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Abstract  12 

Information flow in brain networks is reflected in intracerebral local field potential (LFP) 13 
measurements that have both periodic and aperiodic components. The 1/fc broadband aperiodic 14 
component of the power spectra has been shown to track arousal level and to correlate with other 15 
physiological and pathophysiological states, with consistent patterns across cortical regions. 16 
Previous studies have focused almost exclusively on cortical neurophysiology. Here we explored 17 
the aperiodic activity of subcortical nuclei from the human thalamus and basal ganglia, in 18 
relation to simultaneously recorded cortical activity. We elaborated on the FOOOF (fitting of one 19 
over f) method by creating a new parameterization of the aperiodic component with independent 20 
and more easily interpretable parameters, which allows seamlessly fitting spectra with and 21 
without an aperiodic knee, a component of the signal that reflects the dominant timescale of 22 
aperiodic fluctuations. First, we found that the aperiodic exponent from sensorimotor cortex in 23 
Parkinson’s disease (PD) patients correlated with disease severity. Second, although the 24 
aperiodic knee frequency changed across cortical regions as previously reported, no aperiodic 25 
knee was detected from subcortical regions across movement disorders patients, including the 26 
ventral thalamus (VIM), globus pallidus internus (GPi) and subthalamic nucleus (STN). All 27 
subcortical region studied exhibited a relatively low aperiodic exponent (cSTN=1.3±0.2, 28 
cVIM=1.4±0.1, cGPi =1.4±0.1) that differed markedly from cortical values (cCortex=3.2±0.4, 29 
fkCortex=17±5 Hz). These differences were replicated in a second dataset from epilepsy patients 30 
undergoing intracranial monitoring that included thalamic recordings. The consistently lower 31 
aperiodic exponent and lack of an aperiodic knee from all subcortical recordings may reflect 32 
cytoarchitectonic and/or functional differences between subcortical nuclei and the cortex.  33 

Significance Statement 34 

The broadband aperiodic component of local field potentials is a useful and reproducible index 35 
of neural activity. Here we refined a widely used phenomenological model for extracting 36 
aperiodic parameters, with which we fit cortical, basal ganglia and thalamic intracranial local 37 
field potentials, recorded from unique cohorts of movement disorders and epilepsy patients. We 38 
found that the aperiodic exponent in motor cortex is higher in Parkinson’s disease patients with 39 
more severe motor symptoms, suggesting that aperiodic features may have potential as 40 
electrophysiological biomarkers for movement disorders symptoms. Remarkably, we found 41 
conspicuous differences in the broadband aperiodic components of basal ganglia and thalamic 42 
signals compared to those from neocortex, suggesting that the aperiodic neural timescale of 43 
subcortical LFPs is slower than that in cortex. 44 

Introduction 45 

From the inception of EEG, understanding the neurophysiology of the oscillatory electrical 46 

activity—periodic activity of defined frequencies which is sustained for more than one period—47 
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has been a paramount goal (Berger, 1929). These neural oscillations have been found to be 48 

widespread, spanning all brain regions and frequency bands, and correlate with many aspects of 49 

brain function and dysfunction (Basar and Güntekin, 2013; Engel et al., 2001). The study of 50 

neural oscillations has also been facilitated by commonly used methods like Fourier or wavelet 51 

transforms, which can decompose any signal into a sum of oscillatory components. However, the 52 

existence and mathematical validity of these decompositions does not imply that all brain 53 

activity arises from neural oscillations. Indeed, processes that create fluctuations in the signal 54 

with no underlying oscillatory component give rise to characteristic power spectra when 55 

analyzed by these same methods.  56 

Local field potentials (LFPs) reflect the ensemble activity of ionic currents of populations of 57 

cells in the vicinity of the electrode (Lindén et al., 2010; Nunez and Srinivasan, 2006). The most 58 

salient feature of the frequency power spectral density (PSD) of LFPs is the decline of power 59 

with frequency, a feature termed the 1-over-f (1/fc) “background noise” of the spectra. Studies 60 

using LFPs commonly remove the 1/fc broadband component by normalization and focus on 61 

modulation of power at specific frequency bands. To contrast the periodic nature of neural 62 

oscillations, the 1-over-f component is referred to as broadband aperiodic activity.  63 

Until recently, aperiodic activity has been largely ignored or regarded as noise, perhaps due to 64 

inadequate computational tools and theoretical framework. In pioneering work, Miller et al. 65 

fitted a parametric description of the broadband aperiodic component to human 66 

electrocorticography (ECoG) PSD (Miller et al., 2009). The extraction of the aperiodic exponent 67 

c has been greatly facilitated by the development of methods like the irregular-resampling auto-68 

spectral analysis (IRASA) (Wen and Liu, 2016) and fitting of one-over-f (FOOOF) (Donoghue et 69 

al., 2020; Haller et al., 2018). The latter fits the periodic component of the spectrum as a 70 

superpositions of gaussians and parameterizes the aperiodic component as 𝑃"#$% = 𝐴 (𝑘 + 𝑓,)⁄ , 71 

with an offset A, an aperiodic exponent c, and an optional knee parameter k (Donoghue et al., 72 

2020; Haller et al., 2018) (see also Supplementary Materials). Note that this method requires an a 73 

priori decision of whether to use the knee parameter or not.  74 

Using these methods, a recent body of work explored correlations of aperiodic parameters with 75 

different behavioral, physiological, and pathophysiological states, and anatomical regions. The 76 

cortical aperiodic exponent c decreases with age (Dave et al., 2018; Voytek et al., 2015), 77 
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increases under anesthesia and during sleep (Colombo et al., 2019; Lendner et al., 2020; 78 

Miskovic et al., 2019; Muthukumaraswamy and Liley, 2018), and differs across cortical regions 79 

(Chaoul and Siegel, 2021; Muthukumaraswamy and Liley, 2018). Likewise, the knee k of the 80 

spectra (i.e., the frequency at which the 1/fc decline of power with frequency begins) also has a 81 

spatial structure in the cortex (Gao et al., 2020a).  Thus, aperiodic parameters are useful 82 

population-average measures of neural activity.  83 

Given the importance of understanding the cortical-subcortical neural dynamics that underly 84 

normal human behavior and symptoms of brain diseases, we explored differences in the 85 

parameters of the aperiodic component of LFPs recorded from unique cohorts of neurosurgical 86 

patients. We elaborated on the parameterization of the broadband aperiodic component 87 

developed by (Donoghue et al., 2020; Haller et al., 2018) to obtain a model with better defined 88 

aperiodic parameters that avoids a priori assumptions on the presence of an aperiodic knee. We 89 

used this model to explore (across patients) the relation of cortical aperiodic activity with 90 

movement disorder pathophysiology and cortical anatomy, in movement disorders patients 91 

undergoing deep brain stimulation (DBS) surgery. We then performed within subject 92 

comparisons of aperiodic parameters in thalamic and basal ganglia nuclei to those in cortex, 93 

including a second cohort of patients with drug-resistant epilepsy undergoing intracranial 94 

monitoring.  95 

Methods: 96 

Participants. Movement disorder patients undergoing intracranial electrode implantation for 97 

deep brain stimulation therapy participated in a speech production task (Bush et al., 2021), for 98 

which the baseline periods were analyzed in this study. One or two high-density subdural 99 

electrocorticography (ECoG) strips were temporary placed through the standard burr hole, 100 

targeting the left superior temporal gyrus (covering also the ventral sensorimotor cortex) and left 101 

inferior frontal gyrus. ECoG electrodes were removed at the end of the surgery. Dopaminergic 102 

medication was withdrawn the night before surgery. All procedures were approved by the 103 

University of Pittsburgh Institutional Review Board (IRB Protocol #PRO13110420) and all 104 

patients provided informed consent to participate in the study. The following cohorts of 105 

movement disorder patients participated in the study: 29 Parkinson’s disease patients (21M/8F, 106 

65.6±7.1 years) undergoing awake subthalamic (STN) DBS surgery, all of which had ECoG 107 
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recordings and 14 of which had simultaneous ECoG and DBS lead recordings; 5 Parkinson’s 108 

disease patients (5M/0F, 69.1±5.7 years) undergoing awake pallidal (GPi) DBS surgery, of 109 

which 4 had ECoG recordings and 3 had simultaneous ECoG and DBS lead recordings; 22 110 

essential tremor patients (11M/11F, 65.3±9.7 years) undergoing awake thalamic (Vim) DBS 111 

surgery, of which 20 had ECoG recordings and 11 had simultaneous ECoG and DBS lead 112 

recordings.  113 

Additionally, we analyzed awake restfulness data from 8 epilepsy patients (5M/3F, age: 18±11 114 

years) undergoing stereo-EEG (sEEG) intracranial monitoring for epilepsy with additional 115 

electrodes implanted in the thalamus. This study was approved by the Massachusetts General 116 

Hospital (Boston, MA) Institutional Review Board (IRB Protocol #2020P000281). 117 

 118 

Figure 1. Schematic representation of coronal view of electrode montages. A) Movement disorder 119 
patients undergoing DBS implantation surgery with simultaneous multichannel recordings from DBS 120 
leads and ECoG strips. B) Epilepsy patients undergoing intracranial monitoring with multichannel sEEG 121 
electrodes, some of which target thalamic nuclei.  122 

Neural recordings. Figure 1 and Table S1 describe the electrodes used in this study. Signals 123 

from ECoG electrodes and DBS leads were acquired at 30kHz (filtered between 1 Hz and 7.5 124 

kHz) with a Grapevine Neural Interface Processor equipped with Micro2 Front Ends (Ripple 125 

LLC, Salt Lake City, UT, USA). ECoG and DBS lead recordings were referenced to a subdermal 126 

scalp needle electrode positioned approximately on Cz. The sEEG signals were recorded at 1 127 

kHz sampling rate using a 128-channel Xltek digital video-EEG system (Natus Medical 128 

Incorporated, Pleasanton, CA). sEEG recordings were referenced to an EEG electrode placed 129 

extracranially (C2 vertebra or Cz).  130 
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Electrode localization. DBS electrodes were localized using the Lead-DBS localization pipeline 131 

(Horn et al., 2019). Briefly, a pre-operative anatomical T1 weighted MRI scan was co-registered 132 

with a post-operative CT scan. Position of individual contacts were manually identified based on 133 

the CT artifact and constrained by the geometry of the DBS lead used. This process rendered the 134 

coordinates for the leads in each subject’s native space. The position of the ECoG strips were 135 

calculated from intra-operative fluoroscopy as described in (Randazzo et al., 2016). Briefly, the 136 

cortical surface was reconstructed from the pre-operative MRI using FreeSurfer (Fischl et al., 137 

2002) and a model of the skull and stereotactic frame was reconstructed from the intra-operative 138 

CT scan using OsiriX (osirix-viewer.com). The position of the frame’s tips on the skull and the 139 

implanted DBS leads were used as fiducial markers. The models of the pial surface, skull and 140 

fiducial markers were co-registered, manually rotated and scaled to align with the projection 141 

observed in the fluoroscopy. Once aligned, the position of the electrodes in the ECoG strip were 142 

manually marked on the fluoroscopy image and the projection of those position to the convex 143 

hull of the cortical surface was defined as the electrode location in native space. The coordinates 144 

were then regularized based on the known layout of the contacts in the ECoG strip 145 

(github.com/Brain-Modulation-Lab/ECoG_localization). All coordinates were then transformed 146 

the ICBM MNI152 Non-Linear Asymmetric 2009b space (Fonov et al., 2011) using the 147 

Symmetric Diffeomorphism algorithm implemented in the Advanced Normalization Tools 148 

(Avants et al., 2008). 149 

Epilepsy patients were implanted with commercially available 8 – 16 contact electrodes (PMT 150 

Corporation, MN, USA; AdTech Medical Instrument Corporation, WI, USA). Electrode 151 

trajectories were tailored for each patient according to the surgical hypothesis and contact 152 

locations were determined by either post-implantation MRI, co-registration of the pre-operative 153 

T1 MRI with the post-implantation CT using Brainstorm (Tadel et al., 2011). 154 

Anatomical labels were assigned to each electrode based on the HCP-MMP1 atlas (Glasser et al., 155 

2016) for cortical electrodes, and the Morel (Morel, 2007) and DISTAL (Ewert et al., 2018) 156 

atlases for subcortical electrodes.  157 

Electrophysiological data preprocessing and power spectrum estimation. Data recorded 158 

during DBS surgeries was processed using custom code based on the FieldTrip (Oostenveld et 159 

al., 2011) toolbox implemented in MATLAB, available at (github.com/Brain-Modulation-160 

Lab/bml). Data was low pass filtered at 250Hz using a 4th order non-causal Butterworth filter, 161 
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 7 

down-sampled to 1 kHz and stored as continuous recordings in FieldTrip datatype-raw. No notch 162 

filter was applied. Electrodes were common average referenced per head-stage connector and 163 

electrode type. Power spectral density (PSD) was estimated using the Welch method (Welch, 164 

1967), using 1 s time windows over the inter-trial baseline periods of the speech task with a 165 

500ms overlap. The median PSD across all baseline periods was calculated for subsequent 166 

analysis. sEEG data recorded for epilepsy monitoring, was processed using the MNE toolbox in 167 

python. Recordings were bipolar referenced and PSDs were estimated using the Welch method 168 

by calculating periodograms for a sliding window of two seconds and overlap of 100 ms. 169 

Spectral parameterization. We elaborated upon the spectral parameterization introduced by 170 

(Donoghue et al., 2020; Haller et al., 2018) to capture the frequency domain characteristics of 171 

electrophysiological data. This parameterization decomposes the log-power spectra 𝐥𝐨𝐠(𝐏(𝒇)) 172 

into a broadband aperiodic component 𝐥𝐨𝐠(𝐋(𝒇)) and the summation of N narrowband periodic 173 

components which are each modelled as a Gaussian. 174 

𝐥𝐨𝐠(𝐏(𝒇)) = 𝐥𝐨𝐠(𝐋(𝒇)) +	6𝐚𝐧	𝒆
:
;𝒇:𝐟𝐜,𝐧?

𝟐

𝟐𝐰𝐧𝟐
𝐍

𝐧C𝟎

 (1) 

where 𝒇 is the frequency, an is the power, 𝐟𝐜,𝐧 the center frequency and wn is the width of the 175 

Gaussian n (i.e., the standard deviation). Gaussians were used to model physiological oscillations 176 

and spectral artifacts like line noise. This approach was preferred over using notch filters as 177 

spectra with notches were not adequately fitted by the proposed model. In this work we propose 178 

a new parameterization of the aperiodic component defined as  179 

𝐋(𝒇) = 𝐀
𝐟𝐤
𝛘 + 𝐟𝐦𝐢𝐧

𝛘

𝐟𝐤
𝛘 + 𝒇𝛘

 (2) 

where A is the broadband offset and can be interpreted as the power fitted at the minimal 180 

frequency of interest fmin, that is, the smallest positive frequency for which power can be reliably 181 

estimated based on acquisition, preprocessing, and PSD estimation method and parameters. For 182 

the current work, it was determined as 𝐟𝐦𝐢𝐧 = 𝐦𝐚𝐱{𝐟𝐇𝐏, 𝐟𝐬 𝐦⁄ }, the largest between 𝐟𝐇𝐏, the 183 

cutoff frequency of the high-pass filter applied at acquisition (or preprocessing), and the smallest 184 

positive frequency calculated by the Welch method 𝐟𝐬 𝐦⁄ , where fs is the sampling rate and m 185 

the number of samples in the Welch window. The parameter	𝐟𝐤 is the knee frequency which (for 186 

𝐟𝐤 ≫ 𝐟𝐦𝐢𝐧) can be interpreted as the frequency at which the power decays to approximately A/2. 187 
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The rate at which the power decreases for frequencies above 	𝐟𝐤 is defined by the aperiodic slope 188 

𝛘. We also modified the original algorithm proposed by (Haller et al., 2018) to scan	𝐟𝒌 189 

logarithmically, therefore ensuring positive values. This change also allows the full model to 190 

adequately fit cases in which there is no knee in the PSD by converging to 𝐟𝒌 ≪ 𝐟𝒎𝒊𝒏. For 191 

computational reasons we restricted the range of 𝐟𝒌 from  𝐟𝒎𝒊𝒏 𝟏𝟎⁄  to 𝐟𝑵𝒚𝒒𝒖𝒊𝒔𝒕. See the 192 

supplementary materials for a discussion on the advantages of using this parameterization over 193 

the original one proposed by (Donoghue et al., 2020; Haller et al., 2018). 194 

Additionally, we modified the cost function (J) of the fitting procedure by adding to the mean 195 

squared error term a regularization term that penalizes the integral of the gaussians over negative 196 

frequencies (Equation 3),  197 

𝑱 =
𝟏
𝑴6;𝒀𝒊 − �̀�𝒊?

𝟐
𝑴

𝒊C𝟏

+ 	𝝀6 b 𝑮𝒏(𝑭)	𝒅𝑭

𝒇𝒎𝒊𝒏

:f

𝑵

𝒏C𝟎

 (3) 

where 𝒀𝒊 is the log-power estimated by the Welch method at frequency fi, and 𝑌hi is the value 198 

fitted by the model. The second term was added to prevent Gaussian peaks to extend beyond the 199 

fitting range, which can affect the estimation of aperiodic component (Gerster et al., 2022). The 200 

regularization parameter 𝝀 was empirically adjusted for each dataset. Algorithm development 201 

and analyses for this work were done in Python. Scripts and packages are available at 202 

github.com/Brain-Modulation-Lab/fooof/tree/lorentzian. 203 

Statistical analysis. We performed statistical analyses in R. Base functions were used for 204 

correlation tests, paired t-tests, linear models, and Fisher exact test for count data. The coin 205 

package was used for permutation tests (Hothorn et al., 2008), lmerTest for linear mixed effects 206 

models (Kuznetsova et al., 2017) and multcomp for multiple comparisons (Bretz et al., 2011). 207 

Results 208 

To explore differences between the aperiodic components of cortical and basal ganglia or 209 

thalamic LFPs, we elaborated upon the FOOOF method (Donoghue et al., 2020; Haller et al., 210 

2018) by incorporating a new Lorentzian-like parameterization of the broadband aperiodic 211 

component, changing the way parameters are scanned and adding a regularization term (see 212 

methods and supplementary materials for details). These changes result in more easily 213 

interpretable parameters, with well-defined units and better parameter identifiability (Cedersund 214 
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 9 

and Roll, 2009) (Figure S1). These modifications also allow fitting of the same model to power 215 

spectra with qualitatively different profiles. In the original description, parameterization required 216 

an a priori selection of one of two possible models (with or without a “knee” parameter); our 217 

modifications allow seamless fitting of either case with the same model.  218 

 219 

First, to assess the performance of the novel parameterization, we fitted the power spectra of 220 

ECoG recordings acquired from movement disorder patients undergoing awake DBS 221 

implantation surgery. Baseline epochs recorded during rest periods in a speech production task 222 

were used for this analysis. The novel parameterization fits the data as well as the original 223 

implementation (Figure 2a); R2 values of both models are virtually identical and tightly cluster at 224 

values above 0.975 (Figure 2a inset). However, the aperiodic parameters for the novel 225 

formulation do not show the strong collinearity observed for the parameters of the original model 226 

(Figure 2b and S2). In this context, collinearity is indicative of poor parameter identifiability, 227 

leading to larger uncertainties of the parameters (Cedersund and Roll, 2009). (Note however that 228 

there is a residual correlation between the aperiodic knee and the exponent of the spectra, Figure 229 

S2b). Our novel formulation also better constrains the range of values of the parameters, for 230 

Figure 2. The novel parameterization of the 
aperiodic component avoids collinearity 
between parameters. A) Representative 
example of cortical power spectra with fits 
from original and novel models. The inset 
shows the correlation between R2 values for 
both models, and their univariate distribution 
in data from PD participants. B) Aperiodic 
exponent vs. offset parameters for ECoG 
recordings from PD patients, for the original 
(red) and novel (blue) parameterizations. 
Contour lines represent the 5%, 10%, 20%, 
40% and 80% percentiles of 2D kernel density 
estimation.  
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 10 

example the aperiodic offset spans 6 orders of magnitudes for the original model but only 2 in 231 

the novel formulation (Figure 2b).  232 

 233 

 234 

Figure 3. Cortical aperiodic parameters correlate with PD severity and anatomical regions. A) 235 
Anatomical localization of ECoG electrodes used to record cortical activity from Parkinson’s disease (PD, 236 
blue) and essential tremor (ET, red) patients undergoing DBS surgery. B) Median cortical aperiodic 237 
exponent from Rolandic and premotor ECoG recordings in PD patients undergoing STN-DBS surgery vs. 238 
preoperative UPDRS-III ON score. Shaded region represents CI95. C) Median values of cortical aperiodic 239 
exponent (left), knee frequency (center) and offset (right) for each subject, color coded by diagnosis. D) 240 
Lateral view of cortical parcellation defined by MMP1 on an inflated brain, colored according to fMRI 241 
response to visual (blue), auditory (red) or somatosensory (green) tasks (Glasser et al., 2016). E) 242 
Aperiodic knee frequency cortical region effect (after accounting for subject effect) vs. anatomical 243 
regions, as defined in the MMP1 atlas, for regions recorded by electrodes from 10 or more subjects. To 244 
avoid effects from differences in sampling density, statistics were done on the average per region per 245 
subject. Error bars indicate the SEM across subjects. Colors as in D. 246 
 247 

Using this new parameterization, we explored cortical aperiodic activity from ECoG recordings 248 

in PD patients undergoing STN-DBS implantation. Across participants, electrodes covered the 249 

left inferior frontal cortex, precentral and postcentral gyrus, superior and middle temporal gyrus 250 

(blue dots in Figure 3a). Interestingly, we found a significant positive correlation between the 251 

pre-operative UPDRS-III ON score and the aperiodic exponent from Rolandic and premotor 252 

cortical areas (r=0.4, p=0.036, Pearson correlation, Figure 3b), but not from other cortical 253 

regions. However, no significant correlation was found with the UPDRS-III OFF score (r=0.25, 254 
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p=0.22), nor the UPDRS-III ON/OFF percent change (r=0.33, p=0.13, Figure S3). There was no 255 

significant difference in cortical aperiodic parameters extracted from ECoG of PD and essential 256 

tremor (ET) patients for the exponent (p=0.28, permutation test), knee frequency (p=0.68) or 257 

offset (p=0.28, Figure 3c). Therefore, we pooled data across these two cohorts for subsequent 258 

analyses. There was no significant correlation of the aperiodic components with age (p=0.44, 259 

Pearson correlation). Note that the age range of this cohort (43-79 yrs) does not include the 260 

younger adult group (18-30 yrs) from previous studies (Dave et al., 2018; Voytek et al., 2015). 261 

We grouped electrodes according to the multimodal parcellation 1 atlas (HCP-MMP1, (Glasser 262 

et al., 2016), Figure 3d), and used a mixed effects model to account for subject-to-subject 263 

variability. In line with recent reports (Chaoul and Siegel, 2021; Gao et al., 2020a; 264 

Muthukumaraswamy and Liley, 2018) we found significant differences in aperiodic parameters 265 

across cortical regions (Figure 3e, Table S2). We observed that the aperiodic knee frequency in 266 

primary sensory cortex “1” was significantly greater than that observed in frontal regions “8Av” 267 

(p=0.014) and “6r” (p=0.017), opercula area 4 “OP4” (p<0.01) and secondary auditory cortex 268 

“A5” (p<0.01, Tukey’s Contrast for region effect).  269 

Next, we explored the aperiodic potentials from subcortical recordings acquired through the DBS 270 

leads. For PD patients, DBS leads targeted the dorsal-posterior-lateral portion of the subthalamic 271 

nucleus (STN) or the inferior-posterior-lateral globus pallidus internus (GPi), whereas for ET 272 

patients leads targeted the ventral intermedius (VIM) nucleus of the thalamus (Figure 4a). In 273 

contrast to what was observed for cortical recordings, no obvious ‘knee’ was apparent in power 274 

spectra from the STN, VIM or GPi (Figure 4b, 4c and 4d); the aperiodic component of 275 

extracellular potentials for these subcortical structures decreases with frequency starting from the 276 

minimal frequency acquired. These qualitative differences with ECoG PSDs could be due to the 277 

different electrode types (see Table S1 for details), reflect underlying electrophysiology, or a 278 

combination of both effects (see discussion). To quantify these differences, we fit subcortical 279 

power spectra using the same model as for cortical data (Figure 4b, 4c and 4d). 280 

The distribution of aperiodic parameters in STN recordings is remarkably different to that in 281 

cortical ECoG signals from the same subjects (Figure 4e, 4f and 4g, left panels). The aperiodic 282 

exponent for the STN has a median of 1.30±0.21 (median ± standard deviation across subjects), 283 

almost 3-fold smaller than that of ECoG recordings 3.41±0.30 for the same subjects (p<10-5, 284 

paired t-test, Table 1, Figure 4e). This difference in the aperiodic exponent between cortical and 285 
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STN recordings reaches significance for all individual subjects analyzed (Figure 4e). Contrary to 286 

what we observed for cortical recordings, there was no correlation between the aperiodic slope 287 

from the STN and preoperative UPDRS-III ON or OFF scores (p=0.9 and p=0.7 respectively, 288 

Pearson correlation). The aperiodic exponent from DBS lead recordings in VIM and GPi were 289 

also significantly different from the simultaneous cortical recordings in each patient (p<10-5 for 290 

VIM, p=0.03 for GPi, paired t-test, Figure 4e). 291 

 292 

 293 

Figure 4. Power spectra of extracellular potentials from STN, VIM and GPi show no knee and 294 
lower aperiodic exponent than cortical recordings. A) Anatomical localizations of cortical and 295 
subcortical electrodes from the DBS lead, relative to the STN, GPi and VIM (Distal and Morel atlases, 296 
respectively). B) Representative example of power spectra, aperiodic component (gray lines) and model 297 
fit (dashed lines) for a STN and a cortical contact from the same subject. Note that for visual clarity the 298 
full-model fits were displaced vertically as indicated by the colored arrows on the left of the plot. C) 299 
Same as B for VIM. D) Same as B for GPi. E) Distribution of fitted aperiodic exponents for STN, VIM 300 
and GPi compared to cortex in individual subjects. Each dot corresponds to the median and error-bars to 301 
the standard deviation of all electrodes within the corresponding brain region. Gray lines join subcortical 302 
and cortical values for individual subjects. F) Same as E for the aperiodic knee frequency. Note that the y 303 
axis is in log-scale. The dashed horizontal line represents the smallest positive frequency acquired fklm. 304 
Fits with knee frequencies smaller than fklm indicate spectra without observable knee. G) Same as E for 305 
the aperiodic offset.   306 
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Cohort Location Electrode 
type 

Ns Exponent Offset 
(µV2/Hz) 

𝐟𝒌 (Hz) 𝑷(𝐟𝒌
< 𝐟𝒎𝒊𝒏) 

𝝉  (ms) 

PDSTN-DBS STN DBS lead 13 1.30±0.21  7.6 [2.9; 20]  < 1 85±4% > 159  
Cortex ECoG 26 3.41±0.30  55 [15; 208] 17.6 [13.3; 23.3] 1.1±0.2% 9.0 [6.8; 12.7] 

ETVIM-DBS VIM DBS lead 15 1.42±0.14  11.7 [6.0; 23] < 1 87±3% > 159  
Cortex ECoG 18 3.20±0.36  38 [11; 133] 17.0 [12.9; 22.6] 0.9±0.2% 9.4 [7.0; 12.3] 

PDGPi-DBS GPi DBS lead 3 1.43±0.10  17.8 [8.4; 38] < 1 73±9% > 159  
Cortex ECoG 4 2.91±0.32  63 [42; 94] 11.4 [7.2; 18.2] 1.6±0.6% 13.9 [8.7; 22.1] 

EPsEEG Thalamus sEEG 8 1.33±0.23  4.2 [1.0; 18.2] < 1 79±4% > 159  
Cortex sEEG 8 2.96±0.36  96 [14; 664] 7.6 [3.1; 18.3] 3.7±1.6% 20.9 [8.7; 51.3] 

Table 1. Mean and dispersion of aperiodic parameters across patient cohorts and brain structures. 307 
Exponent: Mean ± Standard deviation across patients. Offset (µV2/Hz): Median [Q16; Q84], note the 308 
asymmetric distribution. 𝐟𝒌: Knee frequency in Hz, Median [Q16; Q84]. 𝑃(fq < fris): percentage (± 309 
standard error) of electrodes with knee frequency lower than fris. 	𝜏 = (2𝜋f𝑘)−1: aperiodic neural 310 
timescale in milliseconds.  Abbreviations: PD, Parkinson’s disease; ET, essential tremor; EP, epilepsy; 311 
STN, subthalamic nucleus; VIM, ventral intermedius nucleus of the thalamus; GPi, globus pallidus 312 
internus; Ns, number of subjects.  313 

The calculated aperiodic knee frequency also exhibited a strikingly different distribution for 314 

STN, VIM and GPi than for the cortex (Table 1, Figure 4f). While the cortical knee frequencies 315 

center at 17±5 Hz (median  ± standard deviation across subjects), those for STN, GPi and VIM 316 

converge to values lower than the smallest positive frequency of the power spectra (fklm = 1	𝐻𝑧, 317 

dashed line in Figure 4f), in many cases reaching the lower boundary allowed for the fitting 318 

algorithm (0.1 Hz). It is important to note that knee frequency values smaller than fklm should 319 

not be interpreted quantitively, instead, they indicate the absence of a knee in the power spectra 320 

within the frequency ranged acquired. In other words, if there is a knee for the power spectra of 321 

STN, GPi and VIM, this value is lower than 1 Hz. Due to the high-pass frequency filters applied 322 

at acquisition it is not possible to explore lower frequencies in this dataset. The proportion of 323 

power spectra without a knee 𝑃(𝑓q < 𝑓ris) is significantly higher for STN, VIM and GPi 324 

recordings than for cortical recordings (Table 1, p<10-6, Fisher test).  325 

Given the large difference observed in aperiodic parameters for STN, GPi and VIM as compared 326 

to cortex, we asked if these differences are specific to the types of electrodes used to record from 327 

subcortical nuclei in movement disorder patients or, on the contrary, generalize to other electrode 328 

types, subcortical structures, and diagnoses. To this end, we explored baseline recordings from 8 329 

epilepsy patients undergoing intracranial monitoring with electrodes implanted in the thalamus 330 
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for the purpose of assessing thalamic participation in the hypothesized seizure network and 331 

potential for therapeutic neuromodulation (Richardson 2022) (Figure 5a). In these recordings, the 332 

same type of stereo-EEG electrode contacts, and in some cases contacts on the same electrode, 333 

were used for cortical and thalamic targets. Thalamic contacts covered several thalamic nuclei 334 

from the ventral division (VLpd, VPLp, VLpv, VLa, VPM) to intralaminar nuclei (CM, MDpc, 335 

Pf, CL) (Morel, 2007) (see Table S3), whereas selected cortical contacts covered parietal and 336 

frontal regions (Figure 5a). As before, we found that thalamic power spectra show no observable 337 

knee, whereas cortical spectra from the same patients show prominent aperiodic knees (Figure 338 

5b).  339 

 340 
Figure 5. Power spectra from thalamic sEEG recordings show no knee and lower aperiodic 341 
exponent than cortical sEEG signals. A) Anatomical localizations of selected sEEG electrodes for 342 
epilepsy patients with thalamic implantations. B) Representative example of power spectra aperiodic 343 
component (gray line) and model fit (dashed lines) from a cortical sEEG contact (red) and thalamic sEEG 344 
(blue) recordings. For visual clarity, the full-model fits were displaced vertically as indicated by the 345 
colored arrows on the left. C) Distribution of fitted aperiodic exponents for thalamic bipolar pairs 346 
compared to cortex in individual subjects. Each dot corresponds to the median and the error-bars to the 347 
standard deviation of all bipolar pairs within the thalamus and cortex. The gray lines join parameters of 348 
the same subject. D) Same as C for the knee frequency. Note that the y axis is in log-scale. The dashed 349 
horizontal line represents fklm. E) Same as C for the aperiodic offset.   350 
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A large difference in aperiodic exponent between cortical and thalamic electrodes was observed 351 

(p<0.001, paired t-test, Figure 5c, Table 1), consistent with the results obtained from movement 352 

disorder patients (Figure 4e). This difference holds at the single subject level, showing consistent 353 

changes across subjects (Figure 5c, gray lines). The aperiodic knee frequency also showed 354 

significant differences for thalamic and cortical contacts (Figure 5d), with thalamic values falling 355 

almost exclusively below fklm (smallest positive frequency of the spectra) and cortical values 356 

above this threshold (p<10-6, Fisher exact test). 357 

Note that the aperiodic exponent of thalamic sEEG recordings in epilepsy patients (1.33±0.23) 358 

was not significantly different than that of DBS lead recordings in movement disorder patients 359 

(Table 1, p>0.05 for all pairwise comparisons by FDR-corrected permutation test). Similarly, the 360 

knee frequency extracted was below the cut-off value of fmin=1Hz, as was the case for DBS 361 

recordings.   362 

Discussion  363 

Almost every cortical region projects to and receives projections from the thalamus and other 364 

subcortical structures (Caviness and Frost, 1980; Sherman, 2016). These interactions provide a 365 

substrate for communication between distant cortical regions, facilitating spatial integration of 366 

the brain (Grant et al., 2012) and creating circuits with massive convergence and divergence in 367 

cell number at different nodes, as in the cortico-basal ganglia-thalamo-cortical loop (Bergman, 368 

2021; Wilson, 2013). This organization involves regions whose cell types differ on many levels 369 

including channel and receptor expression, morphology, cytoarchitectures, and proportions of 370 

excitatory and inhibitory interactions, differences that allow for distinct dynamical behaviors and 371 

computational properties across brain structures. 372 

In this study we performed systematic analysis of the broadband aperiodic component of brain 373 

recordings from multiple locations of the cortico-basal ganglia-thalamo-cortical loop, by fitting a 374 

phenomenological model to the power spectra of LFPs (Donoghue et al., 2020; Haller et al., 375 

2018). We developed a novel parameterization of the broadband aperiodic component with the 376 

following advantages: 1) well-defined units for all parameters, 2) easily interpretable parameters, 377 

3) structurally uncorrelated parameters, 4) parameters with more constrained physiological 378 

ranges, and 5) ability to fit spectra with or without an aperiodic ‘knee’ using the same model (see 379 

Figure 2a-b and Supplementary Materials). Interestingly, even with the novel parameterization of 380 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 10, 2023. ; https://doi.org/10.1101/2023.02.08.527719doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.08.527719
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

the aperiodic exponent, which removes structural correlations between parameters (Cedersund 381 

and Roll, 2009), residual positive correlation between the aperiodic knee and the exponent of the 382 

spectra (Figure S2b) was observed, suggesting that these parameters could be coupled.  383 

Using this model to fit power spectra from baseline ECoG recordings from patients undergoing 384 

DBS implantation surgery, we found that the cortical aperiodic exponent correlates with 385 

Parkinson’s disease severity as assessed by the pre-operative UPDRS III (on-medication, Figure 386 

3b). This novel result is in line with a MEG finding showing higher aperiodic exponents for PD 387 

patients compared to neuro-typical controls (Vinding et al., 2020). In our data, the correlation 388 

with the aperiodic exponent did not reach significance for the pre-operative UPDRS-OFF score, 389 

even though patients were in an OFF state during the intra-operative recordings. This could be 390 

due to less sensitivity or higher variability for the UPDRS-OFF score (as compared to the ON 391 

score) for the clinical population undergoing DBS treatment, which is biased to high symptom 392 

severity. There were no significant correlations of the STN LFP aperiodic exponent with 393 

UPDRS-III score (ON nor OFF levodopa), consistent with a recent report (Wiest et al., 2022). 394 

Total beta power is known to correlate with PD disease severity in the basal ganglia (Brown et 395 

al., 2001; Cassidy et al., 2002; Kühn et al., 2004) and sensory-motor cortex (Pollok et al., 2012; 396 

Williams et al., 2002). FOOOF was designed to decouple oscillations from the underlying 397 

broadband aperiodic component, which reflects features of the entire spectrum, not just a specific 398 

band. However, estimations of aperiodic parameters can be affected by oscillatory components 399 

that extend beyond the fitting range (Gerster et al., 2022). This is not the case for our data since 400 

beta (12-30Hz) frequencies are above the lower frequency acquired (fmin=1Hz). Additionally, we 401 

included a regularization term penalizing peaks below fmin to avoid this pitfall (see methods). 402 

Indeed, the fact that we obtained a significant correlation of the aperiodic exponent with UPDRS 403 

for motor cortex but not in the basal ganglia (which has prominent pathological beta 404 

oscillations), suggests that the method is correctly decoupling the aperiodic component from 405 

oscillatory features. Interestingly, changes in the aperiodic exponent could contribute to the 406 

known correlation of total beta power with UPDRS (Pollok et al., 2012; Williams et al., 2002) 407 

and to the ability of algorithms based on holistic spectral features to differentiate PD patients 408 

from controls (Anjum et al., 2020).      409 

The main finding of this work is the conspicuous difference in the aperiodic component of the 410 

spectra between cortical recordings and those of basal ganglia and thalamic nuclei (Figure 4 and 411 
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5). Whereas cortical recordings showed an aperiodic knee with significant changes across 412 

cortical regions (Figure 3e, consistent with recent reports (Chaoul and Siegel, 2021; Gao et al., 413 

2020b; Muthukumaraswamy and Liley, 2018)), spectra from basal ganglia and thalamic nuclei 414 

show no knee, an observation we could systematically evaluated thanks to the novel 415 

parameterization of the broadband aperiodic component. Spectra from subcortical regions 416 

showed an aperiodic exponent close to one (𝜒 = 1.3 ± 0.2), significantly smaller than in cortex 417 

(𝜒 = 3.2 ± 0.3). These results are reproducible across patients, two medical centers, electrode 418 

types, recording systems, referencing montages, diagnoses, and subcortical structures. 419 

Furthermore, the value for the aperiodic exponent in the STN we measured is consistent with 420 

recent studies that estimated this parameter (Huang et al., 2020; Wiest et al., 2022). 421 

A limitation of this work is that ECoG electrodes lie over the pia mater, whereas the DBS leads 422 

penetrate the brain parenchyma. However, our data from epilepsy patients was recorded from the 423 

same type of sEEG electrodes for cortical and thalamic regions. Notably, these multi-contact 424 

electrodes are similar in size, shape, and impedance value to DBS lead contacts (Supplementary 425 

Table S1). We observed the same qualitative difference in aperiodic parameters between cortical 426 

and subcortical regions in both datasets, suggesting that these differences cannot be fully 427 

explained by electrode type and are due to structural and/or functional properties of the recorded 428 

brain areas. Another important limitation of our work is that different subcortical regions were 429 

recorded from different clinical populations. Therefore, we did not compare parameters across 430 

subcortical regions since the pathology would be an unavoidable confound; we limited our 431 

analysis of cortical vs. subcortical aperiodic activity to within-subject comparisons.  432 

Neural morphology affects the shape and amplitude of extracellular potentials and could explain 433 

the differences in aperiodic activity observed between cortical and subcortical structures. Cells 434 

with large spatial separation between current sinks and return currents (like cortical pyramidal 435 

neurons) induce substantial extracellular ionic flows and large perturbations of the extracellular 436 

potential (Johnston and Wu, 1995). In contrast, neurons with roughly spherically symmetric 437 

dendritic arbors (like thalamocortical or STN neurons) do not produce strong current dipoles, 438 

with smaller contributions to recorded extracellular field potentials (Buzsáki et al., 2012; 439 

Johnston and Wu, 1995). However, synaptic inputs to subcortical structures may have 440 

asymmetric distributions which can produce measurable field potentials (Buzsáki et al., 2012; 441 

Lindén et al., 2010; Tanaka and Nakamura, 2019), for example having inhibitory synapses closer 442 
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to the soma and more distal excitatory inputs (Lempka and McIntyre, 2013; Mazzoni et al., 2015; 443 

Wilson, 2010). 444 

Although neuronal densities are comparable between cortical gray matter, STN and VIM 445 

(Bergman, 2021; Lévesque and Parent, 2005), the spatial arrangement of neurons can also have a 446 

large effect on the recorded extracellular potential (Gold et al., 2006; Johnston and Wu, 1995; 447 

Pettersen et al., 2008). In neuronal populations organized in layers, such as the 6-layered 448 

neocortex, simultaneous contributions from multiple similarly oriented cells will add up to give 449 

large fluctuations of the extracellular potential. In contrast, in neurons that have spatially 450 

isotropic arrangements, as in subcortical nuclei, simultaneous contributions from different units 451 

in diverse orientation can cancel out to some extent, producing overall smaller extracellular 452 

potentials (Johnston and Wu, 1995). These structural differences can explain why the overall 453 

power of field potentials is lower in subcortical nuclei than in neocortex. However, they do not 454 

explain why the aperiodic exponent and knee are different across these structures.  455 

Several mechanisms have been suggested as the origin of the 1 𝑓,⁄  aperiodic component, 456 

including ionic diffusion and induction of electric fields in passive cells (Bédard et al., 2006a; 457 

Bédard and Destexhe, 2009). However, these effects are likely to be present in all brain regions. 458 

The shape and length of the dendrites, along with the location of the synaptic input can give rise 459 

to different frequency dependences of the intrinsic dendritic filtering (Lindén et al., 2010). Due 460 

to the different morphology of cortical versus thalamic and basal ganglia neurons, this could 461 

contribute to the difference in 1 𝑓,⁄  slope observed. However, the aperiodic slope in the STN 462 

has been shown to change with Propofol anesthesia (Huang et al., 2020), dopaminergic 463 

medication and DBS treatment (Wiest et al., 2022), demonstrating that this parameter depends on 464 

dynamical aspects of neural activity and cannot be fully explained by morphology and 465 

cytoarchitecture. 466 

Functional differences like the profile and characteristic duration of post-synaptic currents can 467 

affect the aperiodic slope. For example, sharp rise and exponential decays for post-synaptic 468 

currents give rise to a 1 𝑓�⁄  decline of power (Bédard et al., 2006b; Miller et al., 2009; Milstein 469 

et al., 2009), and the ratio of excitatory to inhibitory inputs can affect the aperiodic knee 470 

frequency of the spectra (Gao et al., 2017). Transitions between UP and DOWN states (i.e., rapid 471 

trains of correlated synaptic inputs followed by quiescent periods), can give rise to power spectra 472 
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following 1 𝑓�⁄  decline (Baranauskas et al., 2012; Milstein et al., 2009). In contrast, Poissonian 473 

inputs uncorrelated across cells do not contribute to the frequency dependency of the spectra 474 

(Bédard et al., 2006b; Miller et al., 2009; Milstein et al., 2009). Interestingly, there is a 475 

surprisingly low spike-timing correlation in the pallidum (Bar-Gad et al., 2003; Nini et al., 1995; 476 

Raz et al., 2000) and structures with strong pallidal input, including GPi, STN and several nuclei 477 

of the ventral thalamus will have low input correlation, which contribute to the low amplitude 478 

(Lindén et al., 2011) and slow decline with frequency of the power spectra in these regions. 479 

There is currently no consensus on the physiological interpretation of the aperiodic knee and its 480 

change across brain structures. Miller et al. showed in ECoG recordings an aperiodic slope of 481 

c=2 for frequencies above 15 Hz up to a "knee" around 75 Hz, at which the aperiodic slope 482 

changed to c=4, implying the existence of a characteristic time scale 𝜏 = (2𝜋𝑓q):� = 2 − 4𝑚𝑠 483 

(Miller et al., 2009). Using similar reasoning on the knee observed around 10 Hz, Gao et al. 484 

proposed the existence of an "aperiodic neural timescale” (of around 10 to 50 ms) that can be 485 

interpreted as the characteristic duration of an aperiodic fluctuation of the LFP (Gao et al., 486 

2020b). In our data, this timescale is in the range of 10 to 20 ms (Table 1) and changes across 487 

cortical locations (Figure 3e), which is consistent with previous findings and suggests that this 488 

parameter might be reflecting an intrinsic feature of cortical micro-circuitry and computation 489 

(Gao et al., 2020b). 490 

The lack of an observable aperiodic knee for thalamic and basal ganglia recordings (i.e., the 491 

fitted value is lower than the cut-off frequency 𝑓klm; Figure 4 and 5) can be interpreted as 492 

reflecting the absence of any characteristic duration of aperiodic fluctuations (strict 1/𝑓 power 493 

law). However, the neural morphology and cytoarchitecture of these regions might prevent 494 

characteristic aperiodic fluctuations from being reflected in LFPs. Alternatively, the aperiodic 495 

neural timescale could be longer than what can be detected by our method due to technical 496 

limitations. The latter interpretation puts a lower bound of 129ms for the subcortical aperiodic 497 

neural timescale ( 𝜏 > (2𝜋	𝑓klm):� = 129𝑚𝑠 for 𝑓klm = 1𝐻𝑧) and suggests that basal ganglia 498 

and ventral thalamic nuclei are slower than cortex in terms of their aperiodic fluctuations. 499 

Although speculative, this interpretation suggests that the basal ganglia-thalamo-cortical loop 500 

could be a site of temporal-integration, a notion that aligns well with the known role of this 501 

circuit in spatial-integration, action selection and motor control (Bergman, 2021; DeLong and 502 

Wichmann, 2010; Grant et al., 2012; Mink, 1996; Turner and Desmurget, 2010).   503 
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