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Macrophages residing in various tissue types are unique 
in terms of their anatomical locations, ontogenies, 
developmental pathways, gene expression patterns, and 
immunological functions. Alveolar macrophages (AMs) 
reside in the alveolar lumen of the lungs and serve as the first 
line of defense for the respiratory tract. The immunological 
functions of AMs are implicated in the pathogenesis of 
various pulmonary diseases such as allergic asthma, chronic 
obstructive pulmonary disorder (COPD), pulmonary alveolar 
proteinosis (PAP), viral infection, and bacterial infection. 
Thus, the molecular mechanisms driving the development 
and function of AMs have been extensively investigated. 
In this review article, we discuss the roles of granulocyte-
macrophage colony-stimulating factor (GM-CSF) and 
transforming growth factor (TGF)-β in AM development, 
and provide an overview of the anti-inflammatory and pro-
inflammatory functions of AMs in various contexts. Notably, 
we examine the relationships between the metabolic status 
of AMs and their development processes and functions. 
We hope that this review will provide new information and 
insight into AM development and function.
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INTRODUCTION

Macrophages are a major group of innate immune cells that 

reside in various tissues, where they play essential roles as 

immune system sentinels. Macrophages express various pro-

teins such as pattern recognition receptors and scavenger re-

ceptors that enable them to sense immunological stimuli, and 

to initiate and amplify immunological responses (Canton et 

al., 2013; Kawai and Akira, 2010). In addition, macrophages 

participate in homeostatic functions, such as clearance of 

dead cells and secretion of tissue repair factors (Elliott et 

al., 2017; Wynn et al., 2016). Therefore, understanding the 

molecular mechanisms that drive the development and func-

tions of macrophages is crucial to understanding the immune 

system.

 Recent studies suggest that subsets of tissue-resident mac-

rophages differ in terms of their ontological backgrounds, de-

velopmental pathways, and immunological functions, among 

other features (Davies et al., 2013; Gentek et al., 2014; 

Hoeffel and Ginhoux, 2018). Investigations into the molec-

ular mechanisms behind the development and functions of 

tissue-resident macrophages have revealed that tissue envi-

ronment, signaling pathways, and transcription factors drive 

variations in tissue-resident macrophages among various 

organs (Lavin et al., 2015). Alveolar macrophages (AMs) are 

resident macrophages of the airways and lungs, where they 

serve as the primary immune sentinels of the respiratory tract, 

express specific surface markers such as Siglec-F and CD11c, 



Mol. Cells 2021; 44(5): 292-300  293

Development and Functions of Alveolar Macrophages
Yeon Duk Woo et al.

and participate in surfactant clearance (Lavin et al., 2015). 

AM dysfunction is associated with various lung diseases such 

as chronic obstructive pulmonary disorder (COPD), acute lung 

injury, pulmonary fibrosis, and pulmonary alveolar proteinosis 

(PAP) (Antoniu et al., 2020; Li et al., 2019; O'Beirne et al., 

2020; Song et al., 2019). Currently, conventional therapeutic 

strategies for these lung diseases are limited in their effective-

ness (Gross and Barnes, 2017; Hindelang et al., 2020). Thus, 

the application of an AM-targeted strategy could be a prom-

ising new therapeutic approach. Therefore, a comprehensive 

understanding of the developmental pathways and immu-

nological functions of AMs could aid in the development of 

novel therapeutics for lung diseases.

 In this review, we discuss the current models for AM devel-

opment and immunological functions of AMs, as well as the 

relationships of metabolic status of AMs and their develop-

ment and function.

ONTOGENY AND ORIGIN OF AMs

Circulating monocytes minimally contribute to the AM 
pool
Until recently, macrophages were thought to originate from 

circulating monocytes. However, recent studies using geneti-

cally engineered, parabiotic, or fate-mapping mice have sug-

gested otherwise. Monocytes infiltrate target tissues under 

pathological conditions such as osteoarthritis, pancreatic can-

cer, and steatohepatitis by expressing the C-C chemokine re-

ceptor type 2 (CCR2) (Han et al., 1998; Krenkel et al., 2018). 

Thus, researchers expected that CCR2 knockout mice would 

have a lower AM count, compared with control mice. How-

ever, the proportions and numbers of AMs were comparable 

between CCR2 knockout and control mice, suggesting that 

circulating monocytes contribute minimally to the AM pool 

(Hashimoto et al., 2013). Furthermore, circulating monocytes 

exhibited almost perfect chimerism in parabiotic mice, but 

AMs did not exhibit chimerism, despite 5 months of para-

biosis (Hashimoto et al., 2013). Moreover, the tdTomato 

signals of Mx1-cre × R26Tomato and S100a4-cre × R26Tomato 

fate-mapping mice were high in circulating monocytes, but 

low in AMs, indicating that circulating monocytes rarely serve 

as precursors of AMs (Hoeffel et al., 2015). Taken together, 

these findings indicate that circulating monocytes contribute 

minimally to the AM pool.

Embryonic origin of AMs
Recent evidence suggests that AMs may originate from fetal 

macrophages during embryonic hematopoiesis, which occurs 

in two waves. The first wave, termed primitive hematopoie-

sis, takes place in the blood islands of mouse embryonic yolk 

sacs (YSs) around embryonic day 7.5 and gives rise to YS 

monocytes, which migrate into and seed peripheral tissues 

such as the lungs (Yamane, 2018). The second wave, termed 

definitive hematopoiesis, occurs in the fetal liver (FL) around 

embryonic day 12.5 and gives rise to FL monocytes, which 

also migrate into and seed peripheral tissues (Sugiyama et al., 

2011). Upon analysis of c-fms-EGFP mice that enables trac-

ing of embryonic lung macrophages, it has been demonstrat-

ed that two distinct subsets of AM precursors such as F4/80+ 

and Mac2+ cells derived from YS and FL, respectively (Tan and 

Krasnow, 2016). Although the contribution of each wave 

to the AM pool remains unclear, studies using runt-related 

transcription factor 1 (RUNX1) and colony-stimulating factor 

1 receptor (CSFR1) fate-mapping mice suggest that AMs 

originate from FL monocytes (Hoeffel et al., 2015). RUNX1 

is expressed by cells of YS monocytic origin. In the fate-map-

ping study, AMs exhibited low RUNX1 expression levels, 

whereas brain microglia exhibited high RUNX1 levels. These 

findings imply that microglia, but not AMs, originate from 

YS monocytes. Moreover, the AMs of CSFR1 fate-mapping 

mice, which also enable the tracing of cells originating from 

YS monocytes, exhibited low CSFR1 expression.

 Adoptive transfer experiments, in which YS monocytes, 

FL monocytes, and bone marrow-derived monocytes were 

transferred into AM-deficient mice (CSF2 receptor subunit 

beta-knockout mice), revealed that AM pool colonization was 

dominated by FL monocytes. This suggests that FL monocytes 

are more likely to be precursors to AMs, compared with the 

potential for YS monocytes or bone marrow-derived mac-

rophages to serve as precursors (van de Laar et al., 2016). 

However, these data should be interpreted with caution. 

Although these studies suggest that FL monocytes contrib-

ute to AM formation, they do not exclude the possibility 

that other macrophage/monocytic cell types could also serve 

as precursors for AMs. Indeed, individual adoptive transfer 

experiments of YS monocytes, FL monocytes, or bone mar-

row-derived monocytes into AM-deficient mice resulted in 

similar populations of AMs, suggesting that each precursor 

has the potential to differentiate into AMs. Furthermore, it 

has been demonstrated that circulating monocytes replace 

AMs in γ-herpesvirus-infected or fibrotic lungs. Based on 

these findings, it is also feasible that circulating monocytes 

might be one of AM precursors under inflammatory condi-

tions (Machiels et al., 2017; Misharin et al., 2017).

 The studies discussed above suggest that AMs originate 

from FL monocytes and do not require continuous replen-

ishment of circulating monocytes to maintain their pool. 

The abilities of YS monocytes and bone marrow-derived 

monocytes to differentiate into AMs indicate the existence of 

compensatory mechanisms for AM development. YS mono-

cytes or circulating monocytes might serve as compensatory 

AM precursors when the differentiation of FL monocytes into 

AMs is limited due to inflammation.

DEVELOPMENT OF AMs

GM-CSF–PPAR-γγ axis critically contributes to the develop-
ment of AMs
Macrophage colony-stimulating factor (M-CSF) is a master 

cytokine that regulates the overall developmental processes 

of several monocyte/macrophage lineage cells (Ushach and 

Zlotnik, 2016). However, M-CSF is minimally involved in the 

development and cellular responses of AMs (Draijer et al., 

2019). Thus, unlike several other monocyte/macrophage 

lineage subsets, AMs are likely to rely on factors other than 

M-CSF for their development. Moreover, several studies have 

demonstrated the critical role of granulocyte-macrophage 

colony-stimulating factor (GM-CSF) in AM development. The 
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functional link between GM-CSF and AMs was first recog-

nized in the 1990s, on the basis of studies with GM-CSF-de-

ficient and GM-CSF receptor β-chain (GM-CSFR βc)-deficient 

mice (Nishinakamura et al., 1996; Stanley et al., 1994). 

Histological analyses of the lungs from the GM-CSF-deficient 

mice revealed pathological alterations that resembled human 

PAP, characterized by the accumulation of amorphous eosin-

ophilic materials in alveolar spaces due to impaired surfactant 

production by AMs. Furthermore, intranasal instillation of 

exogenous GM-CSF restored AM populations in GM-CSF-de-

ficient mice, indicating the critical role of GM-CSF in AM 

development (Guilliams et al., 2013). Recent studies suggest 

that GM-CSF is involved in the early development of AMs, 

beginning during their embryonic developmental stages. 

GM-CSF levels are relatively high in mouse lungs from embry-

onic day 17.5 and increase sharply on the day of mouse birth 

(Guilliams et al., 2013). This sharp increase in lung GM-CSF 

levels coincides temporally with AM precursor differentiation 

into AMs (Guilliams et al., 2013). Furthermore, GM-CSF-de-

ficient mice have comparatively fewer AM precursors at 

various embryonic stages. GM-CSF increases the expression 

and functional activity of the transcription factor peroxisome 

proliferator-activated receptor gamma (PPAR-γ) (Schneider 

et al., 2014), which regulates AM developmental processes 

as a master transcription factor. The AMs of PPAR-γ-deficient 

mice are relatively low in number and exhibit multiple abnor-

malities; this phenotype is similar to that of GM-CSF-deficient 

or GM-CSFR βc-deficient mice. Collectively, these findings in-

dicate that the GM-CSF–PPAR-γ axis plays a critical role in the 

development of AMs.

Fine-tuning of GM-CSFR signaling in AM development 
and function
The absence of GM-CSF or GM-CSFR signaling results in AM 

developmental defects; paradoxically, the overexpression of 

GM-CSF or GM-CSFR signaling components produces similar 

defective developmental phenotypes in AMs. Surfactant pro-

tein surfactant protein C-granulocyte macrophage (SPC-GM) 

mice, which have a marked elevation in lung GM-CSF levels 

compared with wild-type mice, exhibit increased AM accu-

mulation in juvenile stages, but have multiple AM abnormal-

ities following mouse maturity (Huffman Reed et al., 1997). 

Although the previous study of SPC-GM mice indicated the 

detrimental effects of increased GM-CSF levels in AM devel-

opment, we recently found that excessive GM-CSFR signaling 

also exerts detrimental effects on AM development (Woo et 

al., 2021). GM-CSFR is composed of two chains: an α-chain, 

which directly binds to GM-CSF, and a β-chain, which is 

mainly involved in signal transduction (Hercus et al., 2012). 

Upon binding of GM-CSF to the GM-CSFR α-chain, GM-CS-

FR forms a heterodimer complex. Then, signal transduction 

is initiated by the phosphorylation of GM-CSFR βc, followed 

by the phosphorylation of downstream proteins such as 

Janus kinase (JAK)2, signal transducer and activator of tran-

scription (STAT)5, and protein kinase b (PKB) (Hercus et al., 

2009). Following GM-CSF treatment, AMs rapidly upregulate 

expression of the RNA Polymerase II subunit A C-terminal 

domain phosphatase SSU72 (Ssu72), which directly binds to 

and de-phosphorylates GM-CSFR βc, thus reducing GM-CSFR 

signaling strength. GM-CSFR βc and its downstream signal-

ing proteins are excessively phosphorylated in Ssu72-deficient 

AMs, which leads to AM developmental defects and multiple 

abnormalities in cell number, cell cycle, proliferation, cell 

death, and various functions. These abnormalities were fully 

rescued following treatment with a JAK2 inhibitor, which led 

to downregulation of the excessive GM-CSF signaling (Woo 

et al., 2021). These results indicate that the strength of GM-

CSF signaling plays a critical role in the development and 

functions of AMs, and that Ssu72 is an important regulatory 

protein involved in the fine-tuning of GM-CSFR signaling (Fig. 

1).

Role of TGF-β in AM development
In addition to GM-CSF, transforming growth factor (TGF)-β 

plays a critical role in AM development (Yu et al., 2017). FL 

monocytes continuously produce TGF-β, which drives the 

differentiation of FL monocytes into AMs via autocrine and 

paracrine processes. The selective deletion of TGF-β receptor 

2 (TGFβR2) in AMs of adult mice using a human estrogen 

receptor-Cre recombinase system leads to the dysregulation 

of AM homeostasis and a reduction in PPAR-γ expression; 

this suggests that AMs require continuous TGF-β signaling 

to maintain homeostasis, which might be associated with 

PPAR-γ. However, the exact mechanism by which TGF-β reg-

ulates PPAR-γ expression and transcriptional activity in AMs 

remains unclear. Han et al. (2000) demonstrated that TGF-β 

treatment increased the phosphorylation of mitogen-acti-

vated protein kinase (MAPK) and of PPAR-γ in THP-1 macro-

phages, while treatment of low dose of TGF-β induced up-

Fig. 1. Fine-tuning of GM-CSFR signaling in AMs. Upon binding 

of GM-CSF to the GM-CSFR, the GM-CSFR βc is phosphorylated, 

which initiates downstream signaling. GM-CSFR signaling triggers 

the rapid upregulation of the phosphatase Ssu72, which directly 

binds to and dephosphorylates the GM-CSFR βc. This fine-tuning 

mechanism for GM-CSFR signaling is critical for the PPAR-γ, as 

well as mitochondrial respiration and cytokine secretion, in AMs.
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regulation of PPAR-γ expression and transcriptional activity via 

homologues of the Drosophila protein, mothers against de-

capentaplegic (Mad) and the Caenorhabditis elegans protein 

Sma-3 (SMAD3) signaling in murine lung fibroblasts (Ramirez 

et al., 2012). These could be the molecular mechanism be-

hind the TGF-β-mediated regulation of PPAR-γ in AMs, but 

further investigation is needed to confirm this hypothesis.

 GM-CSF, PPAR-γ and TGF-β-mediated signaling pathways 

are critical for AM development. Mechanistically, signaling 

induced by GM-CSF increases the expression level and tran-

scriptional activity of PPAR-γ. In addition, the fine-tuning of 

the strength of GM-CSF signaling is required for proper AM 

development. However, the fine-tuning of TGF-β-mediated 

signaling in AMs has not yet been reported; such investiga-

tions could provide valuable insights into the fine-tuning ma-

chinery of innate immune cells such as AMs (Fig. 2).

IMMUNOLOGICAL FUNCTIONS OF AMs

Anti-inflammatory roles of AMs under homeostatic condi-
tions
Under homeostatic conditions, AMs reside in alveolar spac-

es, where they are the main effectors of immune responses 

(Rubins, 2003). Following exposure of the respiratory tract to 

various external stimuli, AMs exhibit anti-inflammatory activ-

ity within the alveolar spaces by means of efferocytosis (Or-

tega-Gomez et al., 2013). Various in vivo and in vitro studies 

have demonstrated that AM-driven efferocytosis prevents 

dead cells from inducing pro-inflammatory or immunological 

responses in alveoli (Grabiec and Hussell, 2016; Kim et al., 

2018; Krysko et al., 2006; Mohning et al., 2018). Moreover, 

efferocytosis promotes the secretion of anti-inflammatory 

factors such as TGF-β, prostaglandin E2 (PGE2), and plate-

let-activating factor (PAF) by AMs, further suppressing inflam-

matory responses (Fadok et al., 1998; Huynh et al., 2002). 

Notably, macrophages from patients with severe asthma or 

COPD have poor phagocytic ability, compared with macro-

phages from healthy controls. This difference may contribute 

to chronic inflammation in patients with respiratory diseases 

(Fitzpatrick et al., 2008; Hodge et al., 2003).

 AMs also participate in immunosuppression by promot-

ing the generation of regulatory T (Treg) cells (Coleman et 

al., 2013; Soroosh et al., 2013). Compared with ovalbu-

min-pulsed dendritic cells, ovalbumin-pulsed AMs more 

strongly induce the differentiation of OT-II CD4+T cells into 

functional Foxp3+ Treg cells in co-culture systems (Soroosh et 

al., 2013). Furthermore, adoptive transfer of antigen-pulsed 

AMs inhibits lung inflammation by promoting Treg cells, in-

dicating that AMs contribute to the generation of functional 

Treg cells in vivo. AMs promote Treg cell generation by pro-

ducing key factors, such as TGF-β and the retinal dehydroge-

nases 1 & 2 (RALDH1 and RALDH2) (Bazewicz et al., 2019). 

In laryngeal squamous cell carcinoma, Treg cells promote 

the differentiation of monocytes into AM-like macrophages, 

which suggests that there is a positive feedback loop be-

tween AM and Treg cell generation (Sun et al., 2017).

 The alveolar microenvironment actively participates in con-

tinuous signaling to promote immunosuppressive activity in 

AMs (Guth et al., 2009). In vitro co-culturing of bronchial ep-

ithelial cells and AMs reduces the AM inflammatory response 

via soluble factors produced by the bronchial epithelial cells 

and cell-to-cell contact (Mayer et al., 2008). Alveolar epithelial 

cells promote anti-inflammatory activity in AMs by producing 

interleukin (IL)-10 and TGF-β-activating integrin αvβ6 (Mayer 

et al., 2008). Moreover, continuous cluster of differentiation 

200 (CD200)-mediated CD200 receptor signaling by type 

II alveolar epithelial cells suppresses the c-Jun N-terminal ki-

nases (JNK), p38 mitogen-activated protein kinases (p38), 

and extracellular signal-regulated kinases (ERK) signaling 

pathways in AMs, which in turn suppresses the expression of 

pro-inflammatory cytokines (Koning et al., 2010). In addition, 

several mannose receptor ligands expressed on type II alveo-

lar epithelial cells are recognized by AM mannose receptors, 

which blocks the recognition of toll-like receptor (TLR) 4 li-

gands (Steele et al., 2003; Zhang et al., 2005). The activation 

of tripartite motif-containing protein 2 (TRIM2) expressed by 

AMs also restricts pro-inflammatory AM activity (Gao et al., 

2013); however, evidence of TRIM2 ligand expression by type 

II alveolar epithelial cells has not been found. Taken together, 

these results suggest that AMs play anti-inflammatory roles in 

the alveolar microenvironment via various mechanisms.

Fig. 2. The roles of GM-CSF and TGF-β in the development of AMs. (A) GM-CSF, secreted by lung epithelial cells, induces the 

JAK2/STAT5-mediated transcription of PPAR-γ in AMs. (B) TGF-β is produced by adult AMs, and the cellular precursors of AMs then 

phosphorylate PPAR-γ in an autocrine and/or paracrine manner.
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Pro-inflammatory roles of AMs under inflammatory con-
ditions
Although AMs play an immunosuppressive role in non-in-

flammatory alveolar spaces, AMs can switch to perform var-

ious pro-inflammatory functions (Duan et al., 2017; Huang 

et al., 2018; Soni et al., 2016; Tsai et al., 2019; Wilson et al., 

2020; Yeligar et al., 2016). The destruction of airway epi-

thelia and the associated loss of immunosuppressive ligands 

induces switching of immunosuppressive AMs into their 

pro-inflammatory state (Bissonnette et al., 2020; Fujii et al., 

2002; Kaur et al., 2015; Moon et al., 2015). The ligands of 

several pattern recognition receptors such as TLR 2, 4 and 9, 

inhibit IL-10 receptor signaling and activate IL-1R-associated 

kinase, p38, and nuclear factor kappa-light-chain-enhancer 

of activated B cells (NF-κB) signaling in AMs (Fernandez et 

al., 2004), which triggers the pro-inflammatory state of AMs 

(Chen et al., 2007). Furthermore, neutrophil extracellular 

traps induce the pro-inflammatory state of AMs in acute lung 

injury models, which indicates that AMs can be triggered to 

perform pro-inflammatory roles through various mechanisms 

(Song et al., 2019). Following their shift into a pro-inflam-

matory state, AMs exhibit greater phagocytic activity and 

increase their secretion of oxygen metabolites, pro-inflamma-

tory cytokines (e.g., IL-1, IL-6, and tumor necrosis factor α), 

chemokines, lysozyme, antimicrobial peptides, and proteases 

(Belchamber and Donnelly, 2017; Haslett, 1999; Hodge et 

al., 2019; Mariencheck et al., 1999; Nagre et al., 2019; Scha-

gat et al., 2001; Soni et al., 2016).

 AMs can exert both immunosuppressive and pro-inflam-

matory functions, depending on the nature of the alveolar 

microenvironment (Fig. 3). Although non-inflammatory alve-

olar microenvironments continuously promote immunosup-

pressive activity in AMs, inflammatory alveolar microenviron-

ments induce AMs to perform pro-inflammatory functions. 

Thus, developing our understanding of the dual functions of 

AMs in various pulmonary diseases may help to identify novel 

and effective pharmaceutical targets.

METABOLISM IN AMs

Recent studies emphasize the intimate relationship between 

the metabolic status of immune cells and their development 

and functions (Pearce and Pearce, 2013). For example, the 

differentiation of macrophages into classically or alternatively 

activated macrophages is determined by their use of glycol-

ysis or the tricarboxylic acid cycle, respectively (Viola et al., 

Fig. 3. Immunological functions of AMs. (A) Under homeostatic conditions, lung epithelial cells continuously provide immunosuppressive 

signals to AMs by producing CD200, IL-10, and TGF-β. Subsequently, AMs contribute to regulatory T cell generation by secreting TGF-β 

and by expressing retinal dehydrogenases 1/2 (RALDH1/2). Moreover, AMs phagocytose dying cells to maintain the alveolar homeostatic 

environment. (B) Under inflammatory conditions, toll-like receptor (TLR) signals and/or neutrophil extracellular traps (NETs) trigger AMs 

to functionally switch to pro-inflammatory roles.
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2019). However, there have been few reports concerning the 

relationships of AM metabolic status with their development 

and function. Recently, mammalian target of rapamycin 

(mTOR)-deficient mice show a reduction of number and dis-

ruptions of fatty acid oxidation and amino acid pathway in 

AMs, suggesting that lipid and amino acid metabolism might 

be critical for AM development (Sinclair et al., 2017). mTOR 

forms two distinct complexes, mTOR complex 1 (mTORC1) 

and mTOR complex 2 (mTORC2), which perform distinct 

functions (Saxton and Sabatini, 2017). mTORC1 forms when 

mTOR binds to regulatory-associated protein of mTOR (RAP-

TOR), which regulates lipogenesis and sterol homeostasis via 

sterol regulatory element-binding proteins 1 & 2 (SREBP1/2). 

mTORC2 forms when mTOR binds to rapamycin-insensitive 

companion of mTOR (RICTOR), which regulates cell growth, 

proliferation, and cytoskeletal remodeling (Saxton and Saba-

tini, 2017). While deletion of RICTOR has no significant effect 

on AMs, the deletion of RAPTOR leads to a significant reduc-

tion in AMs (Deng et al., 2017). Moreover, RAPTOR-deficient 

AMs show disruption in fatty acid and amino acid metabo-

lism, which is similar to the mTOR-deficient AMs, suggesting 

that regulation of fatty acid and amino acid metabolism 

might be attributable to mTOR1 rather than mTOR2 in AMs.

 Both GM-CSF and PPAR-γ-deficient AMs demonstrate 

massive accumulation of cholesterol ester-rich lipid-drop-

lets, enhancement of cholesterol proportion in surfactants 

and upregulation of adenosine triphosphate (ATP)-binding 

cassette sub-family G member 1 (ABCG1) expression, a 

PPAR-γ-regulated ATP binding cassette lipid transporter, 

which leads to development of PAP (Sallese et al., 2017; 

Thomassen et al., 2007). PPAR-γ-deficient AMs also exhibit 

enhanced cholesterol esterification accompanied by reduced 

expression levels of lipid metabolism-related genes such as 

Fabp1, Fabp4, Cd36, Olr1, and Cidec, which play critical roles 

in lipid uptake, transport, storage, and processing (Schneider 

et al., 2014). Treatment of recombinant GM-CSF, PPAR-γ ag-

onist or cholesterol synthesis inhibitor (statin) restores choles-

terol clearance in macrophages and reduces severity of PAP 

in GM-CSF-deficient mice (McCarthy et al., 2018; Sallese et 

al., 2017; Thomassen et al., 2007). Furthermore, AMs taken 

from patients with PAP often exhibit a foamy and lipid-filled 

cytoplasm and have reduced expression levels of PPAR-γ and 

ABCG1 (Malur et al., 2012), indicating that the lipid metabo-

lism of AMs contributes to modulation of their function, par-

ticularly in PAP. Moreover, AMs derived from asthma patients 

showed increased uptake of leukotriene C4 (LTC4) (a precur-

sor to leukotriene E4 [LTE4]) to generate lipid metabolites 

such as leukotriene B4 (LTB4) and 5-hydroxyeicosatetraenoic 

acid (5-HETE) which may be correlated with enhanced mi-

gratory ability of AMs in asthmatic condition (Chavis et al., 

1991; Damon et al., 1989). In contrast, AMs derived from 

severe asthma patients show low levels of PGE2, 15-HETE 

(Huynh et al., 2005), lipoxin A4 (LTA4), and LTB4 (Bhavsar 

et al., 2010), which is accompanied with defective efferocy-

tosis. These findings suggest a functional link between lipid 

metabolite generation and functions in AMs. Consistently, 

lipid metabolism of AMs is implicated in bacterial clearance. 

Upon infection with Mycobacterium tuberculosis (Mtb), AMs 

upregulate their oxidative phosphorylation and fatty acid 

metabolic pathways, which paradoxically creates a favorable 

environment for the growth and survival of Mtb (Huang et 

al., 2018). Thus, the depletion of AMs improves Mtb clear-

ance during Mtb infection. However, it is unclear whether 

oxidative phosphorylation or fatty acid metabolism in AMs 

regulates Mtb clearance in the lungs.

 There is evidence to suggest a link between glycolytic ca-

pacity and overall function in AMs. AMs deficient in the E3 

ligase Von Hipple-Lindau protein have increased glycolytic 

capacities and exhibit impaired induction of group 2 innate 

lymphoid cells through reduced osteopontin expression, as 

demonstrated in the mouse model for COPD. This finding 

suggests that glycolysis inhibits AM function (Zhang et al., 

2018). Notably, the microenvironments of alveoli maintain 

remarkably low glucose concentrations, which enables the 

maintenance of AM function (Woods et al., 2020). More-

over, following glycolysis inhibition by lipopolysaccharide 

or oxamate, no substantial differences in glycolytic capacity 

or production of pro-inflammatory cytokines in AMs were 

found. Similar phenomena have been observed in vivo in 

the AMs of an influenza infection model. Thus, these studies 

suggest that glycolysis may be minimally involved in the reg-

ulation of AM function. Although PPAR-γ- and mTORC1-me-

diated fatty acid metabolism is necessary for the proper 

development of AMs, overall AM function is dependent on 

Table 1. Relationships of AM metabolic status with AM development and function
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oxidative phosphorylation, rather than glycolysis (Table 1). 

Although studies thus far have demonstrated close links of 

AM metabolic status with their functions and development, 

further investigations examining contributions of major met-

abolic pathways (e.g., glycolysis, oxidative phosphorylation, 

and amino acid metabolism) and major metabolites in the 

development and functions of AMs are still necessary. The 

use of genetically modified mice and AMs derived from pa-

tients with pulmonary diseases in future experiments could 

develop our understanding of the relationships of metabo-

lism with AM development and function.

CONCLUDING REMARKS

AMs are major immune cells that reside in and continuously 

patrol the alveoli, where they function to maintain homeosta-

sis. Human lungs are continuously exposed to external stimuli 

and respiratory infections. An enhanced understanding of 

AM biology will lead to the development of suitable pharma-

ceutical targets for various lung diseases. Although the key 

soluble factors involved in AM development and function are 

relatively well-established, studies examining the relationships 

of AM metabolic status with their functions and develop-

ment are lacking. We hope that this review will provide new 

insights that can aid in the establishment of new lung disease 

treatments.
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