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Tunable lasing in cholesteric liquid 
crystal elastomers with accurate 
measurements of strain
Andrii Varanytsia1, Hama Nagai2, Kenji Urayama2 & Peter Palffy-Muhoray1

We report wide range and reversible tuning of the selective reflection band of a single crystal 
cholesteric liquid crystal elastomer (CLCE). The tuning is the result of mechanical shortening of the 
helical pitch achieved by imposing a uniform uniaxial strain along the helical axis. On doping the 
CLCE sample with a laser dye, we observe lasing from the CLCE in both glassy and rubbery states. By 
changing the cholesteric pitch, mechanical compression provides tuning of the laser emission from 
the dye doped CLCE over a significant part of the fluorescence band of the laser dye. In this work 
we demonstrate for the first time that both the CLCE pitch and the lasing wavelength are linearly 
dependent on the strain imposed on the CLCE film.

Liquid crystals (LC) self-assemble into variety of mesophases with spatially periodic molecular arrange-
ments. These are characterized by orientational order, and varying amounts of positional order. The 
orientational order can often be characterized by a scalar order parameter, which gives a measure of the 
degree of oreintational order, and a unit vector, called the director, which indicates the direction of align-
ment. Supramolecular periodicity together with the anisotropic properties of LC molecules results in 
spontaneously formed photonic crystal with a band-gap where the propagation of electromagnetic waves 
with wavelengths comparable to the period of these structures is forbidden1 for certain eigenmodes. 
Cholesteric liquid crystals (CLC) spontaneously form a supramolecular helical structures with the cho-
lesteric pitch corresponding to continuous rotation of a local director through an angle of 2π . The helical 
structure of CLCs provides a periodic modulation of the dielectric tensor along helical axis creating a 
1D photonic crystal with a strong Bragg reflection of light with the same handedness as the CLC helix2.

CLCs with a selective reflection band were predicted to serve as a distributed feedback cavity3 and 
demonstrated mirrorless distributed feedback lasing4–6. In order to achieve lasing, CLC film needs to be 
optically pumped using an external light source and its constituents need to have fluorescent emission 
within the selective reflection band. Due to the band structure, the fluorescent emission is suppressed in 
the reflection band and is enhanced at the band edges. This provides gain for bidirectional lasing along 
the helical axis of CLC2,6,7. Although, some liquid crystal materials have strong enough fluorescence to 
produce distributed feedback lasing8 usually a small amount of fluorescent laser dye with desired excita-
tion and emission bands is additionally introduced into a CLC mixture. Distributed feedback lasing has 
been observed in a large variety of LC phases and materials: in pure8, dye doped4–6, and using Forster 
energy transfer between two dyes in low molecular weight СLCs9, in three-dimensional photonic crystal 
of the liquid crystal blue phase10, ferroelectric liquid crystals11,12, free-standing polymer CLC films13,14, 
solid polymer CLC films based on cellulose15, deformable rubbery CLC elastomers16–18 and multilayered 
films with CLCE serving as tunable mirrors19,20. Laser emission has been demonstrated from different 
CLC materials in a broad spectral range from near UV to near IR; the soft matter aspect of such lasers 
enabled the tuning of the lasing wavelength using a variety of techniques2,7.
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CLCEs are soft solids formed by mesogenic molecules incorporated into a polymer network with 
helical structure similar to low molecular weight CLCs. The interaction between the polymer chains 
and mesogens couples orientational order to mechanical strain. Such a coupling allows a variety of 
electro-mechanical and opto-mechanical effects with a great potential for applications21. Tunable lasing 
from single crystal cholesteric liquid crystal elastomer was observed for the first time and reported in 
200116. It was shown that extensive mechanical deformation of the elastomer film shortens CLC pitch 
creating a dramatic blue-shift of the selective reflection band and therefore of the wavelength of laser 
emission. The pitch of the CLCE was changed by a biaxial strain normal to the helical axis. Such a 
deformation effectively shortens helical pitch, leaving the helical structure essentially unchanged, but 
creating a nontrivial deformation with additional shear near the sample edges. As result, helical pitch is 
not uniform across the CLCE film, and it accurate determination is challenging.

An alternative method of mechanical tuning of the lasing wavelength from single18 or layered19,20 
CLCEs was demonstrated by imposing a uniaxial extension on the CLCE film in the direction orthogo-
nal to helical axis. Uniaxial elongation perpendicular to helical axis of CLCE creates an extension of the 
material along the direction of strain and a contraction with nonlinear power law along the two orthog-
onal directions. This type of deformation of CLCEs has been extensively discussed theoretically22–25 and 
observed experimentally19,26,27. The CLC director gradually reorients along direction of applied strain 
significantly deforming the CLC helix. Complicated compression and deformation of the CLC helix, 
caused by the uniaxial strain, follow with further elongation. Sufficiently large elongation is predicted 
and is experimentally observed to unwind the helical texture of the CLCE to produce a non-helical state.

In this work, we use an improved CLCE material and a new geometry for its deformation, different 
from that reported in our earlier paper6 well as from other papers on the topic of dye-doped lasing 
from CLCEs. We deform the CLCE film by imposing a uniaxial compression parallel to the helical axis 
when the sample is confined between two glass substrates. With such a mechanical system we are able 
to create an essentially uniform uniaxial strain in the whole area of the CLCE film and at the same time 
avoid complicated and non-uniform deformations of CLC helix or strain induced unwinding of CLCE 
helical structure. As result, we are able to accurately measure the shift of the selective reflection band and 
wavelength of laser emission as a function of the strain in the CLCE film.

Synthesis and manufacturing of the sample
The CLCE film was fabricated using the method described in detail elsewhere28. The photopolymeriza-
tion of the reactive chiral monoacrylate (A*-6OCB; Fig. 1 (a)) and the diacrylate cross-linker (HDDA; 
Fig.  1(a)) was conducted in the presence of a non-reactive achiral nematic solvent (6OCB; Fig.  1  (a)) 
using IRGACURE®  784 as a photoinitiator. The mixture with a molar ratio of A*-6OCB, 6OCB, and 
HDDA of 1:0.82:0.07 was loaded in a 32 μ m-thick glass cell whose surfaces were coated with rubbed 
polyimide layer, inducing planar alignment. The cell was left at 10 °C for 1 day so that the LC mixture 
could form a monodomain Grandjean cholesteric texture. After the irradiation with light at a wavelength 
of 526 nm for 30 min, the glass substrates were removed from the cell, and the resultant gel film was 
allowed to swell in dichloromethane to wash away the unreacted materials and 6OCB. The swollen gel 
was gradually deswollen by adding methanol to the swelling solvent, resulting in a fully dried film. The 
thickness of the resulting CLCE film was 25 μ m. Fig. 1(b) shows transmission mode polarizing optical 
microscope (POM) image of the CLCE film with visible defect lines equivalent to oily streaks observed 
in low molecular weight CLCs with good planar alignment.

We used the laser dye 4-(dicyanomethylene)-2-methyl-6-(4-dimethylamino styryl)-4-H-pyran 
(DCM) (from Exciton, Inc.) to achieve lasing, Fig.  1(a). The laser dye was introduced into the sample 
by swelling the CLCE in its glassy state at room temperature in a toluene followed by a contraction in 

Figure 1. (a) Chemical structures of compounds, (b) POM images of the CLCE film.
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methanol. The sample was swollen in a saturated solution of DCM in toluene for ~15 minutes. Following 
this, the toluene solution with DCM was slowly replaced by a saturated solution of DCM in methanol. 
Solvent replacement was performed in steps; by adding a small amount of methanol solution into the 
vial containing the swollen sample with subsequent gentle mixing and removal of a similar amount of 
the resulting solution of both solvents. The solvent replacement procedure was repeated until only a very 
small amount of toluene was left in the vial and the sample was completely contracted. Slow contraction 
of the sample by gradual replacement of solvents is critical to prevent a rapid decrease of volume which 
can result in cracking or breaking of the CLCE film. The concentration of the dye in the CLCE film after 
swelling is ~0.02 wt.%.

Experimental results
The CLCE film produced is initially in the ordered state with helical axis perpendicular to the surface 
of the film with a clear selective reflection band, as shown on Fig. 2(a). The selective reflection band of 
the CLCE film exists only for right-handed circularly polarized light and the film is nearly transparent 
for left-handed circularly polarized light. Reflectance of circularly polarized light was measured with an 
Ocean Optics UV-Vis U2000 spectrometer using film circular polarizers with extinction coefficient of 
500:1.

Close to room temperature, at ~23 °C, the CLCE film is in a brittle glassy state. Appreciable mechani-
cal deformation of the CLCE film is possible only in its rubbery state, above the glass transition tempera-
ture of Tg ~70 °C. Upon transition from the glassy to the rubbery state, the selective reflection band of the 
CLCE film narrows in width and its position red-shifts indicating the considerable temperature depend-
ence of the refractive indices and of the helical pitch of the CLCE film. Reflectance spectra from an unde-
formed CLCE film in the glassy state near room temperature (22.8 °C) and from an undeformed CLCE 
film in the rubbery state at the high temperature of the experiment (74.4 °C) are shown on Fig. 2(a–c) 
together with corresponding photographs and measured area of the CLCE film. The narrower selective 
reflection band in the rubbery state indicates a smaller birefringence of the CLCE film than in the glassy 
state. The full width at half maximum (FWHM) of the selective reflection band of the CLCE film at 
22.8 °C is 60.8 nm and at 74.4 °C it is 34.3 nm. The red-shift of the selective reflection band and decrease 
of its area is a direct evidence of an increase of the helical pitch and of the film thickness as the CLCE 
film is heated from the glassy to the rubbery state above the glass transition temperature Trg.

In order to achieve lasing, the sample was optically pumped using a frequency doubled Coherent 
Nd:YAG laser, with 7.5 ns pulses and rep. rate of 2 Hz at λ  =  532 nm. The intensity of the pump beam was 
controlled with a polarizer and an analyzer. The pump beam was divided in two to allow simultaneous 
measurements of the pump energy and emission wavelength. The pump beam with 9 mm diameter was 
focused on the CLC film using a 12 cm focal length lens to a beam waist of ~50 μ m. The angle of inci-
dence of the pump beam on the sample was ~45°. The pump energy was measured using a Molectron 
Optimum 4001 energy meter and the emission spectrum from the sample was measured using a Jobin 
Yvon-Spex TRIAX 550 spectrometer. The optical setup for lasing is shown on Fig. 3.

Initially, we verified that the CLCE film can lase, and we measured the lasing threshold at room 
temperature in the glassy state of the CLCE sample. Subsequently, we performed lasing experiments and 
demonstrated mechanical tuning of the wavelength of the laser emission from the sample in the high 
temperature (~75 °C) rubbery phase.

When in the glassy state at room temperature (22.8 °C) the sample was supported by a single micro-
scope glass slide. In order to create a weak adhesion to the CLCE film, the surface of microscope glass 
slide was coated with a thin film of silicone oil with viscosity of 1 m2/s. Lasing in the glassy state was 

Figure 2. Reflectance from an undeformed CLCE film (a) and corresponding photographs with 
measured film area in the glassy state at T = 22.8 °C (b) and in the rubbery state at T = 74.4 °C (c). 
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observed closer to the high energy edge of the selective reflection band, as shown on Fig. 4(a). Although 
distributed feedback lasing from CLCs has lower threshold and at the low energy band edge2,7 and usu-
ally occurs there, in this particular case the fluorescence peak is better matched with the high energy 
band edge, and lasing was observed there. In the glassy state, lasing was observed within the wavelength 
range of 621.3 nm to 623.7 nm and occasionally more than one lasing line was visible. The simultaneous 
occurrence of lasing at slightly different wavelength may be explained by local structural heterogeneities 
produced by polymer network in highly crosslinked CLCEs comparing to low molecular weight CLCs13. 
In our CLCE film lasing lines with slightly different wavelengths were observed depending on the posi-
tion of illuminated spot. The intensity of the emission from the sample was measured as a function of 
pump energy to determine the lasing threshold. As the pump power was increased gradually a clear 
lasing threshold could be observed at ~8 μ J/pulse, as shown on Fig. 4(b). The typical FWHM of lasing 
emission from the CLCE film was ~0.25 nm.

Pumping at high energies can cause thermal degradation of the distributed feedback cavity29 or burn 
the lasing spot of low molecular weight CLC sample. Similarly, when pumping with energies well above 
the lasing threshold, the CLCE film showed degradation of the lasing emission. Multiple sequential 
excitations of the same lasing spot gradually increased the lasing threshold, and eventually damaged the 
sample after which the lasing completely disappears. The damage threshold for our CLCE film in a glassy 
state at room temperature is approximately 65 μ J/pulse.

In the rubbery state above the glass transition temperature, the CLCE film is elastic and can support 
mechanical deformations such as stretching or compression. In our experiments, we uniformly com-
pressed the CLCE film confined between two parallel glass plates. Such mechanical deformations were 
performed using a custom built device able to accurately control the separation of the glass plates using 
three screws with a fine (80 threads/inch) thread. Glass plates of 0.25 inch thickness were used to mini-
mize bending. In order to prevent strong adhesion of the CLCE samples to the glass and possible damage 
to the film, again the glass plates were coated with a thin layer of silicone oil with viscosity of 1 m2/s. 
The compression cell with the enclosed CLCE film was located inside a plexiglass chamber with hot 
silicone oil of low viscosity (2 ×  10-3 m2/s) pumped through it. The oil temperature and flow rate of were 
controlled by a Haake FE2 Heated Bath Circulator and adjusted to maintain the desired temperature 
of the compression cell. The temperature of the compression cell with the sample was measured using 
a calibrated thermistor next to the cell in the heating chamber. During all experiments with the CLCE 
in rubbery state, the sample temperature was maintained at 75 °C. The fluctuations of the temperature 
from uncontrolled heat losses were not more than + /–3 °C. Temperature fluctuations on this scale are 
not expected to affect significantly the optical and mechanical properties of the CLCE film.

Figure 3. Experimental setup for the lasing experiment. 

Figure 4. (a) Reflectance, fluorescence and lasing line observed with 532 nm pump (b) emission intensity 
from the CLCE sample as a function of pump energy and emission spectra at different pump energies.
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Compression of the CLCE film in its rubbery state between parallel plates creates a uniaxial strain 
enlarging the area of compressed film. Since the strain is applied along the helical axis, due to the strong 
coupling between the CLCE director and polymer network the CLC pitch shortens with the macroscopic 
compression of the CLCE film. The pitch p of the CLC can be calculated from the known ordinary no and 
extraordinary ne refractive indices and the measured position of the selective reflection band as follows:

λ λ λ= / = / = /( + ) ( )p n n n n2 1L R e c o eo

where λL and λR are the short and long wavelength edges and λc is the central wavelength of the selective 
reflection band. Based on the measured width of the selective reflection band, the refractive indices are 
taken to be no =  1.50, ne =  1.65 at room temperature and no =  1.53, ne =  1.59 at the high temperature of 
the experiment.

Using the compressing device, we were able to uniformly compress the CLCE film and dramatically 
shift the selective reflection band. The largest observed blue-shift of the selective reflection band was 
from λ c =  705 nm to λ c =  370 nm, as shown on Fig. 5. This tuning of the selective reflection band cor-
responds to a change of helical pitch from 453 nm to 238 nm corresponding to a compression of 47.5% 
and was observed in a smaller sample with initial area, in the glassy state, of 7.2 mm2.

Lasing emission from the CLCE film in a rubbery state at 75 °C was always observed at the low energy 
edge of the selective reflection band, as shown on Fig.  6(a). Using mechanical tuning of the position 
of the selective reflection band in the vicinity of fluorescence band of the DCM laser dye, lasing emis-
sion was observed from 642.1 nm (λ c =  635 nm) to 584.8 nm (λ c =  584 nm), as shown on Fig. 6 (b). The 
observed range of tuning of the lasing wavelength is primarily defined by the location of the fluores-
cence band of selected laser dye, and is not limited by other properties of the CLCE film. The range can 

Figure 5. Blue-shift of selective reflection band in CLCE film created by a uniaxial strain along helical 
axis. 

Figure 6. Mechanical wavelength tuning of lasing emission from CLCE film. (a) selective reflection 
band (black) and lasing emission (red) from CLCE film in states with different strain. (b) lasing emission 
wavelength as a function of CLCE helical pitch.
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therefore be easily extended by using different fluorescent dyes. Since the CLCE film in the rubbery state 
is contained in a compressing cell located inside of a heating chamber, precise measurements of lasing 
threshold in the rubbery state are challenging. The compression cell and the chamber of the heating 
device create losses both of the pump beam and of the emission from the CLCE film which are difficult 
to quantify. Based on our measurements, we estimate the lasing thresholds from CLCE film in glassy and 
rubbery state to be approximately the same.

A complex deformation of the shape of the CLCE film was observed as result of the applied strain. 
Figure 7 shows a sequential transformation of the shape and area of the CLCE film in the rubbery state. 
The initial area of the film in a glassy state was 23.64 mm2. Regardless of the nontrivial deformation 
of the shape of the film, the average reflection band remained essentially uniform over the entire film, 
indicating that the change of shape only shortened the CLC pitch but left the cholesteric helical structure 
unchanged. In all of the compressed and uncompressed states, the CLCE film was uniformly colored in 
reflection with local deviation of the CLC pitch in different spots of the film less than 2.4%.

We measured the reflectance and area of the CLCE film in a rubbery state and calculated the change 
of the helical pitch as a function of applied strain. Assuming volume conservation, the thickness of the 
CLCE film in states of different strain was calculated with reference to the glassy state, where the thick-
ness of the CLCE film is known to be 25 μm. The cholesteric pitch and the area of the CLCE film were 
found to be linearly dependent on the strain created by the uniaxial compression. Figure  8 shows the 
change of CLC pitch as a function of the film thickness. Experimental data points fall almost exactly on a 
line with zero intercept. Upon transition from the glassy to the rubbery state, the CLCE film experienced 
positive strain corresponding to an increase of the CLC pitch and thickness and a decrease of the area. 
Uniaxial compression of the film in a rubbery state creates a negative strain corresponding to a decrease 
of CLC pitch and thickness and an increase of area of the film. The compression of thickness of the CLCE 
film based on largest measured change of the area of the film was 34.1%.

When the applied force causing compression is removed, the CLCE spontaneously returns to its origi-
nal equilibrium state with film area and selective reflection band matching their original values before the 
deformation. A sequence of photographs in reflected light of a previously compressed CLCE film during 
a free recovery process corresponding to a relaxation of the selective reflection band from λ c =  ~450 nm 
to λ c =  ~700 nm is shown on Fig. 9. The CLCE film shown on Fig. 9 was compressed in a compression 
cell, the cell was opened and the film was removed and placed on a glass slide lubricated with silicone 
oil (viscosity 1 m2/s). The glass slide was placed on the surface of a hot stage which is visible on images 
as a black background. The temperature of the surface of the hot stage was set to 75 °C. The free recovery 
of the shape and reflectance of the compressed CLCE sample with area of ~15 mm2 was completed in 
~15 minutes. Films with ~3 times smaller area were able to recover under identical conditions and from 
similar compression in ~2 minutes, with significantly smaller visible wrinkling.

Figure 7. Sequential change of shape and area of the CLCE film under compression. 
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Conclusions
We have demonstrated lasing from CLCE films both in glassy and rubbery states. A dramatic reversible 
blue-shift of the selective reflection band from near IR to near UV ranges of the spectrum was achieved 
by a novel mechanical compression of the CLCE film using uniaxial strain along the helical axis. Using 
an accurate measurement scheme based on volume conservation of the CLCE film, we have shown here, 
for the first time, that both the helical pitch and the wavelength of laser emission from the CLCE film in 
the rubbery state are linearly dependent on the mechanical strain applied to the film.
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