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Abstract

Background: A wide-ranging debate has taken place in recent years on mediation analysis and causal modelling,
raising profound theoretical, philosophical and methodological questions. The authors build on the results of these
discussions to work towards an integrated approach to the analysis of research questions that situate survival
outcomes in relation to complex causal pathways with multiple mediators. The background to this contribution is
the increasingly urgent need for policy-relevant research on the nature of inequalities in health and healthcare.

Methods: The authors begin by summarising debates on causal inference, mediated effects and statistical models,
showing that these three strands of research have powerful synergies. They review a range of approaches which seek
to extend existing survival models to obtain valid estimates of mediation effects. They then argue for an alternative
strategy, which involves integrating survival outcomes within Structural Equation Models via the discrete-time survival
model. This approach can provide an integrated framework for studying mediation effects in relation to survival
outcomes, an issue of great relevance in applied health research. The authors provide an example of how these
techniques can be used to explore whether the social class position of patients has a significant indirect effect on
the hazard of death from colon cancer.

Results: The results suggest that the indirect effects of social class on survival are substantial and negative
(-0.23 overall). In addition to the substantial direct effect of this variable (-0.60), its indirect effects account for
more than one quarter of the total effect. The two main pathways for this indirect effect, via emergency admission
(-0.12), on the one hand, and hospital caseload, on the other, (-0.10) are of similar size.

Conclusions: The discrete-time survival model provides an attractive way of integrating time-to-event data within the
field of Structural Equation Modelling. The authors demonstrate the efficacy of this approach in identifying complex
causal pathways that mediate the effects of a socio-economic baseline covariate on the hazard of death from colon
cancer. The results show that this approach has the potential to shed light on a class of research questions which is of
particular relevance in health research.
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Background

A wide-ranging debate has taken place in recent years
on mediation analysis and causal modelling [1-9]. This
debate has involved many different fields and raised pro-
found questions about the status of scientific explana-
tions, statistical theory and research methodology when
making causal inferences. In this paper, we build on this
discussion to outline an integrated approach to the ana-
lysis of research questions that situate survival outcomes
in relation to complex causal pathways. There are good
reasons for pursuing this goal, as researchers are in-
creasingly seeking to shed light on the “mechanisms”
that generate survival outcomes by exploring mediated
effects. As Aalen et al. [1] observe, “In other areas [out-
side Psychology and Social Science] mediation analysis
has largely been ignored. This is especially so for situa-
tions where time plays a central role, as in survival ana-
lysis. In view of the importance of survival analysis in
medicine and other areas, it is surprising that not more
attention has gone into the issue of mediation.”

The background to this contribution is the increas-
ingly urgent need for policy-relevant research on the na-
ture and form of social inequalities in relation to health
and health care, as interventions to promote population
health and to improve equity rest on causal interpreta-
tions of the determinants of health-related outcomes,
however incomplete or flawed these may be [10]. At the
same time, and despite the enormous progress that has
been made in each of the aforementioned areas, an inte-
grated framework for causal modelling has not yet been
identified in health research, with a view to incorporat-
ing survival outcomes with such desirable features as (a)
latent variables, (b) time-varying covariates, (c) complex
pathways and (d) support for causal inferences in rela-
tion to direct and indirect effects.

We will begin by briefly summarising recent debates
on causal inference, mediated effects and statistical
models. We will show that these three strands of re-
search have powerful synergies which can be exploited
by bringing them together within an appropriate analyt-
ical framework. We will then present an illustrative
example using survival data for a sample of patients
diagnosed with colon cancer in the Republic of Ireland
between 2004 and 2008. We will assess whether social
class (measured by a proxy variable) exerts statistically-
significant direct and indirect causal effects on survival
prospects. We are particularly interested in assessing
whether the influence of this socio-economic baseline
covariate is mediated by the route of admission to or by
the caseload of the hospital where the main treatment
was received. These indirect pathways are of great rele-
vance from a policy-making perspective, as they have the
potential to shed light on the mechanisms that (re)pro-
duce social inequalities in health outcomes.
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Literature review

Mediation effects

The study of mediation raises complex issues, although
the basic structure of such effects is simple. By includ-
ing mediators in a regression equation, the coefficients
for other variables in the model may change or become
statistically or substantively non-significant. In this way,
mediation effects can mask the influence of certain
variables and impede a full appreciation of their role in
determining outcomes. Conversely, the appropriate speci-
fication of such effects can provide practitioners and
policy-makers with richer information on disparities in
access to health and health care.

Mediation analysis has stimulated interest amongst
health researchers due to its potential to provide an-
swers to a series of important research questions and
due to dissatisfaction with the methods and approaches
which have tended to dominate health research [4]. The
latter have recently been called into question, primarily
due to their tendency to focus on empirical associations
(“black-box epidemiology”) and consequent failure to
develop plausible explanations [3, 11]. As a possible
solution to this problem, “mechanisms” have been con-
trasted with “black boxes”. The aim of applied research,
it is argued, should be to develop increasingly sophisti-
cated accounts of the systemic relationships and pro-
cesses that generate empirical regularities [12]. In this
vein, mediation analysis can inform intervention strat-
egies, identify “active ingredients” and suggest strategic
sites for action.

Where the mediator and outcome are singular, con-
tinuous and observed, multiple-equation techniques for
studying mediation are frequently used, building on
Baron and Kenny’s influential approach [13, 14]. As
these have been widely discussed, we will merely note
that this technique relies on a series of linear regres-
sion models and enables the researcher to assess
whether a single variable may be said to mediate be-
tween a covariate and the outcome [15]. Although
these techniques have been applied countless times,
they are of limited use if either the mediator or the
outcome are categorical or ordinal (or represent the
time to an event), or if more complex forms of medi-
ation are involved [5, 8]. These limitations have dis-
couraged health researchers from exploring mediation
effects, partly due to the fact that non-linear models
like the Cox model make it difficult to estimate indirect
effects [16].

Causal inference

Causality has become a major issue in Statistics in re-
cent years [1]. The “traditional” statistical approach to
the analysis of direct effects involved conditioning on a
mediating variable. Aware that this does not rest on a
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rigorous definition of causality, Robins and Greenland
[17] and Pearl [18] developed alternative formulations.
The “causal inference” literature which subsequently
developed relies on the counterfactual theory of causal-
ity proposed by Rubin [19]. Judea Pearl, an influential
scholar in this area, contributed to the new-found
popularity of causal questions amongst statisticians by
combining Rubin’s approach with the theory of non-
parametric Structural Equation Models. Other authors
have used similar techniques to clarify the necessary
and sufficient conditions for making causal inferences
about mediation effects [6, 20].

Within this literature, causal inference focuses on four
different kinds of effects: the total effect, the “controlled”
direct effect (based on the idea of holding the mediating
variables fixed by setting their values to a constant by
some kind of intervention), the “natural” direct effect
(where the treatment is set at a given level and we com-
pare outcomes without fixing the mediators to a con-
stant, but allowing them to assume the “natural” levels
that they would have taken in the absence of the treat-
ment) and the “natural” indirect effect (where the direct
effect is disabled and we focus on the effect transmitted
by the mediator).

Pearl, in a recent paper [10], clarified some of the
issues at stake when making causal inferences about
mediation effects using statistical models. Firstly, he
argues that indirect effects should not be treated as
artefacts or nuisance parameters, but as “an intrinsic
property of reality that has tangible policy implica-
tions”. The second is that it is possible to define direct
and indirect effects within a general, causal approach
that does not require particular distributional assump-
tions. Thirdly, he shows that the assumptions required
by causal mediation analysis are essentially analogous to
those that apply to causal models more generally: no con-
founding due to unmeasured common causes. Fourthly,
he demonstrates that the total effect, natural direct
effect and natural indirect effect are identified for linear
Structural Equation Models as long as the aforemen-
tioned assumptions are satisfied and can be estimated
in a straightforward way from the estimated coeffi-
cients. Finally, Pearl considers such models to be po-
tentially useful despite their reliance on assumptions
which cannot be tested explicitly.

This raises interesting questions about the relation-
ship between statistical models, generative mechanisms
and causality — which hinge around a fundamental
paradox. Although statistical models can permit valid
inferences about causal mechanisms under certain con-
ditions, the very nature of these models implies that
these conditions will rarely, if ever, be (fully) satisfied.
After all, reality is infinitely complex, whilst models
provide relatively simple, stylised representations, and
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researchers can never be certain that they have in-
cluded all relevant confounders.

One way of tackling this paradox is to embed it
within the process of scientific discovery. The plausibil-
ity of models is assessed by the scientific community
using prevailing criteria and techniques, which either
reinforces or undermines the conviction that a model
captures the essence of a really-existing mechanism. If
a model omits an important confounder, the onus is on
other researchers to demonstrate that alternative speci-
fications yield different conclusions. In other words, it
is not sufficient to appeal to the possibility of misspeci-
fication or omission (which applies to all models); this
must be substantiated explicitly.

The impact of model misspecification depends on the
strength of the effects associated with the omitted vari-
ables or paths, which implies that once substantively-
important covariates have been included in a model,
the omission of less important effects will, ceteris pari-
bus, have a weaker influence on the model. Rather than
seeking a warrant for making absolute claims, we would
suggest that the aim of causal models is to clarify im-
portant relationships and pathways and to contribute to
the development of mechanism-based explanations.

Statistical models for mediation analysis

In an attempt to overcome the limitations of existing ap-
proaches to mediation analysis, researchers have sought
to extend the Baron-Kenny approach to survival out-
comes by applying them directly to Cox models [21, 22].
This technique is known to yield biased results, however,
and has met with forceful criticism in the scientific lit-
erature, as summarised by Lange and Hansen [23]:

Most importantly, the observed changes in hazard
ratios cannot be given a causal interpretation.

In addition, the important assumption of proportional
hazards can never be satisfied for both models with
and without the mediator. In other words, it is

not mathematically consistent to use a Cox model
both with and without a potential mediator
(mathematically, this is due to the fact that the

class of proportional hazard models is not closed
under marginalization).

As a result of these difficulties, researchers have con-
centrated their efforts on extending survival models in
different ways. One such approach uses “marginal”
models and focuses on obtaining causally-valid infer-
ences for single mediation effects using standard sur-
vival models [24]. Another approach - known as
“marginal structural modelling” - can be used to iden-
tify the causal effect of time-dependent exposures while
controlling for time-dependent confounders which are
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also affected by the exposure [25]. These models use
inverse probability of treatment weights and inverse
probability of censoring weights to create a pseudo-
population in which treatment is un-confounded by
subject-specific characteristics or censoring [26]. The
models are therefore designed to remove confounding
due to a specific type of mediation effect, rather than to
study mediation effects more generally. The independ-
ent variable of interest has to be dichotomous and their
integration with survival outcomes is limited.

The third approach uses Dynamic Path Analysis, de-
veloped by Fosen et al. [27] using Aalen’s additive haz-
ards model, as “an extension of classical path analysis to
a time-continuous survival setting where path effects are
estimated as a function of time” [16]. Lange and Hansen
[23] suggest that this approach has weaknesses when
used to study mediation, as it cannot sustain causal in-
terpretations and cannot be implemented using standard
software. Their recommendation is to adapt the additive
hazards model in a different way to calculate the coun-
terfactual rate difference, which represents the number
of deaths that can be attributed to mediation through
the mediator, compared with those that can be attrib-
uted to the direct path. Martinussen and Vansteelandt
[28] also use the Aalen additive hazards model to adjust
survival models for confounding in a similar way.

These approaches seek to extend existing survival
models to obtain valid estimates of causal effects. As a
consequence, they encounter constraints on the number
and kinds of variables that can be analysed, and more
complex causal mechanisms typically cannot be assessed.
An alternative strategy is to integrate survival outcomes
within Structural Equation Models, as the latter already
include specifications such as growth curves, multilevel
structures, latent variables, latent classes and multiple
outcome variables [29]. Iacobucci [5] offers a general
motivation for this strategy:

Mediation models have also been generalized to allow
for nomological networks that are richer than just the
three central constructs, X, M, and Y. If there are
additional predictors or consequences of any of these,
Structural Equation Models are superior (i.e.,
mathematically statistically optimal given their
smaller standard errors), substantively to get a better
sense of the bigger theoretical picture, and statistically
because the focal associations will be estimated more
purely, having other effects partialed out and
statistically controlled...

We favour this strategy, which seeks to integrate sur-
vival outcomes within a Structural Equation Model, not
least because the latter has come to be seen as the most
appropriate methodological framework for carrying out
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mediation analysis more generally [10, 30—-33]. The na-
ture of survival models has, for a long time, appeared to
exclude this possibility [5]. We will show in the next sec-
tion how this challenge may be tackled, preparing the
ground for an integrated framework.

Structural equation modelling

There is an intuitively appealing way of integrating
time-to-event data within Structural Equation Models.
The idea of using a linear specification of the hazard
function based on discrete-time modelling techniques
was proposed more than 20 years ago, and Singer and
Willett [34] showed that this model could be estimated
using the tools of traditional logistic regression analysis.
Muthén and colleagues subsequently integrated the
discrete-time survival model within the MPlus program
[35, 36]. This approach — which will be described in
greater detail below — makes it possible to estimate
complex discrete-time survival models using existing
software. It is possible, for example, to relate survival
outcomes to other kinds of data structures and to de-
velop models which more accurately reflect real-world
mechanisms:

Discrete-time models have the strength that they can
easily accommodate time-varying covariates. They
also do not require a hazard-related proportionality
assumption that is commonly used in continuous-time
survival analysis, for example, the Cox proportional
hazards model. In addition, these models easily allow
for unstructured as well as structured estimation of
the hazard function at each discrete time point. [35]

This conceptual shift — from continuous to discrete
time, and from a single equation to a Structural Equa-
tion Model - permits the kind of integration of
methods that is required for mediation analysis to
yield its full potential in health research. Amongst the
benefits of this approach are that it encourages re-
searchers to formulate and test more comprehensive
hypotheses and to develop more ambitious theories
regarding generative mechanisms.

The notion of developing and testing mechanism-
based accounts of the world involves a metaphorical
mapping which is highly effective in this context. One
way of understanding this concept is to situate it, once
again, within the process of scientific discovery, whereby
a little-understood association may be replaced, over
time, by a more detailed explanation. This process
gives rise to a constant revision of explanations, ac-
companied by new and more powerful accounts which
articulate the relationship between processes situated
at different levels. We argue that the central aim of
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scientific research is to provide an increasingly accur-
ate or powerful account of these “mechanisms”.

The mechanism-based approach can be applied effect-
ively to the development of statistical models. Models
offer a stylised representation of real-world mechanisms;
by interpreting the results of statistical models, we can
make substantiated claims about the ways in which these
mechanisms work. In fact, “direct” and “indirect” effects
always relate to a specific theory/model, as “typically,
there are other (unmeasured) intermediate variables that
would mediate the direct effect” [3]. Indeed, every direct
effect in a statistical model may be treated as a “black
box”, and replaced (over time) by a more complex set of
direct and indirect effects. It is the substantive focus of
each research project that ultimately decides which black
boxes should be opened (simultaneously creating new
black boxes).

Methods

The discrete-time survival model

In discrete time, /; denotes the probability that an indi-
vidual experiences a non-repeatable event during time
period j, given that he or she did not experience it dur-
ing previous periods:

by = P(T = | T2)) 1)

where T is a discrete random variable that indicates the
time period in which the event occurs. The most im-
portant aspect of the model, which underwrites its ele-
gance, is that by conditioning on successive periods the
statistical theory is simplified [37]. As a consequence,
the joint density function for the various time intervals
(e.g. Th, Ty, T5) can always be written as the product of
the marginal distribution of T}, the conditional distribu-
tion of T, given T) and the conditional distribution of
T5 given T; and T5. As in other survival models, the sur-
vival probability, which expresses the probability of not
experiencing the event, can be expressed in terms of the
hazard:

J

H (1-hy) (2)

k=1

where /1, indicates the hazard probability for each time
period up to and including j, when the event was
observed.

A log-odds relationship is often specified between the
individual hazards and the covariates [34, 35]. If we as-
sume that z; is a p x 1 vector of values for a set of time-
varying covariates (zy,..., z,), measured for individual i in
time period j and that x; is a ¢ x 1 vector of values for a
set of time-invariant covariates (xy,..., %,), then the haz-
ard can be related to the covariates using the following
logistic function:
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1
hj = ————
Yy 1+ e—(logitﬁ)
logit, = ; + Kz + K yX; (3)

where «; is a logit parameter vector for the time-varying
covariates and k,; is a logit parameter vector for the
time-invariant covariates, both of which can vary
across the J time periods [35]. The resulting coefficients
can be antilogged and interpreted as odds ratios in the
usual way. Both continuous and categorical covariates
can be included. If we drop the j subscript from «; and/
or Ky, the effects of the covariates are assumed to be
equal across time periods, yielding the proportional haz-
ard odds model. The inverse logit of j; is the hazard
probability for time period j, where z;=0 and x=0,
which gives the baseline hazard. A constant baseline
hazard probability model can be obtained by setting f;
=p for all j=1,..., ] or, alternatively, a piecewise or para-
metric baseline hazard function can be specified.

In general terms, therefore, the conditional log-odds
that an event will occur in a given time period, given
that it did not occur in previous periods, is modelled as
a linear function of a constant term (which may or may
not be specific to the period) and the values assumed by
a set of explanatory variables (which may or may not
vary over time), multiplied by a set of appropriate slopes
(which may or may not vary across time periods).

To specify the model, we define a / x 1 vector u of bin-
ary variables, for which we imagine a set of underlymg
continuous latent response propensities, w; = (u, U,
e ul/) whereby the latent u,/ are related to the observed
u; via a threshold parameter ;. This is identical to the
derivation of logistic regression via the “latent response”
formulation. The higher the threshold 7, the higher u
needs to be to exceed it and the lower the probability of
u = 1. The threshold parameter is related to the intercept
by the equation g; = —7;.

The binary u;;=0 if individual i is observed to be at
risk for the event of interest for the whole of time period
j but does not experience it, u; = 1 if individual i experi-
ences the event in time period j and u;; is missing if indi-
vidual i has already experienced the event or is lost to
follow-up (i.e. right-censored). The fact that an individ-
ual does not have observations on u after experiencing
the event or dropping out is handled as missing data,
and the conventional assumption of “non-informative
censoring” must be made (as in other survival models).
The Maximum Likelihood estimator is constructed as a
product of terms which coincide with each period up to
the last one for which data were recorded, assuming that
the n individuals composing the sample are independent
given the covariates [34, 35].
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Expressing the hazard probabilities as a function of
the observed covariates using the logit link function is
equivalent to the logistic regression of the u; on the ob-
served covariates [34]. This dependence on the ex-
planatory variables is what introduces heterogeneity
and accounts for inter-individual differences in hazard
probabilities, yielding a proportional shift in the base-
line hazard profile if the coefficients are assumed to be
equal (proportional hazards model). The discrete-time
survival model with unstructured hazard probabilities
but without covariates is always saturated, and thus fits
the u variables perfectly.

In the MPlus program, the proportional hazards
discrete time survival model may be specified either by
placing equality constraints on the coefficients for the
logistic regression of each u variable on each explanatory
variable or by creating a latent variable with a variance
of 0 and a unit path to each u. By relaxing the con-
straints on these paths, it is possible to test the propor-
tionality assumption. Combinations of discrete-time
survival models and other structural equation models
(such as latent curve models, for example) can be used
in a flexible way to address a wide range of research
questions [38]. A final characteristic of the discrete-time
survival model that is worth noting is that its estimates
converge on those provided by the Cox continuous-time
model as the definition of the time periods becomes in-
creasingly fine-grained [39]. The discrete-time model
can be justified not only when time of observation is in-
herently discrete, but also when it is measured continu-
ously and subsequently transformed into discrete
intervals. This provides a useful bridge between the two
techniques for purposes of comparison.

Data
We will now provide an illustrative example of the ap-
proach outlined above. Our statistical model is based on
discrete time-to-event data for death due to cancer of
the colon, with time measured in quarters. All cases of
adenocarcinoma of colon (ICD10 C18) registered by the
Irish National Cancer Registry as incident during the
years 2004—2008 are included. This implies a minimum
of 13 and a maximum of 32 time intervals, which we
truncate at 24, as the number of deaths per quarter is
negligible after this point. An unstructured baseline haz-
ard profile is adopted, for simplicity. Registry data were
linked to public hospital discharge data from the Hos-
pital Inpatient Enquiry (HIPE) for all patients admitted
to public hospitals [40]. Active tumour-directed treat-
ment is defined as excisional biopsy, surgery, chemother-
apy or radiotherapy with a primary aim of removing or
reducing the tumour.

The type of initial admission (scheduled or emergency)
was determined from the HIPE data, and information on
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patient age and tumour stage (AJCC) was derived from
the Registry. Social class is measured by a proxy vari-
able: the small-area affluence/deprivation score of the
patient’s neighbourhood of residence using the Haase-
Pratschke index of relative affluence and deprivation
[41]. Scores on this index are based on 2006 census
data (using Small Areas with an average population
~230 persons) and matched to the individual-level data
provided by the National Cancer Registry of Ireland by
geo-coding patients’ addresses. Treatment is classified
as either sub-optimal (less intensive treatment, or fewer
modalities than recommended) or optimal/more ag-
gressive (treatment according to guidelines or using
additional modalities) by comparison with the recom-
mendations of the National Comprehensive Cancer
Network [42].

High caseload for the main hospital was defined as
more than 40 colon cancer patients per annum, on
average, during the study period. Registry data were
also linked to official death certificates from the Central
Statistics Office. Deaths were classified as either due to
colon cancer or other causes, based on an algorithm
developed by the Scottish Cancer Registry [43]. All
treatments were recorded for the first 12 months fol-
lowing diagnosis, and patients who received no treat-
ment were excluded from the analysis, as these typically
involve cases where cancer was diagnosed either post-
mortem or immediately prior to death. Patients were
followed until death or censoring at the end of the
study (31 December 2011), and those who died from
other causes were also treated as censored observations.
All explanatory variables included in the model are
time-invariant.

Of 6347 colon carcinomas incident in 2004-2008 in
patients who did not develop a second primary cancer
prior to 31/12/2011, 5178 (81 %) had at least one epi-
sode of tumour-directed treatment and 4793 patients
(93 %) received cancer-directed surgery. Just over half
(55 %) of patients were male and 52 % were aged 70 or
over. The majority (60 %) were married and most (63 %)
attended hospital solely or predominantly as public pa-
tients. Almost half (46 %) of cancers were at stage I or II
at diagnosis, and 85 % were of low or intermediate
grade. More than three quarters (78 %) of patients had
no recorded comorbid conditions and just over one fifth
(22 %) were admitted as an emergency. Treatment was
classified as optimal (or more aggressive) in 81 % of
cases, but only 56 % of patients attending low-caseload
hospitals fall into this category.

We coded the survival outcome variables so that pa-
tients enter the study at the moment of diagnosis, with
staging data providing a proxy for onset of illness (and
therefore early/late diagnosis). We include only a small
set of baseline covariates (see Table 1 below) to simplify
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Table 1 Variables included in the model (N=5178)

Variable

Value Summary

data

Stage at diagnosis
(three dummy variables)

Stage | (reference) 559 (10.8 %)

Stage Il 1,812 (35.0 %)
Stage Il 1,678 (324 %)
Stage IV 1,129 (21.8 %)

Treatment optimality (binary)®
995 (19.2 %)
4183 (80.8 %)

sub-optimal (0)

optimal/more

aggressive (1)
Age at diagnosis
(continuous measure)

(Scaling factor=0.10)

<60 1,109 (21.4 %)
60-69 1,396 (27.0 %)
70-79 1,779 (344 %)
80+ 894 (17.3 %)

Deprivation score (rescaled to 0-1

(continuous)® metric)
Mean 0.58
Standard deviation 0.13
Emergency admission
(binary)*
First admission 4026 (77.8 %)
elective (0)
First admission via 1152 (22.2 %)
A&E (1)
High caseload hospital
(bmary)d

Less than or equal 2,876 (55.5 %)

to 40 per annum (0)

More than 40 per 2,302 (44.5 %)

annum (1)

#Missing values (4.4 %) were assigned to the modal category (optimal or
more aggressive)

PMissing values (< 1 %) were estimated using the EM algorithm in IBM SPSS
Statistics v.20

“Missing values (6.5 %) were assigned to the modal category

(elective admission)

4Missing values (< 1 %) for caseload were replaced using the caseload of
hospital where first (rather than main) treatment was received or, if this was
not possible, estimated using the EM algorithm in IBM SPSS Statistics v.20

the presentation and due to space considerations; a more
fully-specified model will be presented in a separate

paper.

Model specification

In the example analysis, we use a causal modelling ap-
proach to explore whether the social class position of
patients has a significant direct and/or indirect effect on
the hazard of (cause-specific) death from colon cancer,
mediated by route of admission to hospital (elective or
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emergency) and/or the caseload of the hospital where
the main treatment was received. We hypothesise that
age and social class influence the route of admission to
hospital, as older and more disadvantaged patients are
more likely to be admitted as emergency cases. We fur-
ther hypothesise that access to a high-caseload hospital
will depend on age, affluence and route of admission:
not only do we expect that older and more disadvan-
taged patients have a lower probability of accessing
high-caseload hospitals, but we also believe that this
applies to those who enter hospital on an emergency
basis.

The causal order encoded by the model is based on lo-
gical/theoretical criteria as well as chronological order,
and we assume no effect modification. The direct and
indirect influences are shown in Fig. 1 below, using the
typical conventions of path models, where observed vari-
ables are represented by rectangles, latent variables by
circles, direct effects by straight arrows which point
from cause to effect and residuals by straight arrows
pointing at the dependent variable in a regression equa-
tion. All covariances are omitted from the diagram, but
included for pairs of exogenous variables where direct
effects were not specified. The direct and indirect path-
ways relating to social class are highlighted by thicker
arrows in the figure. The upper part of the figure (in-
cluding the latent hazard and survival indicators) coin-
cides with the model defined in Equation 3, albeit with
time-invariant covariates and constant effects (i.e. logi-
t; = Bj + Kx ;). The latent variable shown in the figure
(labelled “Latent hazard”) merely simplifies the presen-
tation, as the direct effect of each explanatory variable
on the survival outcome can be identified with a single
path. This specification is exactly equivalent to one in
which each explanatory variable has an effect on each
of the 24 discrete-time survival indicators, with these
24 effects being constrained to be equal.

The coefficients from the logit regression of the sur-
vival outcome on the covariates may be interpreted as
linear regression coefficients using the threshold ap-
proach, as mentioned earlier [44, 45]. It would be at-
tractive to adopt the same procedure for the two
mediating variables — admission route and high case-
load — which are both binary. Unfortunately, this is not
possible in MPlus, which can only handle continuous
mediators in models with discrete-time survival out-
comes. We therefore use the linear probability model
for the equations in which these two mediators are the
dependent variables; this procedure is sub-optimal but
nevertheless reasonable as the distributions of these
variables are relatively balanced [46].

As the entire model is linear (because the discrete-
time survival part of the model may be interpreted in
terms of a linear regression using the latent response
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Fig. 1 Discrete-time survival model for colon cancer with mediation effects

formulation), the indirect effects may be estimated using
the product-of-coefficients approach and represent “nat-
ural indirect effects”. The direct effects in the statistical
model are equivalent to “natural direct effects”, whilst
the total effect is given by the sum of the direct and in-
direct effects [10]. The standard errors for the indirect
effects are estimated using the delta method and the
model is estimated using MPlus v5.21, with a Maximum
Likelihood estimator and robust standard errors [36].
The code used to specify the model is included in Ap-
pendix A. The size of the mediation effects is reported
below, both in absolute terms and as a mediation pro-
portion, with standard errors and confidence intervals
[32]. The latent response variables underlying the survival
indicators have a mean of 0 and a standard deviation of 1
and thus the raw coefficients may be interpreted as cap-
turing the effect, measured in standard deviations, of a
unit change in the explanatory variables; the units of the
latter are shown in Table 1.

Results

The results of the analysis are shown in Tables 2 and 3
below and the number of patients who were alive in
each quarter, from diagnosis, is shown in Fig. 2. As
noted above, all variables were assumed to have a con-
stant effect over time, and this assumption is encoded
in the unit paths described earlier (Fig. 1), specified be-
tween the discrete-time survival indicators and the la-
tent hazard.

Starting with the hazard of death due to colon cancer,
the model indicates that an increase in age of 10 years
leads to an increase in the hazard of 0.30 standard devia-
tions, whilst moving along the spectrum of affluence and
deprivation from the most deprived to the most affluent
patient leads to a substantial reduction in the hazard
(-0.60 standard deviations). Entering hospital for the first
time via the emergency department leads to an increase
in the hazard of 0.41 standard deviations, and tumour
stage has an even greater impact (0.64 for Stage II com-
pared to Stage I, 1.31 for Stage III and 3.19 for Stage
IV). Optimal treatment reduces the hazard considerably
(-0.77 standard deviations), as does attending a hospital
with high caseload for the treatment of colon cancer
(-0.17 standard deviations). There is no residual variance
and the sample is assumed to be homogeneous (i.e. no
“frailty”, no latent classes), in line with standard practice
in basic discrete-time survival modelling. All heterogen-
eity in hazard profiles thus derives from the effects of
the explanatory variables, as noted above.

Turning to the admission route, each ten-year increase
in age leads to an increase of 0.02 standard deviations in
the probability of an emergency admission, whilst the
most affluent patients have a lower risk of entering hos-
pital in an emergency when compared with the most de-
prived (-0.30). As far as hospital caseload is concerned,
affluence has a powerful impact (0.58) on the probability
of receiving treatment in a high-caseload hospital. Being
an emergency case at admission reduces this probability
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Table 2 Direct effects on hazard of death, admission route and caseload

Variable Estimate SE Est/SE. p-value

Hazard of death due to colon cancer:
Age (/10) 0.299 0.036 8208 0.000
Affluence/deprivation (0-1 metric) -0.596 0.271 -2.200 0.028
Emergency admission (binary) 0411 0.084 4.886 0.000
Stage Il (compared to Stage 1) 0639 0213 2.998 0.003
Stage Il (compared to Stage 1) 1.306 0210 6211 0.000
Stage IV (compared to Stage 1) 3.193 0.207 15438 0.000
Treatment optimality (binary) -0.766 0.106 -7.234 0.000
High caseload hospital (binary) -0.173 0.071 -2422 0.015

Admission route via emergency:
Intercept 0241 0.061 3.968 0.000
Age (/10) 0.023 0.007 3229 0.001
Affluence/deprivation (0-1 metric) -0.302 0.062 -4.849 0.000
Residual variance 0.170 0.004 38.133 0.000

High caseload hospital:
Intercept 0.192 0.074 2602 0.009
Age (/10) -0.009 0.008 -1.116 0.264
Affluence/deprivation (0-1 metric) 0.576 0.077 7.503 0.000
Emergency admission (binary) -0.063 0.023 -2.708 0.007
Residual variance 0.241 0.002 131.164 0.000

(-0.06), and all effects are statistically significant, with
the exception of the effect of age on high caseload.

As can be seen from Table 3, the indirect effects of so-
cial class (as measured by affluence/deprivation score)
are substantial and negative (-0.23 overall). This implies
that, in addition to the substantial direct effect of this
variable (-0.60), there are indirect effects that account
for more than one quarter of the total effect. Whilst the
standard error of the direct effect is relatively large,
those of the indirect effects are small. This is because

Table 3 Effects of affluence/deprivation on hazard of death

the model has high power to detect indirect effects. The
two main indirect effects, via emergency admission
(-0.12) and via hospital caseload (-0.10) are of similar
size.

Discussion

The empirical example presented in the previous sec-
tion demonstrates the flexibility of the causal modelling
framework set out earlier and shows its potential in re-
lation to the study of mediation effects. As a result of

Variable Estimate SE Est/SE. p-value
Direct effect:

Affluence/deprivation (0-1 metric) -0.596 0271 -2.200 0.028
Indirect effects:

1. affluence — emergency — hazard -0.124 0.036 -3457 0.001

2. affluence — caseload — hazard -0.099 0.043 -2.296 0.022

3. affluence — emergency — caseload — hazard -0.003 0.002 -1.689 0.091

All indirect effects -0.227 0.056 -4.056 0.000
Total effect:

Affluence/deprivation (0-1 metric) -0.823 027 -3.047 0.002
Mediation proportion:

Affluence/deprivation (0—1 metric) 0276
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Fig. 2 Patients who remain exposed to hazard of death, by quarter from diagnosis

Q14 Ql6 Q18 Q20 Q22 Q24
Q13 Q15 Q17 Q19 Q21 Q23

the way in which causal models bring together theoret-
ical knowledge and empirical evidence, they have the
potential to sustain ongoing research programs which
yield progressively more refined and powerful explana-
tions. The indirect effects of social class were shown to
be substantial in size and statistically significant, ac-
counting for roughly one quarter of the total effect. In
a more fully-specified model with a full set of covari-
ates, this proportion is likely to increase.

By improving measurement instruments, including
new covariates and modifying the structure of a model
such as this, it is possible to provide more appropriate
and precise information to practitioners and policy-
makers and to sustain an ongoing dialogue regarding
mechanisms, possible interventions and monitoring
strategies. Rather than merely replicating tests of asso-
ciation between specific variables in an endless series of
samples, this approach encourages the progressive en-
richment and extension of explanatory models.

The model presented here shows that survival out-
comes can be integrated within the framework of causal
modelling using the linear specification of the discrete-
time survival model. Although the model is simple, it
provides valuable additional information compared to al-
ternative approaches to modelling survival. It confirms
that there is a risk of underestimating the overall impact
of social class on health outcomes when attention is
confined to direct effects. As noted earlier, this is be-
cause intermediate variables must be included in order
to obtain accurate estimates and to assess the influence
of treatments and interventions, but their inclusion
tends to mask the effects of key baseline covariates.
Given the large standard error associated with the direct
effect, the influence of social class could easily be over-
looked, particularly when working with small samples.

Secondly, the analysis opens up interesting avenues for
intervention strategies by providing a better understand-
ing of how social class differentials in health outcomes are

generated. The model suggests that differences in wealth,
knowledge and influence (captured by social class) enable
advantaged individuals to seek professional assistance be-
fore a problem becomes acute, whilst those who are more
disadvantaged encounter greater difficulties in seeking
and/or receiving assistance following initial symptoms. As
a result, more affluent groups are able to obtain better in-
formation about their condition and to decide where to
receive treatment, using their resources to choose experi-
enced consultants and to reduce waiting times. What was
previously a “black box” is now a potential mechanism,
which can be refined and extended in different ways in the
course of subsequent research.

This approach set out above has a number of strengths,
not least because survival data are themselves frequently
based on a discrete conception of time (measured in
weeks, months or years). From this perspective, the
discrete-time approach offers an intuitively compelling
framework that is appropriate to many research problems,
although it has rarely been cited by health researchers. For
example, the path-breaking paper by Muthén and Masyn
[35] has been cited 127 times (Google Scholar, January
2015), mostly by Psychologists, with only two citations in
the broad field of medical research.

Many studies suggest that socio-economic variables
have a profound influence on health, although the pre-
cise pathways through which these effects operate re-
main unclear [4, 32]. When studying health outcomes,
it is often necessary to control for variables such as
these. However, once we control for the stage of illness,
types of treatment and so on, we may find that these
socio-economic measures no longer have significant ef-
fects. This is not a problem if we are merely concerned
with predicting the outcome, but it could be misleading to
base policies on these kinds of findings. It is quite possible,
for example, that socio-economic covariates have an influ-
ence on intermediate health-related and treatment-related
variables, implying that they have indirect effects on the
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outcome. This is a good example of a research problem
that requires sophisticated techniques for conducting me-
diation analysis within an extended nomological network
(set of variables and paths).

It is only appropriate to conclude by mentioning
some limitations to this analytical framework. Firstly, as
we noted above, the statistical theory and software tools
for causal mediation analysis with survival outcomes
are currently confined to continuous mediators. In our
example, we used the linear probability model to re-
gress the binary mediators on the baseline covariates.
Secondly, the calculation of indirect effects by the product-
of-coefficients method with a survival outcome relies on
the latent response formulation (for the regression of the
survival indicators on the explanatory variables). Although
leading methodologists view this as a valid extension of me-
diation analysis (see, for example, the responses provided
by Linda and Bengt Muthén on the MPlus Discussion
Board on December 14 2005, February 09 2010, July 26
2006 and August 18 2008, http://www.statmodel.com/cgi-
bin/discus/discus.cgi), a more rigorous statistical justifica-
tion for this approach would be valuable.

Thirdly, in a fully-specified model, the survival part of
the model must be carefully assessed and the propor-
tional hazards assumption tested. In our example, we
merely assume proportionality in order to simplify the
presentation. Fourthly, measurement error in the covari-
ates and mediators can lead to biased estimates, which
means that the inclusion of latent variables in this part
of the model can improve the accuracy and reliability of
inferences. Finally, it is important to be aware that the
assumptions required in order to make causal claims
based on the results of this kind of statistical model are
challenging. As Judea Pearl has argued, the most import-
ant assumptions relate to the absence of confounding of
each relationship that forms part of the mediation struc-
ture. In our (simple) example, we assume that there are
no (significant) unmeasured common causes of afflu-
ence/deprivation, on the one hand, and (a) emergency
admission to hospital, (b) hospital caseload and (c) the
survival outcome, on the other.

The importance of identifying and measuring import-
ant confounders implies that a major collective effort
will often be needed in order to collect and integrate the
data that are required in order to draw defensible causal
claims from non-experimental data. Causal models re-
quire large amounts of high-quality data, and this can
necessitate costly and time-consuming data collection
and data-matching techniques.

Conclusions

The kinds of research questions that health researchers are
increasingly called upon to answer are encouraging them to
reconsider central aspects of their approach to theory and
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research practice. Above all, questions relating to mediation
are provoking a rethinking of established approaches to
ontology, methodology and statistics. In ontological
terms, this is leading to a greater willingness to con-
sider generative mechanisms as the object of scientific
explanation. In methodological terms, it is leading to
growing interest in Structural Equation Modelling as an
integrated modelling framework. In statistical terms, it
is focusing attention on the assumptions and conditions
necessary for making causal inferences.

In this paper, we outlined the state-of-the-art in rela-
tion to mediation analysis and described the discrete-
time survival model, which represents an attractive way
of integrating time-to-event data and Structural Equa-
tion Modelling. We provided an example involving com-
plex causal pathways that mediate the effects of a key
socio-economic baseline covariate — social class — on
the hazard of death from colon cancer following diagno-
sis. The results show that this approach has potential to
shed light on a class of research questions which is of
particular relevance in health research today.

Statement on ethics approval

The database on which this analysis is based was pro-
vided by the National Cancer Registry Ireland. The data,
once fully anonymised, are publicly available and can be
requested by interested researchers. Specific ethical ap-
proval was not required for this study as the National
Cancer Registry Ireland is authorised under the Health
(Provision of Information) Act 1997 to collect and hold
data on all persons diagnosed with cancer in the Repub-
lic of Ireland without requiring individual consent. The
National Cancer Registry Ireland was established
under the Health (Corporate Bodies) Act 1961 and is
authorised to provide data to researchers — with due
regard for anonymity — without requiring approval by
an ethics committee.

Appendix A: MPlus v5.21 code for discrete-time
survival model
TITLE: Discrete-time survival model for colon cancer
with proportional hazards

DATA: FILE IS G:\filename.dat;

DEFINE: IF (stage EQ 2) THEN stage2 = 1;

IF (stage NE 2) THEN stage2 = 0;

IF (stage EQ 3) THEN stage3 = 1;

IF (stage NE 3) THEN stage3 = 0;

IF (stage EQ 4) THEN stage4 = 1;

IF (stage NE 4) THEN stage4 = 0;

VARIABLE: NAMES ARE id

ql-q24 age hp2006r stage2 stage3 staged emerg
t col_d cl hi ¢

USEVARIABLES = q1-q24 age hp2006r stage2 stage3
stage4 emerg t_col_d cl_hi_c;
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CATEGORICAL = q1-q24;
MISSING = ALL (999);
ANALYSIS:
ESTIMATOR = MLR;
MODEL:

f BY q1-q24@1;

f@0;

f ON

age

hp2006r (dirb)

emerg (dirc)

stage2

stage3

stage4d

t _col _d

cl_hi_c (dirf);

emerg ON

age

hp2006r (b1);

cl_hi_c ON

age

hp2006r (b2)

emerg (c2);

t_col_d WITH cl_hi_c;
t_col_d WITH emerg;
stage2 WITH cl_hi_c;
stage3 WITH cl_hi_c;
staged WITH cl_hi_c;
stage2 WITH emerg;
stage3 WITH emerg;
stage4d WITH emerg;
MODEL CONSTRAINT:
!indirect effects of DEPRIVATION
! depriv - > emerg - > F
new (indb01);

indb01 = b1*dirc;

! depriv - > caseload - > F
new (indb02);

indb02 = b2*dirf;

! depriv - > emerg - > caseload - > F
new (indb03);

indb03 = b1*c2*dirf;

! all indirect effects of deprivation
new (indb);

indb = indb01 + indb02 + indb03;
! total effect

new (totb);

totb = indb + dirb;

! mediation proportion
new (medb);

medb = indb/totb;
OUTPUT:

SAMPSTAT;
STANDARDIZED;
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