNPs 2–6. Circles
indicate individual alleles. The overall abundance of each allele is proportional to circle area. Colored wedges depict the fraction of each allele that
comes from a given geographic region. Silent mutations are indicated by rectangles. The missense mutation underlying the Cys/Ser polymorphism in
the DNA recognition loop is indicated by a triangle.
doi:10.1371/journal.pone.0007311.g004
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NF-kBC67S mutant bound DNA more strongly than the parental

Nv-NF-kBCys protein, whereas the Nv-NF-kBS67C mutant

bound DNA more weakly than the full Nv-NF-kBSer protein.

Thus, Ser at residue 67 enhances DNA binding by Nv-NF-kB,

regardless of the other amino acid differences between the two NF-

kB variants. Nevertheless, the native Nv-NF-kB-Ser protein binds

DNA more weakly than the native Nv-NF-kB-Cys protein. These

results indicate that even though the amino acid (Cys vs. Ser) at

residue 67 influences the ability of Nv-NF-kB to bind DNA, other

amino acid changes also contribute to the differences in DNA

binding between the two Nv-NF-kB proteins.

Because the homologous Cys residue has been shown to

influence the susceptibility of vertebrate NF-kB proteins to both

redox regulation and thiol-reactive compounds [12–16,18–23], we

next compared the effects of the reducing agent dithiothreitol

(DTT) and the thiol-reactive compound N-ethylmaleimide (NEM)

on the two native Nv-NF-kB proteins, as well as the relevant site-

directed mutants. The addition of DTT to protein extracts

increased the DNA-binding ability of the NF-kB-Cys and NF-

kBS67C, but did not significantly affect the DNA-binding ability

of either protein with Ser at residue 67 (Figure 7B). Conversely,

the addition of NEM dramatically decreased DNA binding by NF-

kB-Cys but had little effect on the NF-kBC67S mutant (Figure 7C).

NEM also inhibited DNA binding by the full NF-kB-Ser protein to

a lesser extent than the NF-kB-Cys protein, but the NF-kB-Ser

protein was more susceptible to inhibition by NEM than the NF-

kBC67S mutant (Figure 7C). These results indicate that the two

NF-kB proteins are affected differently by thiol-reactive com-

pounds, but that the effects of such compounds are not entirely

determined by the presence of Cys or Ser at position 6 in the DNA

recognition loop.

Discussion

Evolution and distribution of the NF-kB allele containing
Ser at residue 67

In nearly all NF-kB/Rel proteins, representing many billions of

years of cumulative evolution, Cys is conserved at position 6 of the

DNA recognition loop. However, in the Relish proteins of several

insects, Ser is conserved at this same position. Therefore, on a

macroevolutionary scale, we have evidence that either Cys or Ser

can be adaptive in a particular genic/taxonomic context.

Presumably, at some time in the past, Ser replaced Cys in the

DNA recognition loop of an ancestral Relish protein, and this

change was adaptive. Nematostella presents an opportunity to

investigate the conditions under which such a swap might be

adaptive, as it is currently the only species known to harbor a Cys/

Ser polymorphism at this critical position within the DNA

recognition loop of an RHD protein.

Our population genetic evidence suggests that in Nematostella, at

least in some sites, the Ser variant of NF-kB confers a fitness

advantage. First, the Ser allele has spread widely throughout the

species’ global range, and in some populations it is the

predominant allele. The Ser allele was recovered in six western

Atlantic estuaries that are thought to be part of Nematostella’s native

range [28]—four in Nova Scotia, one in Massachusetts, and one in

Maryland. It was also recovered in two eastern Pacific coast

estuaries where the animal is believed to have been recently

introduced [28].

In four out of eight populations that possess both Cys and Ser

alleles, there is a significant departure from HWE (Table 1), a

result that might be attributable to selection. In some natural

populations, Ser/Ser homozygotes are markedly underrepresent-

ed, while heterozygotes are markedly over-represented (e.g.,

Crescent Beach and Chezzetcook, Nova Scotia). At Peggy’s Cove,

Ser/Ser homozygotes are over-represented. In the laboratory

population, both alleles are moderately abundant, and genotypic

frequencies accord with expectations under Hardy-Weinberg

equilibrium. This laboratory population was originally derived

from Rhode River, Maryland and has been maintained for ,20

years, probably in a state of relaxed selective pressures.

One cannot necessarily interpret departures from Hardy-

Weinberg equilibrium as evidence of selection, given that

demographic factors can influence population genetic structure.

For example, previous studies have revealed pronounced popula-

tion genetic structuring in Nematostella at local, regional, and global

scales [27,28]. These genetic breaks could reflect local adaptation,

but they could also result from genetic drift and the animal’s

limited dispersal ability or from pervasive asexual reproduction.

Indeed, evidence of clonal reproduction has been detected in

several estuaries, and some natural populations are almost entirely

clonal [27]. In fact, the results of this study on NF-kB alleles

provide evidence that the Nematostella population of England is

solely or predominantly clonal. All English animals sampled in our

study (n = 32) are heterozygous at the NF-kB locus (C1/C2;

Table 3). Our inability to recover any C1/C1 or C2/C2

homozygotes implies a lack of sexual recombination and supports

the hypothesis that these populations are comprised of a single

clonal lineage [28,29]. The previous studies that investigated

genetic diversity within English populations [28,29] could not have

detected this paucity of recombination because they used

dominant markers (RAPDs and AFLPs).

Possible Selective Advantages of the Derived Ser Allele
Based on the near universal presence of Cys at position 6 of the

DNA recognition loop of NF-kB proteins and the character state

reconstruction shown in Figure 3, we conclude that the presence of

Cys is the primitive condition for NF-kB in Nematostella. However,

the Ser variant is widespread and reasonably abundant in wild

populations, particularly in Nova Scotia where the Ser allele

constitutes 26% of all alleles sampled from six different estuaries

(Table 1). The Ser allele could be favored in certain estuarine

environments where the anemones are exposed to high levels of

peroxides and other reactive oxygen species or to alkylating agents.

The sulfhydryl group of Cys can react readily with such

compounds—such as NEM (Figure 7), epoxyquinoids [13], and

sesquiterpene lactones [11]—which would then inhibit the Cys

variant from binding to DNA targets, whereas the hydroxyl group

of the Ser variant would make Nv-NF-kB less susceptible to the

effects of such compounds. Indeed, Nematostella inhabits estuarine

Table 3. Distinct Nv-nfkb genotypes identified and their
frequency of occurrence.

Genotype at SNP #6 Alleles N Frequency

Cys/Cys C1/C1 244 0.605

C1/C2 47 0.117

C1/C3 14 0.035

C1/C4 2 0.005

C3/C3 2 0.005

Cys/Ser C1/S1 67 0.166

C4/S1 4 0.010

Ser/Ser S1/S1 23 0.057

doi:10.1371/journal.pone.0007311.t003
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environments including tidal creeks and isolated high marsh pools

where the concentration of peroxides and thiol-reactive com-

pounds can vary considerably over fine temporal and spatial scales

[30]. For example, differences in H2O2 concentration spanning

three orders of magnitude have been reported within a single

marsh, and the concentration of H2O2 that has been measured in

salt marsh habitats (up to ,4.5 nM) is within the range that has

been shown to reduce invertebrate metabolic rates [31,32].

At the molecular level, there are functional differences between

the Nv-NF-kB proteins encoded by the two alleles. Namely, the Cys

variant of Nematostella NF-kB has a more avid binding affinity for a

kB site from the promoter of the Nv-IkB gene (Figure 6A); however,

the Cys variant has a lesser ability to activate a multimeric kB-site

promoter in transient transfection assays in human A293 cells

(Figure 6B). Although increased transactivation ability coupled with

decreased DNA binding by the Ser variant would seem counter-

intuitive, rapid turnover of transcription factors on DNA has been

coupled with increased transactivation [33].

In other NF-kB proteins, such as c-Rel and RelA, site-directed

mutations that convert the natural Cys residue (at the position

homologous to Cys67 of Nv-NF-kB) to Ser increase the affinity of

the protein for a kB site [12–15]. Indeed, we also find that a Cys-

to-Ser mutation at residue 67 increases the DNA-binding activity

of the full Cys allele protein, while the corresponding Ser-to-Cys

mutation at residue 67 decreases the DNA-binding activity of the

full Ser allele protein (Figure 7A). Thus, the low DNA-binding

Figure 5. Geographical distribution of Cys (C1-C4) and Ser NF-kB genotypes. Pie graphs display the frequency of each genotype within the
indicated populations (see Table 1 for details). The area of each graph reflects the relative sample size from that locale; for the large samples obtained
at Chezzetcook (population 1), Kingsport (6), Sippewisset (13), and Rhode River (15), and the samples pooled from northern New England (7–12), the
pie graphs are depicted at 50% or 25% of their relative size (as indicated on each graph). Populations 7–12 were grouped and populations 21–23
were grouped because the individual sites within each group are in close geographical proximity, and the groups exhibit no genotypic variability. The
most abundant genotype, Cys/Cys, was found in every estuary sampled. With the exception of a few Ser/Ser individuals found in the lab population
derived from Rhode River, Maryland, Ser/Ser homozygotes are restricted to Nova Scotia.
doi:10.1371/journal.pone.0007311.g005
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activity of the full Ser allele NF-kB protein as compared to the full

Cys allele protein must be due to other differences between the

two proteins, i.e., at one or more of the other five differences

between the two proteins in the RHD. The simplest model to

explain the differences between the two Nv-NF-kB proteins is that

one or more of these other amino acid differences confers

relatively stronger DNA-binding activity on the Cys variant. Using

the coral sequence to root the branch connecting the two

Nematostella NF-kB variants (Figure 3), we have identified at least

one additional substitution that appears to have occurred along the

line leading to Nv-NF-kB-Cys (residue 218). Four additional

substitutions appear to have occurred along the line leading to Nv-

NF-kB-Ser (residues 67, 216, 226, 269). Given that the Ser allele

derives from an ancestral Cys allele, one or more of these four

substitutions that occur along the Ser branch are likely to cause

reduced DNA binding. These residues might directly contact

DNA, they could alter the ability of the DNA recognition loop to

bind DNA, or they might affect dimerization (which is required for

DNA binding). That the two Nv-NF-kB proteins show a difference

in migration on SDS-polyacrylamide gels (Figure 5A) suggests that

amino acid differences between the two proteins cause them to

have local structural or charge differences as well.

Several previous studies have investigated the functional

consequences of a Cys-to-Ser mutation at position 6 of the DNA

Figure 6. Comparison of the DNA-binding and transactivation
properties of the proteins encoded by the two Nv-NF-kB
alleles. (A) An EMSA was performed using a radioactive kB-site probe
and A293 cell extracts containing approximately equal amounts of each
indicated FLAG-Nv-NF-kB protein (top panel). Two-fold dilutions of the
equalized extracts spanning a 16-fold concentration range were used in
the EMSA. The position of the NF-kB-DNA complex is indicated by the
arrow. Anti-FLAG Western blotting (bottom panel) was performed to
verify that the amounts of the two proteins were roughly equal. Probe,
probe alone; Vector, an extract from pcDNA empty vector-transfected
cells containing an amount of protein equal to the ‘‘16’’ lane of Nv-NF-
kB-S67. (B) A reporter gene assay using a multimerized kB-site luciferase
reporter gene was performed in A293 cells as described in Materials and
Methods. Cells were co-transfected with expression plasmids either
containing no insert (Vector) or the indicated Nv-NF-kB proteins. Values
are relative to the normalized luciferase activity seen with the Vector
(1.0). Values are the averages of three experiments, each performed
with triplicate samples. An anti-FLAG Western blot of normalized
extracts used in the reporter gene assay, to confirm approximately
equal expression of the two Nv-NF-kB proteins (bottom panel).
doi:10.1371/journal.pone.0007311.g006

Figure 7. Effect of mutations at residue 67 on the DNA-binding
activity of the two Nv-NF-kB proteins. (A) An EMSA was performed
using a radioactive kB-site probe and A293 cell extracts containing
equal amounts of each indicated FLAG-Nv-NF-kB protein (as deter-
mined by anti-FLAG Western blotting). As in Figure 6A, two-fold
dilutions of the equalized extracts were used in the EMSA. The position
of the NF-kB-DNA complex is indicated by the arrow. Probe, probe
alone. (B) An EMSA was performed using extracts from A293 cells as in
(A), except that the extracts were supplemented with increasing
concentrations (0, 1, 5, 25 mM) of dithiothreitol (DTT) for 18 h prior to
adding the radioactive probe to the samples. The lower panels show
lighter exposures of the top panel, so that the relative intensities of
DNA binding at the different concentrations of DTT can be visualized.
(C) An EMSA was performed using extracts from A293 cells transfected
with plasmids for expression of the indicated Nv-NF-kB proteins.
However, the extracts were incubated with the indicated concentra-
tions of N-ethylmaleimide (NEM) for 30 min prior to adding the
radioactive kB-site probe. Values for each protein designate the relative
the amount of DNA-binding activity at a given concentration of NEM as
compared to the activity in the absence of NEM. Values (with standard
error) are the averages of three separate experiments.
doi:10.1371/journal.pone.0007311.g007
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recognition loop of NF-kB. This experimentally generated

mutation, in human RHD proteins [11–14] or sea anemone

NF-kB-Cys (this study), has pronounced effects on activity. This

may explain why strong stabilizing selection has preserved Cys at

this position in numerous animal lineages over many billions of

years of cumulative evolution (Figure 1; Figure S1). However, the

NF-kB polymorphism of Nematostella provides an opportunity to

investigate how and why the Cys-to-Ser mutation evolved in

nature. For example, because we were able to directly compare the

native alleles to the site-directed mutants, we were able to infer

that changes at other sites must be altering the functional impact

and possibly the selective advantage of the Cys-to-Ser mutation.

Importantly, the coding mutations that occur along the branch

leading to Nv-NF-kB-Ser (Figure 3) appear to counteract some of

the effects of the Cys-to-Ser substitution. In the EMSAs with and

without the addition of NEM, the effects of the Cys-to-Ser

mutation were more pronounced than the difference we observed

between the native Cys variant and the native Ser variant

(Figure 7A, C). The effects of these co-evolving sites in the protein

may help to explain how Nematostella overcame the selective

disadvantage of having Ser at position 6 of the DNA recognition

loop in NF-kB.

Given the data presented here, we propose the following

testable hypotheses: (1) that the Ser allele is favored in estuarine

environments that frequently expose the animal to high levels of

peroxides and/or thiol-reactive compounds, (2) that the Cys allele

is favored in estuarine environments that rarely expose the animal

to high levels of peroxides and thiol-reactive compounds, and (3)

that the presence of Ser at position 6 of the DNA recognition loop

is tolerated only in combination with other co-evolved changes.

Conclusions
Nematostella vectensis is currently the only species known to harbor

a Cys/Ser polymorphism at position six in the DNA recognition

loop of NF-kB. The Ser variant of the protein is derived from an

ancestral Cys variant, it appears to have arisen only once, and it

has become broadly established throughout the animal’s extensive

geographic range. As shown by site-directed mutagenesis studies,

the presence of Ser at this position of Nematostella NF-kB confers

higher DNA-binding affinity and greater resistance to thiol-

reactive compounds. However, the full Nv-NF-kB proteins

encoded by the Cys and Ser alleles differ at nine other amino

acid positions, and paradoxically, the native Cys variant binds

DNA with greater affinity than the native Ser variant. Despite its

lower DNA-binding affinity, the native Ser variant is a more

potent activator of transcription. These studies demonstrate

functional differences between the proteins encoded by the two

alleles, and given that the derived Ser allele has become

geographically widespread, it suggests that the Ser allele can be

favored by natural selection, perhaps under conditions of oxidative

or alkylating stress. Thus, this polymorphism may represent an

adaptation of an environmental conformer living in a hypervari-

able environment.

Materials and Methods

Animal collection and maintenance and DNA extraction
Animals were collected from salt marsh habitats by sieving

sediment obtained from isolated pools and tidal creeks through a

,1 mm2 nylon screen. The anemones were transported to Boston

University in water obtained at the collection sites, and

subsequently, they were acclimated to ,11 ppt artificial salt water

(Instant OceanH). Live, field-collected specimens were also kindly

provided by local researchers for some populations (Coos Bay,

Oregon by S. Arellano; San Juan Island, Washington by T.

McGovern; and all English populations by K. Kaltas). In the lab,

the anemones were fed freshly hatched Artemia nauplii until they

attained a size of at least 10 mm. At this point, the animals were

starved for 7 to 10 days to minimize the possibility of

contaminating Artemia tissue in the DNA extraction. DNA was

extracted using DNeasy kits (Qiagen, Valencia, CA) from either

whole anemones or from the aboral section of individuals that had

been bisected with a razor blade or scalpel.

Characterization of the Nv-NF-kB polymorphism and
reconstruction of allele evolution

A fragment of the Nematostella NF-kB gene (gi|156079903|g-

b|EU092640.1) was amplified from genomic DNA using species-

specific primers (forward primer: 59-CACMGAGCCCTACCTA-

GAAA-39 where M = A/C; reverse primer: 59-TCGCTGTC-

ATGTGTTGATCC-39). These primers were based on available

ESTs and were designed to flank the nucleotide position

responsible for the Cys/Ser polymorphism. Forty cycles of PCR

were performed using the following thermal cycling profile: 94uC
for 30 s, 55uC for 30 s, and 72uC for 60 s. The amplified 753-bp

product comprises 293 base pairs of exonic sequence (from exons

2, 3, and 4) and 460 base pairs of intronic sequence (from introns 2

and 3; Figure 2B). PCR samples were electrophoresed on a 1%

agarose gel. Amplified DNA was gel-purified using the QIAquick

Gel Extraction kit (Qiagen, Valencia, CA) and sequenced at

Macrogen (Seoul, South Korea) using the reverse primer. As a

control, five DNA samples were analyzed twice, i.e., the NF-kB

fragment was independently amplified and sequenced twice from

the same DNA sample; in all five cases, the replicate samples

yielded identical sequences.

Polymorphic nucleotide positions were identified from sequence

chromatograms. The sequencing chromatograms were visualized

using FinchTV [34]. The accuracy of nucleotide assignments was

verified by eye for every position. Any nucleotide position in the

sequencing chromatogram exhibiting a minor peak equal to or

greater than a quarter of the height of the major peak was

considered potentially polymorphic and was labeled using

degenerate IUPAC codes.

Haplotypes were deduced from the sequenced PCR products

(which combine maternal and paternal alleles from individual

animals) using Bayesian inference (Phase, v.2.1; [35]). Haplotype

reconstruction was based on a 159-bp stretch of sequence that

includes numerous variable loci. This region was aligned for 403

animals from 23 geographically distinct estuaries (Figure S4). The

alignment was then culled to seven loci harboring suspected

polymorphisms (positions 6, 15 33, 36, 51, 64 and 158). Each of

these positions was found to occur in three states (as either of two

different nucleotides or as the corresponding degenerate nucleo-

tide; 6: A, G, or R; 15: G, T, or K; 33: A, T, or W; 36: G, T, or K;

51: A, G, or R; 64: A, T, or W; 159: C, G, or S). At position 104,

the large majority of individuals harbored a cytosine, but some

individuals were scored as being ambiguous (either cytosine or

thymidine). As no individual was scored unambiguously as a

thymidine, we could not rule out the possibility that the ambiguity

was due to a sequencing artifact, and this position was excluded

from the haplotype reconstruction.

Five distinct alleles were identified by Phase, each achieving a

probability score of 96.9% or greater (Figure S5). In 96.5% of

individuals (389/403), the allele pairs were identified with no

ambiguity. Among the remaining 3.5% of individuals, the best

allele pairs were assigned a probability of 96.9–97.0%. As four of

the alleles encode a Cys at position 6 of the DNA recognition loop,

NF-kB Alleles in Nematostella
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these alleles were labeled C1-C4. The remaining allele, which

encodes a Ser at the corresponding site, was labeled S1.

Statistical tests for departures from Hardy-Weinberg
equilibrium

For all 403 animals included in the haplotype reconstruction,

the geographic distribution of the three possible genotypes at SNP

#6 (Cys/Cys, Cys/Ser, or Ser/Ser) was used to calculate F-

statistics (FIS, FST, and FST; see Table 1). Individual estuaries were

treated as subpopulations. Expected and observed heterozygosities

were compared for each subpopulation [36,37].

The observed genotypic proportions were compared to

expected genotypic proportions within each population and across

all populations that harbored both the Cys and Ser alleles. The

expected proportion of each genotype (Cys/Cys, Cys/Ser, and

Ser/Ser) was calculated under the assumption of Hardy-Weinberg

equilibrium using observed allele frequencies. Chi-square tests

were then used to identify populations that departed significantly

from Hardy-Weinberg equilibrium and genotypes that were

significantly overrepresented or underrepresented (a= 0.05). The

individuals representing Rhode River, Maryland were not

genotyped immediately after being collected from the field.

Rather, the animals evaluated from this locale were derived from

a laboratory stock that had been allowed to freely reproduce

(sexually and asexually) under laboratory conditions since being

collected in the field approximately 15 years ago. As the laboratory

setting does not closely mimic field conditions, this population was

excluded from the across-population analyses of genotype

frequencies.

Cloning and expression of Nv-NF-kB cDNAs
Total mRNA was isolated from starved adult animals, and

cDNA was prepared by reverse transcription. To amplify the full-

length coding region of the Nv-NF-kB cDNAs, forward

(59CGGAATTCCGTCCTAGTGGTGTATCAAGTGCAG3;

EcoRI site underlined’) and reverse (59TCGGTCGACCGC-

GAAAACCCAATTGGAG39; SalI site) primers were used in

the PCR, and the cDNAs were subcloned into the corresponding

sites of pcDNA3.1 (+). The full coding region was sequenced. To

subclone codons 3–440 of each cDNA in-frame into pcDNA-

FLAG, the Nv-NF-kB cDNAs were re-amplified using primers

containing restriction sites (59CGGAATTCGACACAGTCT-

GAACAGCAAGTG39 and 59CGGAATTCCGAAAACCCAA-

TTGAATGGAAG39; EcoRI site) and were then subcloned into

pcDNA-FLAG digested with EcoRI. Additional details about

primers and subcloning methods used to create mutants S67C

and C67S can be obtained at www.nf-kb.org.

Electrophoretic mobility shift and reporter gene assays
A293 cells were transfected with 5 mg of pcDNA or the

indicated pcDNA-FLAG-Nv-NF-kB expression vector using poly-

ethylenimine (Polysciences, Inc., Washington, PA) as described

previously [38]. Two days later, extracts were prepared using AT

lysis buffer, and they were subjected to anti-FLAG Western

blotting, or an EMSA was performed as described previously [38].

When DTT or NEM was included (Figure 6), extracts were

prepared in AT lysis buffer that lacked DTT. The kB-site probe

(59-TCGAGAGGTCGGGGAATCCCCCCCCG-39; kB site un-

derlined) used for the EMSAs is from the upstream region of the

Nv-IkB gene [6]. Dried EMSA gels were subjected to autoradi-

ography at 280uC.

Reporter gene assays were performed in A293 cells essentially as

described [38]. Cells were transfected with 1 mg of pcDNA-FLAG

expression plasmid, 0.5 mg of a 3X kB-site luciferase reporter

plasmid, and 0.5 mg of plasmid pGK-bgal for transfection

normalization.

Supporting Information

Figure S1 Partial alignment of the Rel Homology Domain of

representative RHD proteins. The DNA recognition loop is

shaded in gray. The sixth position in the DNA recognition loop is

highlighted in blue (if Cys), red (if Thr), or purple (if Ser).

Nematostella sequences are shown in bold type.

Found at: doi:10.1371/journal.pone.0007311.s001 (0.09 MB

PDF)

Figure S2 Alignment of alleles identified in this study. The

complete coding sequences of Nv-NF-kB were determined for

both Cys and Ser alleles derived from animals in our laboratory

population. In addition, a 753-nucleotide region of the Nv-NF-kB

gene spanning all or part of three exons and two introns (Figure 2)

was amplified and sequenced for 403 individuals from 23

populations (Table 1). Seven variable positions were identified

within a stretch of 153 nucleotides (1–7), allowing us to define five

distinct alleles (C1-C4, S1). Protein-coding polymorphisms are

highlighted in green. Silent polymorphisms are highlighted in red.

The predicted amino acid sequence is presented beneath the

nucleotide sequences of the complete coding sequences.

Found at: doi:10.1371/journal.pone.0007311.s002 (0.06 MB

PDF)

Figure S3 Alignment of Nematostella proteins against partial

coral NF-kB protein. A partial coding sequence for the NF-kB

gene of Acropora millepora was recently recovered in a

transcriptome sequencing project [7]. The predicted coral protein

(AmNFkB) was aligned against the Nematostella proteins using a

web implementation of ClustalW2 [39]. The positions that are

polymorphic in Nematostella are indicated by bold red type.

Invariant positions are indicated by asterisks.

Found at: doi:10.1371/journal.pone.0007311.s003 (0.06 MB

PDF)

Figure S4 Alignment of 159-nt region of Nv-NF-kB from 403

individual animals. Where a position in the sequence chromato-

gram harbored peaks for two different nucleotides, the appropriate

IUPAC code is used (K = G or T; R = A or G; S = C or G; W = A

or T).

Found at: doi:10.1371/journal.pone.0007311.s004 (0.81 MB

PDF)

Figure S5 Individual animals sequenced in the population

genetic study. For each individual, the table lists the collection

site, the sequences of the individual’s two NF-kB alleles at the

seven variable positions in the alignment (Allele 1 and Allele 2

SNPs), the posterior probability that these ‘‘best alleles’’ are the

true alleles (Prob.), the name of each allele (Allele 1, Allele 2), and

the genotype.

Found at: doi:10.1371/journal.pone.0007311.s005 (0.14 MB

PDF)
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11. Garcia-Piñeres AJ, Castro V, Mora G, Schmidt TJ, Strunck E, et al. (2001)

Cysteine 38 in p65/NF-kB plays a crucial role in DNA binding inhibition by
sesquiterpene lactones. J Biol Chem 276: 39713–39720.

12. Liang MC, Bardhan S, Pace EA, Rosman D, Beutler JA, et al. (2006) Inhibition
of transcription factor NF-kB signaling proteins IKKb and p65 through specific

cysteine residues by epoxyquinone A monomer: correlation with its anti-cancer

cell growth activity. Biochem Pharmacol 71: 634–645.
13. Liang MC, Bardhan S, Porco JA Jr, Gilmore TD (2006) The synthetic

epoxyquinoids jesterone dimer and epoxyquinone A monomer induce apoptosis
and inhibit REL (human c-Rel) DNA binding in an IkBa-deficient diffuse large

B-cell lymphoma cell line. Cancer Lett 241: 69–78.
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