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ABSTRACT
The prognosis of hepatocellular carcinoma (HCC), a malignant tumor, is poor. Tumor recurrence and 
metastasis are the major challenges for the treatment of HCC. Various studies have demonstrated that 
exosomes, which are loaded with various biomolecules including nucleic acids, lipids, and proteins are 
involved in the recurrence and metastasis of HCC. Additionally, exosomes mediate various biological 
processes, such as immune response, cell apoptosis, angiogenesis, thrombosis, autophagy, and inter-
cellular signal transduction. In cancer, exosomes regulate cancer cell differentiation, development, and 
drug resistance. Circular RNAs, microRNAs, and proteins in the exosomes can serve as early diagnostic and 
prognostic markers for HCC. As exosomes are characterized by low immunogenicity and high stability in 
the tissues and circulation, they can be used to deliver the drugs in cancer therapies.

ARTICLE HISTORY 
Received 24 December 2020  
Revised 9 February 2021  
Accepted 1 March 2021 

KEYWORDS 
Hepatocellular carcinoma; 
exosomes; 
microenvironment; drug 
resistance; targeted 
treatment

Introduction

Globally, hepatocellular carcinoma (HCC) is the sixth most 
common type of cancer and the third leading cause of 
cancer-related deaths.1 The morbidity rate of HCC is high 
(more than 20 cases/100,000 individuals) in the East Asia 
population. Each year, approximately 782,000 new HCC 
cases and 600,000 HCC-related deaths are reported 
worldwide.2 Approximately 40% of patients are clinically 
diagnosed with early-stage liver cancer. Most patients exhibit 
intrahepatic or distant organ metastasis at diagnosis and are 
not eligible for radical operation.3 Currently,the primary 
therapeutic strategies for HCC include surgery, local ablation 
therapy, and radiation therapy, which have improved the 
clinical outcomes of patients with the 10-year survival rate 
reaching approximately 25%.4 The rapid advances in tradi-
tional therapy have not resulted in decreased incidences of 
recurrence and metastasis of HCC. The prevention of HCC 
metastasis is a major objective in cancer treatment. Cellular 
signaling is involved in cancer progression, including drug 
resistance, metastasis, and recurrence.5 Therefore, there is 
a need to identify the correlation between intercellular com-
munication and cancer progression and to identify the 
underlying mechanisms and potential therapeutic targets 
for metastasis in HCC. Exosomes, which are produced and 
secreted by various cells (including tumor cells), are involved 
in several physiological and pathological processes in vivo, 
including intercellular communication, immune system func-
tion, cell differentiation, drug resistance and angiogenesis 
(Figure 1). Additionally, exosomes are involved in tumor 
development.6 This review summarizes the recent recent 
studies on the role of exosomes in cancer and discusses the 
correlation between HCC and exosomes.

Overview of the exosomes

Johnstone et al.7 first reported that vesicles with lipid bilayers 
were released during the culture of sheep reticulocytes in vitro. 
Exosomes are detected in the body fluids, such as the serum, 
milk, semen, and malignant fluid.8 Recently, the International 
Society for Extracellular Vesicles defined extracellular vesicles 
(EVs) as the generic term for particles naturally released from 
the cells that are delimited by lipid bilayers and cannot repli-
cate. There has been a marked increase in the number of 
studies on the physiological and pathological functions of 
EVs, a collective term encompassing various subtypes of mem-
branous structures released from the cells, such as microparti-
cles, microvesicles, ectosomes, apoptotic bodies, oncosomes, 
and exosomes.9 Currently, there is no consensus on the classi-
fication of EVs. Some studies have suggested that EV subtypes 
must be classified based on the physical characteristics(such as 
size or density), biochemical composition(such as CD63 
+ EVs), descriptions of conditions, or cell of origin.9 

Traditionally, EVs can be divided into the following three 
subgroups based on their diameter: exosomes (30–100 nm), 
apoptotic bodies (50–200 nm), and microbubbles 
(100–1000 nm).10 EVs exhibit a particulate structure and con-
tain biomolecules, such as nucleic acids, proteins, lipids.11 The 
secreted EVs can be taken up by the recipient cells through 
endocytosis, phagocytosis, macropinocytosis, or membrane 
fusion. The contents of EVs are then released into the cells 
where they exhibit various functions.12 Exosomes, which are 
a subtype of EVs, are derived from multivesicular bodys-
(MVBs) of the endosomal bodies and special areas of the cell 
membrane called endosomal domains.12–14 MVBs can fuse 
with the plasma membrane and the exosomes are released 
into the extracellular space.14 The secretion of exosomes is 
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reported to be dependent on the the calcium concentration and 
pH value.10 In tumor cells (such as HCC cells), the secretion of 
exosomes is dependent on the GTPase (Rab) family proteins, 
such as Rab35.15 Zou et al.16 demonstrated that the secretion of 
exosome was regulated by mechanistic target of rapamycin 
complex 1(mTORC1) and was dependent on the amino acid 
changes and growth factor conditions. These findings indicate 
that exosomes are secreted through multiple pathways. 
Proteomic analysis has revealed that CD63, TSG101, and flo-
tillin are exosome markers.10 Exosomes function as an inter-
cellular messenger during cell differentiation and cancer 
development. Additionally, exosomes contain various biomo-
lecules, such as nucleic acids and proteins,17 and are involved 
in complex biological functions (Table 1). Some studies have 
reported that exosomes are involved in various biological pro-
cesses (such as inflammatory immune response, apoptosis, 
angiogenesis, thrombosis, and autophagy), as well as in the 
occurrence, development, and metastasis of tumors.18–20 

These findings suggest that exosomes may serve a pivotal role 
in intercellular signaling. Recent studies have highlighted the 
role of exosomes in the tumor microenvironment (TME), 
which is critical for the occurrence, development, invasion, 
and metastasis of HCC.21 Previous studies have confirmed 
that tumor cells release a large number of exosomes during 
tumorigenesis and that exosome-mediated intercellular signal-
ing can potentially regulate the TME, which affects the pro-
gression of tumor.22 Additionally, exosomes are associated 
with various pathological conditions, such as neurological dis-
orders, drug addiction, and collagen diseases.20,23 Thus, exo-
somes may exert therapeutic effects. However, the underlying 
mechanisms involved in the therapeutic effects of exosomes 
have not been elucidated.

Exosomal RNAs as a diagnostic marker and 
a therapeutic target for HCC

As the early diagnosis of HCC is challenging, there are ongoing 
efforts to develop noninvasive diagnostic methods for HCC. 
The advances in sequencing technology have enabled the elu-
cidation of the role of exosomes in cancers.24 Previous studies 

have indicated that exosomes mediate the transportation of 
proteins, DNAs and various RNAs (such as microRNAs 
(miRNAs), long non-coding RNAs (lncRNAs), and messenger 
RNAs (mRNAs)) in the cells, which promotes the development 
of HCC.25,26 Thus, the contents of the exosomes can be utilized 
for the early diagnosis and follow-up of patients with cancer. 
The exosomal proteins, RNAs and DNAs may be potential 
diagnostic markers for HCC. Additionally, exosomes can be 
potential therapeutic targets for HCC.23 This section sum-
marizes the functions of RNAs from HCC-derived exosomes 
(Figure 2).

Non-coding RNAs, which are abundant in exosomes, are 
involved in all stages of tumor development.27 miRNAs can 
regulate various target genes through their short sequences that 
are not completely complementary. Therefore, miRNAs may 
regulate tumor progression, including proliferation, metabo-
lism, and apoptosis.28 For example, miR-194 inhibits the 
growth and migration of primary liver cancer cells by suppres-
sing the Wnt/β-catenin signaling pathway via the downregula-
tion of polyclonal inhibitory complex 1 (PRC1).29 Sun et al.30 

demonstrated that miR-155 was enriched in the exosomes 
released by HCC cells. These miR-155-containing exosomes 
were taken up by other HCC cells, which resulted in enhanced 
proliferation. In addition, exosomal miR-155 can directly bind 
to the 3ʹ-untranslated region of PTEN (tumor suppressor), 
which results in the downregulation of target genes in the 
recipient liver cells. Animal experiments have demonstrated 
that the exosomes enriched with miR-155 promoted the devel-
opment of HCC xenotransplants. The expression of miRNAs 
markedly varied between the benign tumors or non-tumorous 
cells and the cancer cells. Compared with those in patients with 
chronic hepatitis B (CHB), the serum levels of miR-18a, miR- 
221, miR-222, and miR-224 were significantly higher, while 
those of miR-101, miR-106b, miR-122, and miR-195 were 
markedly lower in patients with HCC. This suggested that 
these miRNAs may act as biomarkers for HCC.31 Compared 
with the biomarkers detected in the conventional specimens, 
exosomes are highly stable. The plasma levels of exosomal 
tumor-specific molecules (such as miR-718) in patients with 
HCC are significantly higher than those in healthy control.32 

Figure 1. Functions of exosomes in hepatocellular carcinoma development. Exosomes, which harbor proteins, mRNAs, microRNAs, long non-coding RNAs, circular RNAs, 
and DNAs, are involved in tumor microenvironment regulation, intercellular communication, immune modulation, cell differentiation, drug-resistance, and 
angiogenesis.
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Table 1. Overview of the roles of exosomal contents in HCC.

Types of exoso-
mal contents Functions in tumor Mechanism References

Exosomal 
proteins

SMAD Detaching HCC cells and facilitating their adhesion SMAD3/ROS signaling pathway 93

Caveolin HCC motility and malignant progression - 94

MET 
caveolins 
S100

Enhancing the migratory and invasive abilities of non-motile cell lines PI3K-AKT-mTOR, 
RAS-RAF-MEK-ERK

95

ITGαvβ5 HCC metastasis Specifically bind to Kupffer cells 96

OXL4 Promoting migration and angiogenesis Activate FAK/Src pathway 97

SDF-1α Promoting the migration and invasion MMPs secretions to facilitate lymph node metastasis 98

IL-6 
IL-8

Promoting cells migration and increasing tube formation NF-κB signaling pathway 99

Golgim1 Accelerating cell proliferation and migration GSK-3β/MMPs signaling axis 100

VASN Promoting proliferation and Migration of recipient HUVECs - 101

HMGB1 Higher infiltration Activating TLR-MAPK pathway 102

AFP 
GGT

Inducing EMT - 103

Exosomal 
miRNA

miR-320a Suppressing HCC cells proliferation, migration and metastasis MAPK pathway 51

miR-200b-3p Decreased miR-200b-3p in cancer cells promotes angiogenesis in HCC 
tissues

Enhancing endothelial ERG expression 104

miR-451a Inhibiting hepatocellular tumorigenesis Targeting LPIN1 to regulate tumor cells apoptosis and 
angiogenesis

105

miR-744 Downregulated miR-744 promotes HepG2 cells proliferation and inhibits 
the chemosensitivity of HepG2 cells to sorafenib

PAX2 is identified as the functional target of miR-744 106

miR-92a-3p Promoting metastasis Targeting PTEN and regulating its downstream Akt/Snail 
signaling to promote EMT

52

miR-224 Tumor promotor 
Increasing in cells proliferation

Targeting glycine N-methyltransferase 107

miR-21 Promoting cancer progression Targeting PTEN, leading to activation of PDK1/AKT 
signaling

108

miR-10b Promoting HCC cells proliferation, migration, and invasion Activating HIF-1α and HIF-2α 53

miR-665 Promoting HCC cells proliferation Activating MAPK/ERK pathway 109

miR-150-3p The loss of antitumoral miR-150-3p in CAFs-derived exosomes greatly 
promotes HCC progression

- 110

miR-9-3p Overexpression of miR-9-3p reduces HCC cell viability and proliferation Regulating HBGF-5 expression 
Reducing ERK1/2 expression

111

miR-103 Increasing vascular permeability and promoting tumor metastasis Inhibiting the expression of VE-Cadherin (VE-Cad), p120- 
catenin (p120) and zonula occludens 1

112

miR-490 Inhibiting HCC cell metastasis Inhibiting the ERK1/2 pathway 113

miR146a Anti-HCC function Promoting M2-polarization and suppresseing the 
function of T-cells

114

miR-155 Stimulating the proliferation of HCC cells Bounding to 3�-UTR of PTEN leads to the reduction of 
relevant targets in recipient liver cells

22

miR-93 Increasing proliferation and invasion ability of HCC cells TP53INP1, TIMP2 and CDKN1A are direct targets of miR- 
93

115

miR-92b Enhancing the migration ability of liver cancer cells Suppressing CD69 on NK cells 116

miR-1247-3p Activated CAFs further promote cancer progression via secreting pro- 
inflammatory cytokines

Activating β1-integrin-NF-κB signaling pathway in 
fibroblasts

41

miR-32-5p Multidrug resistance via modulating angiogenesis and EMT Activating the PI3K/Akt pathway 65

miR-145 Suppressing tumorigenesis and metastasis GSK-3β/MMPs signaling axis 100

miR-1273 f Directly replicating the effects of hypoxic exosomes within HCC cells Activating the Wnt/β-catenin signaling 117

miRNA-25-5p Increasingly recognized as key instigators of cancer progression by 
facilitating cell-cell communication

- 118

Exosomal 
lncRNA

TUC339 Regulating macrophage activation Regulating macrophage M1/M2 polarization 119

lncRNA H19 Accelerating the proliferation and motility while hampering the 
apoptosis of HCC cells

H19/miR-520a-3p signaling 120

lnc-FAM72D-3 Functions as an oncogene in HCC - 121

lnc-EPC1-4 Functions as a tumor suppressor gene - 121

lncRNA MALAT1 Increasing hepatic cell invasion and migration Extracellular signal-regulated kinase 1/2 (ERK1/2) 
signaling

122

ATB Promoting invasion and metastasis Upregulation of TGF-β signaling pathway 123

Exosomal 
circular RNA

circRNA Cdr1as Greatly accelerating HCC cells to proliferate and migrate Sponging miR-1270 124

circPTGR1 Promotes metastasis - 32

circRNA-100,338 Enhancing the metastatic ability of HCC cells Affect proangiogenic activity by regulating angiogenesis 35

circUHRF1 Driving resistance to anti-PD1 immunotherapy in HCC patients Expression of TIM-3 via degradation of miR-449 c-5p 67

circ-1441443 Suppressing the malignant biological behaviors Via BAK1 upregulation 125

circFBLIM1 Facilitatign HCC progression and glycolysis MiR-338/LRP6 axis 126127128129130

Abbreviation: AFP (alpha-fetoprotein), GGT (gamma-glutamyl transpeptidase), HCC(Hepatocellular Carcinoma), EMT (epithelial-stromal transformation), CAFs (cancer- 
related fibroblasts).
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These studies suggest that the miRNA in the exosomes can be 
detected using noninvasive methods, which can aid in the early 
diagnosis of cancer, especially the diagnosis of 
HCC.136137138139140

LncRNAs are also involved in the pathogenesis of HCC. 
Yang et al.15 reported that lncRNA HOTAIR regulated the 
secretion of exosomes from the liver tumor cells. HOTAIR 
promotes the release of exosomes via inducing the transport 
of MVBs to the plasma membrane and regulating the expres-
sion and localization of RAB35. The expression level of 
lncRNA HULC in serum exosomes and liver cancer tissues is 
correlated with the tumor TNM stage. The overexpression of 
HULC promotes the growth and invasion and inhibits apop-
tosis of HCC cells. Notably, HULC promotes the secretion of 
exosomes from the HCC cells.33 Conigliaro et al.34 demon-
strated that lncRNA H19 in CD90+ HCC modulates the TME 
balance via promoting angiogenesis. These findings illustrate 
the importance of the lncRNAs in HCC and provide novel 
insights into the molecular mechanisms involved in the secre-
tion of exosomes from HCC cells. Therefore, lncRNAs may 
serve as therapeutic target for HCC.141142143144145146

Recent studies have reported that circRNAs can serve as 
a diagnostic biomarker and a therapeutic target for cancer. 
CircRNAs are endogenous non-coding RNAs without 5′ to 3′ 
polarity and contain a covalent closed-loop structure of poly-
adenylated tail.35 Previous studies have reported that circRNAs 
can stably bind to miRNAs and regulate gene expression.36 The 
analysis of the correlation between exosomes and circRNAs 
may aid in understanding the biological functions of exosomal 
circRNAs. However, the analysis of exosomal circRNAs is 
a double-edged sword as exosomes containing circRNAs can 
transfer biological information to the target cells but also con-
tribute to the clearance of circRNAs.37 At present, the 

exosomal circRNAs are detected in various cancer cell lines, 
including the liver, lung, gastric, and breast cancer cell 
lines.38,39 The differentially expressed circRNA genes promote 
the tumor-related signaling pathways, suggesting that 
circRNAs are associated with the occurrence and development 
of tumors.40 For example, cSMARCA5 (a circRNA derived 
from exons 15 and 16 of the SMARCA5 gene) binds miR-17- 
3p and inhibits the proliferation and migration of HCC by 
promoting TIMP3 expression.41 Huang et al.42 proved that 
the overexpression of circRNA-100338 activates mTOR signal-
ing pathway in HCC and is correlated with poor prognosis. 
Zhang et al.43 found that the exosomes secreted by adipocytes 
contain a circRNA named circ-deubiquitination(circ-DB), 
which promoted HCC growth and decreased DNA damage 
via the suppression of miR-34a and the activation of deubiqui-
tination-related USP7. These studies suggest that circRNAs are 
correlated with the progression and metastasis of HCC. 
However, the clinical application of exosomal circRNAs is 
associated with several challenges. circRNAs cannot be easily 
detected in the exosomes due to their low abundance and 
complex structures. Thus, the precise evaluation of circRNA 
expression and function is challenging.37 Future studies must 
investigate exosomal RNAs in cancer and other diseases to 
elucidate their functions. Although exosomal RNA function 
and mechanisms have not been completely elucidated, they can 
serve as potential biomarkers and novel therapeutic targets for 
HCC owing to their applicability, specificity, and accessibility.

Compared with those on non-coding RNAs, studies on 
exosomal mRNAs in tumors are limited. miRNAs are stable 
in biological fluids. In contrast, mRNAs that are not enclosed 
within exosomes undergo degradation in the biological 
fluids.44 However, exosomal mRNAs have a critical role in 
tumors. A chimeric mRNA called GOLM1-NAA35 is detected 

Figure 2. Roles of RNAs from hepatocellular carcinoma (HCC)-derived exosomes. Exosomes mediate the transport of various RNAs. Exosomes-associated miRNAs, such 
as miR-221, miR-222, and miR-224 can be potential diagnostic biomarkers for HCC. miR-155, lncR-HULC, and circR-DB promote HCC progression and invasion, whereas 
miR-194 and miR-424-5p suppress HCC growth and invasion. Exosome-associated RNAs, such as miR-1247-3p, which are transferred from the donor cells, can regulate 
stromal cells, such as cancer-related fibroblasts. The secretion of cytokines, such as chemokine and interleukins from the exosomes promotes HCC growth and invasion, 
including angiogenesis. miR-32-5p, lncRNA-RoR, and lncRNA-VLDLR are involved in the development of drug-resistance.131132133134135
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in the salivary exosomes of patients with esophageal squamous 
cell carcinoma (ESCC). The levels of chimeric GOLM1-NAA35 
mRNA in salivary exosomes served as a noninvasive biomarker 
for ESCC detection, postoperative surveillance, therapeutic 
response, and tumor recurrence.44 The expression of PCA3 
mRNA, a typical biomarkers of prostate cancer, is significantly 
upregulated in PSMA-positive (PSMA: prostate-specific mem-
brane antigen) exosomes.45 Xu et al.46 examined the serum 
levels of exosomal heterogeneous nuclear ribonucleoprotein 
H1 (hnRNPH1), a type of RNA-binding protein and splicing 
factor essential for the development of HCC mRNA in the 
HCC group were significantly higher than those in the liver 
cirrhosis, chronic hepatitis B, and healthy control groups. 
Patients with upregulated exosomal hnRNPH1 mRNA levels 
exhibited poorer overall survival than those with downregu-
lated hnRNPH1 mRNA levels. Additionally, the expression 
level of exosomal hnRNPH1 mRNA is correlated with the 
Child-Pugh classification, portal vein tumor emboli, lymph 
node metastasis, and TNM stage in patients with HCC.46 

These findings suggest that the serum level of exosomal 
hnRNPH1 mRNA is a prognostic biomarker for HCC. Sasaki 
et al.47 reported that the copy number of hepcidin mRNA 
variant was significantly upregulated in the serum exosomes 
of patients with HCC. This suggested that exosomal hepcidin 
mRNA may serve as a novel diagnostic biomarker for HCC. 
These studies offered novel insights into the potential applica-
tions of exosomal mRNAs for cancer surveillance and early 
diagnosis. However, further prospective studies are needed to 
elucidate the role of exosomal mRNAs.

Role of exosomes in the formation of HCC 
microenvironment

Approximately 70% of HCC cases exhibit recurrence and 
metastasis within 5 years after surgery or radiofrequency 
ablation.48 The mechanisms underlying HCC progression or 
metastasis must be elucidated to prevent recurrence and metas-
tasis of HCC. The complex TME is critical for various cellular 
processes, such as maintenance of cell surface structure and 
adhesion, angiogenesis, cell migration, epithelial-to-stromal 
transition (EMT), matrix remodeling, and immune 
regulation.49,50

Matrix cells (such as fibroblasts, macrophages, and T cells), 
extracellular matrix (ECM; comprising inflammatory cyto-
kines, chemokines, and matrix metalloproteinases), and exo-
somes constitute the TME, which has a critical role in cancer 
initiation and progression.51 For example, cancer-related fibro-
blasts (CAFs) regulate the inflammatory microenvironment, 
promote lung metastasis of HCC, and induce tumor occur-
rence, EMT, and chemotherapy resistance.52 The dysfunction 
of immune cells provides a microenvironment for immuno-
suppression in tumor cells, which leads to immune tolerance 
and escape.53 The loss of physiological balance in the micro-
environment results in disrupted cell behavior and tumor 
development. Exosomes are an important component of the 
TME that transduce signals between cells.54 The exosome- 
mediated activation of toll-like receptor 3 (TLR3) in hepatic 
stellate cells (HSCs) exacerbates liver fibrosis via enhancing IL- 
17A production.55 Wang et al.56 demonstrated that 14-3-3ζ 

inhibited the anti-tumor functions of tumor-infiltrating 
T cells in the HCC microenvironment and that 14-3-3ζ can 
be partially transferred from HCC cells to T cells through the 
exosomes. These findings suggest exosomes indirectly affect 
the progression of HCC by influencing the composition of 
the TME.

Recently, exosomes were reported to mediate anti-tumor 
immune response and immune escape of tumor cell.57 

Macrophages, which are abundant in the liver, are involved 
in the innate immune response. In response to tumor-derived 
stimuli, macrophages can be polarized into the classical (M1) 
or alternative (M2) phenotypes. M1 macrophages exhibit anti- 
tumor activity, whereas M2 macrophages exhibit pro- 
tumorigenic activity.58 The exosomes derived from HCC cells 
promote macrophage activation and M2 polarization, which 
enables tumors to evade immune surveillance.59 LncRNA 
TUC339, which is upregulated in HCC-derived exosomes, is 
transferred among HCC cells and promotes HCC growth and 
metastasis. Furthermore, exosomal lncRNA TUC339 can be 
transferred to neighboring macrophages where it regulate the 
M1/M2 polarization and inhibits the anti-tumor immune 
response in vitro.60 HCC-derived exosomal miR-23a-3p upre-
gulates PD-L1 expression in the macrophages via the STAT3 
signaling pathway, which attenuates the anti-HCC immune 
response in vitro and in vivo.61 The exosomes derived from 
melatonin-treated HCC cells mitigate the immunosuppressive 
status by downregulating PD-L1 expression on macrophages 
in vitro and in vivo.59 Dendritic Cells (DCs) are also involved in 
initiating innate and adaptive immune responses. Yu et al.62 

demonstrated that tumor-derived exosomes promoted immu-
nosuppression by inhibiting DC differentiation and matura-
tion through the IL6-STAT3 signaling pathway. In contrast, 
Rao et al.63 found that HCC tumor cell-derived exosomes 
exhibiting various HCC antigens, elicit a strong immune 
response by activating DCs. The activated DCs increased 
T lymphocytes and interferon-γ levels and decreased tumor 
growth factor-β levels in the HCC TME. Another study64 

investigating exosomes from HCC antigen-expressing DCs in 
different HCC mouse models reported that alpha fetoprotein- 
enriched DCs-derived exosomes could trigger potent antigen- 
specific anti-tumor immune responses and remodel the TME 
in HCC mice. Thus, these exosomes can be a potential immu-
notherapeutic target for HCC. Natural killer (NK) cells, 
a critical component of the TME, can be inhibited by exosomal 
circUHRF1, which results in immunosuppression. Exosomal 
circUHRF1 can confer resistance to anti-PD1 immunotherapy 
in patients with HCC. Thus, exosomal circUHRF1 can be 
a potential therapeutic target for HCC.65 HCC-derived exo-
somes harbor various non-coding RNAs and proteins that 
mediate immunoregulation. Therefore, exosomes may serve 
as prospective diagnostic biomarkers and therapeutic targets 
for HCC.

EMT is a reversible process of dedifferentiation in which 
epithelial cells lose the epithelial characteristics (such as polar-
ity and cell–cell junctions) and acquire the typical mesenchy-
mal characteristics (such as increased migratory and invasive 
abilities).66 However, most tumor cells do not undergo 
a complete EMT. In these cases, tumor cells acquire partial 
characteristics of mesenchymal cells with some epithelial 
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characteristics. Moreover, partial EMT (p-EMT) can drive dis-
tinct migratory properties and enhance the epithelial- 
mesenchymal plasticity of cancer cells and cell fate 
plasticity.67 Yu et al.68 suggested that key p-EMT-related 
genes (P4HA2, ITGA5, MMP9, MT1X, and SPP1) could 
serve as prognostic biomarkers and therapeutic targets for 
HCC. Recent studies have demonstrated the role of exosomes 
in EMT progression in different types of cancer, including 
HCC.69 Chen et al.70 revealed that HCC-derived exosomes 
promoted HCC progression and recurrence by activating 
EMT through the MAPK/ERK signaling pathway. Rab27a, 
a small GTPase, regulates exosome secretion by mediating 
multivesicular endosome docking at the plasma membrane. 
Zhang et al.71 showed that exosomes derived from CAFs 
transfered miR-320a to the HCC cells and inhibited EMT. 
The loss of miR-320a in the CAF-derived exosomes promoted 
EMT and HCC metastasis. In addition, HCC-derived exo-
somes transport miR-92-3p to the recipient cells and conse-
quently promote EMT and the conversion of low-metastatic 
HCC cells into high-metastatic HCC cells via the regulation of 
the PTEN/Akt pathway. Thus, these exosomes are a biomarker 
of poor prognosis in patients with HCC.72 HCC cell-derived 
exosomal miR-21 and miR-10b, which are overexpressed in the 
acidic microenvironment, promote HCC cell proliferation and 
metastasis by facilitating the EMT process.73 These findings 
indicate that EMT and exosomes disrupt the homeostatic bal-
ance of the TME. Thus the analysis of EMT and exosomes may 
contribute to the identification of novel therapeutic targets and 
prognostic markers, and the development of novel treatment 
strategies for HCC.

HCC, which is highly vascularized, can secrete exosomes 
with various ncRNAs and cytokines that promote 
angiogenesis.42,74 For example, Li et al.75 demonstrated that 
HCC-derived exosomes promote angiogenesis in the human 
umbilical vein endothelial cells (HUVECs) by transferring lysyl 
oxidase-like 4 (LOXL4) through a paracrine mechanism. HCC- 
derived exosomes harboring angiopoietin-2 (ANGPT2) are 
endocytosed by HUVECs, which promotes angiogenesis via 
the Tie2-independent pathway (Tie2: angiopoietin receptor). 
Additionally, the knockdown of ANGPT2 significantly inhib-
ited angiogenesis.76 However, not all genes and their products 
exhibiting upregulated expression in the exosomes promote 
angiogenesis. One study suggested that exosomal miR-200b- 
3p from HCC suppressed the expression of endothelial tran-
scription factor ERG (erythroblast transformation-specific 
(ETS)-related gene). The downregulation of miR-200b-3p in 
HCC cells promoted angiogenesis through the upregulation of 
endothelial ERG expression.77 These studies provide insights 
into the novel pathways that may be targeted to increase the 
efficacy of anti-angiogenic therapies.

Chemoresistance and exosome-related 
drug-resistance of HCC

Traditional chemotherapeutic strategies are associated with 
poor prognosis, low efficacy, and increased side effects, which 
can be attributed due to the nonspecific therapeutic targeting 
and rapid development of multidrug resistance (MDR).78 

MDR is induced in the tumor cells via various mechanisms, 

including gene mutations, DNA methylation, histone modifi-
cations, disrupted membrane transporters, changes in anti- 
cancer drug targets, and intracellular metabolism of drugs, to 
escape the cytotoxic effects of chemotherapy drugs.79,80 

Genetic heterogeneity among cancer cells is the basis of adap-
tation to the therapeutic interventions with the most resistant 
cells surviving against the selective pressure.81 Peitzsch et al.82 

indicated that cancer stem cells (CSCs) may serve an important 
role in tumor drug resistance. Liver CSCs (LCSCs), which are 
primary stem cells derived from liver cancer, undergo self- 
renewal and differentiation. Thus, LCSCs contribute to the 
recurrence and metastasis of HCC. Additionally, LCSCs are 
resistant to conventional radiotherapy and chemotherapy.83 

Yu et al.84 analyzed clinical liver tumor samples and high-
lighted the importance of the SDC1-PI3K/AKT signaling in 
cisplatin resistance. Ding et al.85 confirms that CCND1, 
a protooncogene, is involved in fluorouracil (5-FU) resistance 
in the hepatoma cell lines. The silencing of CCND1 increases 
the sensitivity of HCC to 5-FU and inhibits the expression of 
the DNA repair protein RAD51. This suggested that MDR is 
regulated at various levels, including genomics, proteomics and 
TME levels and that the modulation of a single factor cannot 
completely mitigate drug resistance. Therefore, combined ther-
apy must be used to overcome drug resistance.

Exosomes are involved in conferring resistance to anti- 
tumor drugs. However, the role of exosomes in inducing 
drug resistance has not been completely elucidated.86 Current 
studies suggest that exosomes induce drug resistance through 
the delivery of cargos from drug-resistant cancer cells to the 
recipient drug-sensitive cells, which enhances the proliferation, 
survival, migration, and drug resistance of drug-sensitive cells. 
Alternatively, exosomes may phagocytose drug molecules and 
expel them out of cells, which reduces the drug concentration 
in the cells.87,88 The tumor-derived exosomes are rich in 
miRNAs, which are associated with the drug resistance pheno-
type. Some molecules (such as ncRNA) loaded in the exosome 
interact with molecular receptors in cells and modulate their 
drug resistance phenotypes.79 Fu et al.89 revealed that exo-
somes deliver miR-325p from resistant cells to sensitive cells, 
which results in the activation of the PI3K/Akt pathway. 
Additionally, these exosomes induce MDR by modulating 
angiogenesis and EMT. Exosomal miR-199a-3p(Exo-miR 
-199a-3p), which represses the invasion of cancer cells and 
stimulate cancer cell apoptosis, was isolated from the HCC 
cells. Animal experiments revealed that the upregulation of 
miR-199a-3p mitigated the resistance of HCC to cisplatin and 
delayed tumor growth in vivo.90 Zhang et al.65 showed that 
exosomal circUHRF1, which is predominantly secreted by the 
HCC cells, promotes immunosuppression via inducing NK cell 
dysfunction. Additionally, circUHRF1 may promote resistance 
to anti-PD1(Programmed death 1) immunotherapy. These 
studies indicate that the regulation of exosomal ncRNAs can 
be a potential therapeutic strategy for HCC.

Exosomes may clear drugs and metabolites from the tumor 
cells and consequently mitigate the therapeutic effect of drugs 
through various transporters.91 Meena et al.92 indicated that 
paclitaxel promoted exosome releasing from HCC cells, which 
conferred drug resistance to ajacent cells as the exosomes 
transported the drug out of the cells. This process was partly 
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mediated by the ATP-binding cassette (ABC) transporter 
family. The ABC transporter family, which contributes to 
MDR in cancer cells, is subdivided into seven subfamilies (A 
to G).93 The relatively active proteins include ABC subfamily 
B member 1 (ABCB1, also known as MDR1 and P-glycoprotein 
or P-gp), ABC subfamily C member 1 (ABCC1, also known as 
multidrug resistance-associated protein 1), and ABC subfamily 
G member 2 (ABCG2, also known as breast cancer resistance 
protein [BRCP]).94 The exosomal delivery of ABCB1, which is 
the most studied transporter, confers chemoresistance in HCC. 
In particular, ABCB1 expression is upregulated in HCC cells 
that are resistant to paclitaxel, epirubicin, and doxorubicin.91 

The other efflux pumps ABCB2 and ABCA3 also contribute to 
chemoresistance by transferring exosomal drugs.94 This is 
a potential novel mechanism of chemoresistance in cancer 
cells. Thus, exosome-mediated drug transportation must be 
considered to overcome MDR.

Exosomes and HCC targeting therapy

The identification of drug targets can aid in the development of 
targeted therapy to improve the efficacy of therapeutics and 
reduce the toxic and side effects. However, the development of 
targeted therapy for tumors is challenging.95 Recently, several 
potential molecular targets (such as PD-1/PD-L1, cytotoxic 
T lymphocyte antigen 4 (CTLA-4), vascular endothelial growth 
factor (VEGF) pathway, tumor suppressor p53, skin cell adhe-
sion molecule (EpCAM), and Wnt/β-Catenin) and therapeu-
tics (such as nivolumab, pembrolizumab, and lenvatinib) have 
been widely used for the clinical treatment of HCC.95–97 

However, most target molecules for HCC exhibit poor clinical 
performance. Approximately 25% of HCC cases exhibit resis-
tance to the currently used drugs.98 Thus, there is a need to 
develop methods to accurately deliver anti-cancer drugs to the 
tumor and specially kill the cancer cells.

EVs can be a potential drug delivery system to mitigate the 
side effects of chemotherapy and enhance treatment effect.99 

Zhang et al.100 presented the challenges of EV-based drug deliv-
ery, including the selection and production of vesicles and cargos 
and the methods to load the cargo into the vesicles, modify the 
vesicle surface, and prolong the half-life of vesicles in the circula-
tion. The membrane permeability, biocompatibility, and non-
toxic immunogenicity of exosomes can be an advantage for 
transferring drugs, proteins, and nucleic acids.101 Exosomes are 
characterized by low immunogenicity and high stability in the 
tissues and circulation. Thus, exosomes may be a better drug 
delivery vehicle in cancer therapies than previously reported 
compounds, such as liposomes.102 For example, Hood et al.103 

loaded superparamagnetic iron oxide nanoparticles (SPIONs) in 
exosomes through electroporation to obtain exosomes loaded 
with 5 nm iron nanoparticles, which can be used for diagnosis or 
treatment. To achieve the targeted delivery to the tumor cells and 
improve the applicability of treatment, the exosomal surface was 
modified. One study104 transfected EV-producing cells with 
vectors encoding anti-epidermal growth factor receptor nano-
bodies, which served as targeting ligands for tumor cells, fused to 
glycosylphosphatidylinositol (GPI) anchor signal peptides. EVs 
were isolated using ultrafiltration/size-exclusion liquid chroma-
tography. The analysis of EV-tumor cell interaction revealed that 

nanobodies can be anchored on the surface of EVs via GPI, 
which alters their cell-targeting behavior. Tian et al.105 engi-
neered immature DCs (imDCs) to express a well-characterized 
exosomal membrane protein (Lamp2b) fused to αv integrin- 
specific iRGD peptide (CRGDKGPDC) to facilitate tumor tar-
geting. The purified exosomes from imDCs were loaded with 
Dox via electroporation with an encapsulation efficiency of up to 
20%. iRGD exosomes were highly efficient for the targeted 
delivery Dox to αv integrin-positive breast cancer cells in vitro 
and in vivo. These studies demonstrate the potential of exosomes 
for anti-tumor drug delivery. However, there are limited studies 
on exosome-based drug delivery to liver cancer. Future studies 
must examine exosomal chemotaxis to lay the foundation for the 
application of exosome-directed drug delivery to the liver, which 
can improve tumor characterization and optimize personalized 
treatment for patients with HCC.

Conclusions and future perspectives

Immunotherapies, such as nivolumab, pembrolizumab, and 
ipilimumab, have been used for the clinical treatment of 
cancers.106 However, the objective response rate of anti- 
PD1 immunotherapy is only 15%~20%.107 The unique 
immune response in the liver is reported to promote drug 
tolerance, which is a major challenge for the application of 
conventional immunotherapy in patients with HCC.108 The 
liver, which is a major immunological organ, is exposed to 
antigen-enriched blood from the gut via the portal vein.109 

Therefore, the uninflamed liver provides a tolerogenic micro-
environment and suppresses both innate and adaptive immu-
nity under homeostasic conditions to prevent prolonged 
inflammation and tissue damage.110 This underscores the 
need to develope novel therapeutic strategies for HCC. 
Exosomes, which serve a pivotal role in intercellular comm-
nication and TME, are a prospective therapeutic target for 
HCC. The cargos, including functional proteins, RNAs, and 
anti-tumor drugs, in the exosomes can serve as diagnostic 
markers and regulate various physiological and pathological 
processes.65,111 Recent studies have improved our under-
standing of the role of exosomes in cancers, such as gastro-
intestinal and liver cancers.112 Additionally, exosomes can 
serve as a potential therapeutic target for cancer. Exosomes 
can also be potentially used as drug carriers for cancer 
treatments.113 The modification of the exosomal membrane 
can increase the chemotaxis of exosomes to specific 
lesions.114,115 Thus, exosomes can deliver anti-tumor drugs 
directly and effectively to the HCC tissues and prevent the 
progression of HCC. However, further studies are needed for 
the clinical application of exosomes for the diagnosis and 
treatment of HCC.
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