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AI revolutions in biology
The joys and perils of AlphaFold

Anastassis Perrakis & Titia K Sixma*

L ast December, the artificial intelligence

(AI) AlphaFold achieved what had

been considered impossible: near-

perfect protein fold predictions. The shock-

waves reverberated well beyond the scien-

tific community: one of the grand challenges

in biology, how to fold a protein, appeared

to have been solved finally—something that

most of us did not expect to happen in our

lifetimes. Notwithstanding all the justified

excitement about AlphaFold, this achieve-

ment does not mean though that AI will

make experimental structural biology or its

practitioners and tools redundant. Structural

biology will remain essential for understand-

ing how proteins work and how they

dynamically interact with each other.

The publications of the AlphaFold method

(Jumper et al, 2021) by the Google DeepMind

team, and the analogous RoseTTAfold

approach by the Baker laboratory at the

University of Washington, Seattle, USA (Baek

et al, 2021), a few months later, explain the

background behind Deep Learning (DL) algo-

rithms that made this scientific milestone possi-

ble. Detailed descriptions of the algorithm, the

“trained” code for making new predictions,

and even the training code to “learn” how to

predict new structures, are all available to the

public: protein prediction for the masses.

The DeepMind team, collaborating with

the European Bioinformatics Institute (EBI),

then applied AlphaFold to whole genomes,

including human, mouse, Saccharomyces,

and E. coli (Tunyasuvunakool et al, 2021).

The resulting structure predictions are acces-

sible via an elegant and informative Web

interface (https://alphafold.ebi.ac.uk/) that

gives structural biologists a “treasure trove”

of new information. Here, we try to address

the scope and implications of this watershed

moment in structural biology.

The protein folding problem

To better understand the enormous advance

that AlphaFold and RoseTTAfold have

achieved, it is worthwhile to look at the prob-

lem. Protein folding involves rearranging a

linear sequence of amino acids in space to a

physiologically preferred low-energy state.

Predicting the correct structure from the

amino acid sequence alone was deemed an

intractable problem, as the degrees of free-

dom in the peptide bonds create an astro-

nomically high number of possible

conformations: Sequential sampling would

take longer than the age of the universe, even

for a small protein domain (Levinthal, 1969).

......................................................

“. . . one of the grand chal-
lenges in biology, how to fold a
protein, appeared to have been
solved finally—something that
most of us did not expect to
happen in our lifetimes”
......................................................

Computational predictions were developed

to circumvent the sequential sampling prob-

lem. They have been steadily improving over

the past 40 years, using comparative

sequence analysis to find homologies with the

ever-increasing number of experimentally

determined protein structures by methods

such as X-ray crystallography, nuclear

magnetic resonance spectroscopy (NMR), and

cryogenic electron microscopy (cryo-EM) that

are publicly available from the Protein Data

Bank (PDB) (Berman et al, 2003; Burley et al,

2019). In 1994, the community started a bi-

annual assessment of computational predic-

tion methods to evaluate their performance

by applying these to recently resolved protein

structures before they became publicly avail-

able (Moult et al, 1995). Those four decades

saw steady progress in performance, but the

first implementation of AlphaFold three years

ago was already a revolutionary advance by

applying AI to the problem. In 2020, the near-

perfect performance of its re-designed reincar-

nation created a seismic shift far beyond the

immediate field.

The AlphaFold concept

AlphaFold combines numerous deep learning

innovations to leverage the combined knowl-

edge from 50 years of experimental science,

stored in sequence and structure databases. It

relies heavily on multi-sequence analysis

using information on conserved peptide struc-

tures, but also on evolutionarily coupled resi-

dues. This idea of co-evolution is relatively

simple: If two residues are close in space and

interact with each other—even if they are far

apart in the amino acid sequence—they will

stick together during evolution to preserve

structure and function. The AlphaFold team

also made several ingenious innovations,

creatively using concepts and algorithms orig-

inally from natural language processing, and

algorithmic choices on using rotationally

invariant functions for linking the one-

dimensional sequence to three-dimensional

structure space (Jumper et al, 2021; nicely

reviewed in: Bouatta et al, 2021). With such

innovations and massive amounts of process-

ing power and time, the AI was able to learn

how an amino acid sequence folds into space.

The wealth of structures now available in

the AlphaFold database is a wonderful

resource. It includes an interactive graphical

representation of the structure with a color-

coding scheme to indicate how confidently
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the position of each amino acid is predicted.

A matrix further indicates the confidence in

inter-residue distances. The presentation

makes it easy to explore and download any

protein of interest, but also highlights the

uncertainties and potential pitfalls of the

predicted models.

The AlphaFold database contains near-

perfect predictions for the folded part of

many proteins. However, it does not do so

well on parts where fewer sequences are

available for alignment, and of course on

regions that are natively unfolded. It also

struggles with protein interface residues, as

the partner regions—either in homo- or in

hetero-multimers—are not available in the

computational folding process. These

regions are shown as long loops and are

placed randomly with respect to the folded

parts, which is reflected in the orange-red

coloring and clearly indicated in the matrix.

An interesting feature of the AlphaFold

models is that they do not only provide

incredibly accurate models of individual

folding units (domains), but also give indica-

tions of dynamic movement between them.

A nice example is USP7, a complex enzyme

that consists of multiple domains that

undergo dynamic conformational changes.

Figure 1 shows the AlphaFold prediction

with the contact matrix, where individual

domains are clearly visible as dark green

squares. Interactions between domains also

show up: The N-terminal TRAF domain pref-

erentially interacts with the catalytic (CD)

domain. The five ubiquitin-like domains

(UBLs) that follow form two groups, Ubl1-3

and Ubl4-5, and it is clear from the structure

that the first three interact well with the CD,

while the last two do not. Harder to see, but

still visible, is the fact that the C-terminal

peptide interacts with the catalytic domain,

an important feature for the regulation of

activity in this protein. Structural analysis,

including small-angle X-ray scattering

(SAXS), X-ray crystallography, and NMR

spectroscopy of different domain combina-

tions and their interactions, agrees with this

prediction, as do previous models of the full-

length protein (Kim et al, 2016).

Current limitations of the models

AlphaFold models have several limitations

though. The most obvious one is that inter-

actions with partner proteins or multimers

are currently not in the database. However,

RoseTTAfold (Baek et al, 2021) was already

dealing with multimers, and a recent pre-

print presents AlphaFold-Multimer, able to

predict both homomeric and heteromeric

interfaces, although still with varying accu-

racy (preprint: Evans et al, 2021) AI also does

not predict several other important aspects of

protein structures: metal ions, cofactors, and

other ligands. Post-translational modifi-

cations, such as glycosylation or phosphory-

lation, or DNA, RNA, and their complexes,

are also absent. In addition, amino acid side

chains are not always accurately placed. Each

of those features may be crucial for protein

function, and many of these are necessary for

the integrity of the fold.

Notably, despite these limitations, Alpha-

Fold does correctly predict the iconic fold of

the hemoglobin chain (Fig 2A–C). The lack

of either the heme group or its tetrameriza-

tion partners, all of which are essential for

folding, does not stop AlphaFold from

perfectly predicting the fold of the a-chain.
AlphaFold has not learned from ligands and

is actually not aware of the actual energy

minima that are essential for folding in real

life. In reality, AlphaFold has not solved the

folding problem as it would occur in solu-

tion or in a cell, but it has provided a practi-

cal solution: It has learned the results of
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Ubl
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(structure predicted
by AlphaFold2)

Figure 1. The AlphaFold prediction for USP7.

(Left) A ribbon model of USP7 exported directly from the EBI Web server; the coloring ranges from blue (high confidence) to red (low confidence); the domain names are
annotated manually. (Right) The AlphaFold matrix showing the expected position error for each residue in the sequence; a detailed explanation of the matrix is available
at the EBI Web server; the top bar with domain annotation and names was added manually (figures downloaded from the AlphaFold webserver).
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folding at the amino acid residue contact

level and can therefore accurately predict a

single-chain hemoglobin fold that would

never exist on its own or in the absence of

the heme cofactor in nature.

Another educational example is the CENP-

E kinesin model (Fig 2D–F). While the struc-

ture of the motor domain is well predicted,

the flexible coiled coil, which we know to

exist in various elongated forms from electron

microscopy data and secondary structure

predictions (Vitre et al, 2014), appears folded

like a ball (thankfully colored orange to show

the uncertainty of the prediction), which does

not represent a biologically and functionally

relevant state. As AlphaFold has predicted on

the basis of the monomer, it has not resolved

the coiled coil structure, the fold of which

depends on dimerization. Should AlphaFold-

Multimer be able to predict coiled-coil dimers,

as it will, it remains to be seen if it will also

predict elongated structures that are not repre-

sented in the PDB.

It is always good to keep in mind that AI

relies, to some extent, on what has been

seen before. That is why, for instance, the

hemoglobin fold is reproduced well, but

elongated structures are typically missed.

Novel and unexpected structures may there-

fore not be predictable.

Many other limitations can be considered

“teething problems”. Solutions for complet-

ing AI models with essential cofactors and

common ligands will appear soon. One

would also expect that prediction of DNA/

RNA complexes should eventually become

feasible. The increasing ability of both Rose-

TTAfold and AlphaFold-Multimer in predicting

complexes, hold great promise for solving—or

at the least creating testable hypotheses—or at

the least creating testable hypotheses—for

more complicated biological problems for

more complicated biological problems.

Even now, AlphaFold models are already

a very useful resource. However, it is criti-

cal, as always, that users take the limitations

of the method into account. If structure

predictions are used and interpreted naively,

it can lead to erroneous hypotheses or

blatantly wrong mechanistic models. It is

therefore essential to use the prediction con-

fidence charts as it helps to understand

which parts are likely to be real and which

should be ignored. This information is not

only presented clearly in the Web interface,

and it is also embedded in the PDB file in

the B-factor column.

~10 nm~10 nm

CB

ED

F

A

Structure predicted by AlphaFold2

Structure predicted by AlphaFold2

20nm 20nm

CENPE

Hemoglobin monomer (α-chain) Hemoglobin heterotetramer

CENPE

α-chain
α-chain

β-chain

β-chain

HemeHemeHeme

Figure 2. Limitations of AlphaFold models.

(A) The hemoglobin a-chain monomer structure by Max Perutz and co-workers; from Perutz et al (1960) Nature 185: 416–22, with permission from Springer Nature; (B)
the AlphaFold model, predicted correctly, but lacking ligands and partners, displayed in the same orientation (created by CCP4MG (McNicholas et al, 2011); (C) a diagram
of the hemoglobin fold that is a heterotetramer of two a and two b chains, each containing a heme coordinating a Fe2+ ion. (D,E) an electron micrograph (kindly
provided by Y. Kim and D Cleveland) of CENPE showing the motor domain (yellow circle) and the coiled-coil region that extends several hundreds of�Angström; (F) the
AlphaFold model showing the motor domain (yellow circle) that is predicted with high confidence, and the “warped” set of helices that are predicted with low
confidence and do not agree with the experimental data (image downloaded from the AlphaFold Web server).

ª 2021 The Authors EMBO reports 22: e54046 | 2021 3 of 6

Anastassis Perrakis & Titia K Sixma EMBO reports



Beyond AlphaFold

The most important limitation of AlphaFold

predictions is that only a single state is

predicted, even if hints for multiple states and

dynamic behavior are in the data, like for

USP7. It is also hard to tell which state of a

protein will be captured by the AI. Figure 3

shows two examples: the mitotic protein Mad2

in which two strands undergo a rearrangement

to form a “safety belt” that embraces partner

Mad1 (Sironi et al, 2002): AlphaFold erro-

neously captures the complex state for Mad2

alone. The other example is a serine protease

inhibitor (Serpin) where a loop inserts as a

strand in the middle of a b-sheet following

proteolytic cleavage (Stein et al, 1990).

AlphaFold correctly captures the uncleaved

state. Another case where a protein makes

major rearrangements is shown in Fig 4: Dif-

ferent states of the DNA mismatch protein

MutS that have been determined from a series

of cryo-EM experiments (Fernandez-Leiro

et al, 2021). AI only predicts a single state and

does not explain the functional behavior.

There are also protein regions that Alpha-

Fold cannot predict, and it will be important

to find out why. Which regions will have

stable folds, in isolation or in complexes, that

AlphaFold has missed? Which fraction will

consist of truly intrinsically disordered

regions (IDRs) that are used for instance in

phase separation? As more structures and

sequences become available, and as the

methods further improve, it seems likely that

the fraction of poorly predicted protein will

decrease. A major step forward will come

from inclusion of multimers and complexes

in the predictions, but there may be other

regions that adopt defined states only

temporarily under very specific conditions.

Yet, AlphaFold models are already useful

for many practical aspects of structural biol-

ogy: to design better protein expression

experiments (https://ccd.rhpc.nki.nl/); to

solve experimental structures faster, espe-

cially for X-ray crystallography (Mill�an et al,

2021); to overcome tedious model building

steps in experimental crystallographic and

cryo-EM maps; and to interpret lower-

resolution cryo-EM maps, where structure

solution is limited by dynamic variability.

Above all, the analysis of the models

themselves can generate new and testable

hypotheses about protein function. This

actually is the great joy of structural biology:

to derive mechanistic insight from a protein

structure. Here, we have a whole candy

store of new structures to play with. There is

a lot to do, and many of us are already busy

designing mutants and experiments to test

new ideas and hypotheses based on the

AlphaFold models themselves. In many

cases the biochemical, biophysical or cellu-

lar validation, will be enough and further

structural validation may not be required.

In this sense, AI provides structural biolo-

gists with a new technique, bringing the fun

of structure-gazing without the effort of

experimental work. However, as models

now become readily available, some of the

joy in the discovery of a new structure will

be gone, and so might be the drive and

enthusiasm to interpret it. Moreover, there

is a danger that people will be less inclined

to prepare high-quality protein, which is

actually useful for many more experiments

than determining structures. It will thus be

crucial to educate the next generation of

biologists to learn how to critically analyze

the predicted fold, notice new interactions,

and to get to know each protein of interest

in sufficient detail, so as to differentiate

between “bugs” and “features”.

Impact and opportunities for
drug discovery

High-resolution protein structures are extre-

mely useful for drug discovery. Current drug

development uses structures at every step

of the process: from initiating discovery by

Uncleaved
serpin

Cleaved
serpin

Cleavage

Structure predicted
by AlphaFold2

Structure predicted
by AlphaFold2

Closed Mad2–Mad1Open Mad2

Mad1

A

B

Figure 3. Folding rearrangements.

(A) The open Mad2 solution structure determined by NMR (left) undergoes a rearrangement of two beta
strands (shown in orange), in which Mad2 embraces the Mad1 partner (shown as a yellow ribbon), a
structure that was determined by X-ray crystallography (middle); AlphaFold2 erroneously predicts the
structure of the refolded complex with Mad1 as the native structure of Mad2 (right). (B) The structure of an
uncleaved Serpin (left) with a long loop (shown in orange), which after proteolytic cleavage inserts as a b-
strand in the middle of the b-sheet; AlphaFold correctly predicts the structure of the uncleaved protein. All
figure panels were created by CCP4MG.
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fragment screening in crystals or in solu-

tion, to improving ligand interactions, to

engineering high-affinity ligands with

favorable drug-like properties. The heavy

investment of the pharmaceutical industry

into X-ray crystallography and NMR spec-

troscopy in the past, and in cryo-EM nowa-

days, is testament to the importance of

structures. Nonetheless, it would be obvi-

ously attractive if the experimental process

could be entirely replaced by a computa-

tional approach. The current AlphaFold

implementation does not yet have the accu-

racy that is necessary for drug discovery.

More importantly, the ability to accurately

predict novel ligand interactions may be

limited, as publicly available data for bind-

ing small molecules are scarce. This

reduces the opportunities for deep learn-

ing. More data are potentially available in

private databanks, and the expected accel-

eration in fragment screening by X-ray

crystallography and cryo-EM could change

this situation.

For now, drug discovery will require

experimental analysis, and here, the AI revo-

lution may actually be counterproductive.

The easy availability of computational

models might result in fewer target proteins

for which good purification protocols are

developed, and fewer well-diffracting crys-

tals or well-developed sample preparation

processes for cryo-EM. All these are neces-

sary for drug discovery as X-ray crystallogra-

phy remains the method of choice to study

structures in complex with small molecules,

while cryo-EM becomes the method of

choice for studying complexes with biologi-

cal therapeutics, such as antibodies or

nanobodies.

An example for an AI-fueled
paradigm-shift in science

The AI solution to the protein folding prob-

lem is not only one of the most important

advances that happened to structural biol-

ogy, and it is arguably the most ground-

breaking application of AI in science to

date. As such, we can expect that many of

its methodological ideas will find their

ways into AI applications beyond structural

biology. However, with all revolutions peril

lurks along the way. It is important to keep

in mind, that it does not matter how correct

AI thinks a model is, “if it doesn’t agree

with experiments, it’s wrong”, to para-

phrase Richard Feynman. For this reason

alone, experiments remain essential. Simi-

larly, pathologists and oncologists should

remain critical of AI analyses of biopsies or

scans, evaluate the results, and communi-

cate them to patients. It is likely that the

next generation of structural biologists will

no longer be mainly experts in experimen-

tal methods, but will primarily interpret,

design, and perform experiments based on

structures, to prove or disprove mecha-

nisms in biology or to design new protein

functions or therapeutics.

Experimental structure determination will

not become obsolete for the foreseeable

decades. The more intricate questions about

conformational states, dynamics, and tran-

sient interactions will still need attention

and experiments to answer. It is thus impor-

tant that funders—and peer-reviewers—do

not come to believe that “the folding prob-

lem has been solved”. They should continue

to invest both in the critical infrastructure

needed for experimental structural biology

and the research that uses experimental

structure determination, where needed.

......................................................

“The protein folding example
will provide valuable lessons
in how we can benefit from the
application of AI models with-
out creating an irrevocable
dependence on them”
......................................................

As AI applications become more main-

stream in modern society, from AI-based

chat-bots, virtual assistants, self-driving cars

or “intelligent” robotic vacuum cleaners and

lawn mowers, the problem of transforming

the roles of the people who had done these

tasks before will be ever present. The protein

folding example will provide valuable lessons

in how we can benefit from the application of

AI models without creating an irrevocable

dependence on them. At the end of the day,

the development of deep learning algorithms

is no different from human learning: We all

learn from experiments, every day.

A

MutS
scanning DNA

MutS
bound to DNA mismatch

MutS
bound to DNA mismatch

+ ATP

MutS–MutL
DNA clamp

B C D

Figure 4. Functional states of MutS.

Structures of scanning MutS (A), mismatch-bound MutS (B), transition-state MutS (C), and MutLLN40-bound MutS (D). Monomer A is shown in green, with monomer B in
blue, MutLLN40 in orange, and DNA in black.
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