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Abstract
The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts
with its ability to survive in the food chain. The formation of biofilms, or the integration into

existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular

DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have in-

vestigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm for-

mation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni
genomes contains at least one eDNase gene, but only a minority of isolates contains two or

three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256,
cje0566and cje1441eDNase genes. Strain RM1221 did not form biofilms, whereas the

eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of

NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture re-

sulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221

restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC

11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni
NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441
mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cul-

tures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects bio-
film formation and is not conducive to a biofilm lifestyle. These eDNases do however have a

potential role in controlling biofilm formation by C. jejuni strains in food chain

relevant environments.

Introduction
A biofilm is defined as a mono-species or multi-species population of bacterial cells, which is
attached to a surface and surrounded by an extracellular polymeric substance (EPS) [1]. The
matrix composition is highly variable, and is dependent on the microbial species populating
the biofilm, but generally contains nucleic acids, proteins and polysaccharides [2]. The EPS is
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an essential component of the bacterial biofilm, and can account for up to 90% of its dry mass
depending on microbial species and specific isolates [3]. One frequently found component of
EPS is extracellular DNA (eDNA), which plays an important structural role in biofilms, and
the addition of exogenous DNase enzymes such as DNase I can disrupt biofilm formation and
maturation [4, 5, 6, 7]. Some bacteria are able to secrete their own DNase enzymes into the ex-
tracellular environment (hereafter these enzymes are referred to as eDNase). Depending on the
bacterial species, these eDNase proteins have diverse functions, such as immune evasion [8, 9],
biofilm modification [10, 11], scavenging of carbon and phosphate sources [12, 13], efficient
bacterial predation [14], and inhibition of natural transformation [15, 16].

Campylobacter jejuni is a leading cause of bacterial foodborne poisoning, in the UK alone
there are up 80,000 confirmed cases annually, however underreporting of cases is known to be
a problem and the actual figure is estimated to be up to nine times higher than the reported
numbers [17]. Infections can be severe but are typically self-limiting. An important impact of
Campylobacter infection in developed countries is economic, although infection may also lead
to significant post-infectious consequences such as Guillain–Barré syndrome [18]. The high in-
cidence of Campylobacter infection is surprising in view of the fastidious nature of C. jejuni,
which requires microaerobic and capnophilic conditions, and a narrow temperature range of
37°C to 42°C to grow optimally [19]. C. jejuni is able to persist for relatively long periods on
food and in the environment, and biofilms, or surface attachment, are thought to contribute to
persistence [20, 21, 22, 23].

C. jejuni has previously been shown to be capable of forming biofilms and can also colonise
pre-existing biofilms [24, 25], although the levels of biofilm formation varies between isolates
[20, 23, 26]. C. jejuni is a genetically diverse species [27], and insertion elements and prophages
are important elements contributing to this diversity. Four of these insertion elements (CJIE1
to CJIE4) were first described in the chicken isolate RM1221 [28, 29], and three of these
(CJIE1, CJIE2 and CJIE4) contain genes encoding DNase proteins (cje0256 (dns), cje0556 and
cje1441 respectively). The encoded proteins are predicted to be extracellular due to the presence
of signal peptide cleavage site [15], and their expression prevents natural competence of strain
RM1221 [15, 16].

The contribution of biofilms to C. jejuni transmission through the food chain is becoming
apparent [19, 25], and several genetic factors contributing to biofilm formation have been iden-
tified in C. jejuni [30, 31, 32]. There is however still relatively little known about the structure
and composition of the C. jejuni biofilm EPS. Since eDNA is important in C. jejuni biofilm for-
mation and maturation [33], and DNase I was able to reduce the levels of biofilm of a C. jejuni
81–176 ΔcprSmutant [30], we speculated that the eDNases may also modulate biofilm forma-
tion. In this study we have investigated the impact eDNase enzyme activity may have on C.
jejuni biofilm formation. We have investigated the distribution of eDNase genes in a large col-
lection of C. jejuni genome sequences, and show that eDNase genes are found in almost half of
C. jejuni isolates. We present phenotypic and genetic data that demonstrate that eDNase activi-
ty in C. jejuni RM1221 results in degradation of existing biofilms, and can also prevent biofilm
formation by C. jejuni isolates lacking eDNase genes.

Materials and Methods

C. jejuni strains and growth conditions
A list of C. jejuni strains and primers used in this study is given in Table 1. C. jejuni strains
were routinely cultured in a MACS-MG-1000 controlled atmosphere cabinet (DonWhitley
Scientific) under microaerobic conditions (85% N2, 5% O2, 10% CO2) at 37°C. For growth on
plates, strains were either grown on Brucella agar or BAB with Skirrow supplements (10 μg/ml
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vancomycin, 5 μg/ml trimethoprim, 2.5 IU polymyxin-B). Broth culture was carried out in
Brucella broth (Becton & Dickinson). An Innova 4230 (New Brunswick Scientific) incubator
was used for aerobic culture at 37°C.

Campylobacter growth for biofilm assay
C. jejuni culture for biofilm formation was carried out as described previously [35]. Briefly, C.
jejuni from Skirrow plates were used to inoculate Brucella broth then grown overnight as a
shaking culture (37°C, microaerobic conditions). Following overnight growth, cell cultures
were adjusted to an A600 of 0.05 in Brucella medium. To allow biofilm formation, 1 ml of this
solution was added to a sterile borosilicate glass test tube (Corning). Tubes were incubated at
37°C in either microaerobic or atmospheric air conditions for 48 hours before staining.

For biofilm formation on glass slides, 20 ml of C. jejuni culture of A600 = 0.05 was added to
a 50 ml tube (Corning) containing a sterile twin frost borosilicate glass microscope slide
(VWR) and incubated statically at 37°C for 48 hours. Following incubation the slide was gently
washed in sterile water and fixed by incubation in 4% formalin for 15 minutes before drying.
Slides were stored at 4°C in the dark until use.

Biofilm degradation by strain RM1221 was performed by allowing biofilms to form for 24 h
before adding a second (1 ml) volume of either fresh Brucella medium or diluted cell suspen-
sion. Biofilm cultures were then incubated for a further 24 h before viability assessment and
crystal violet staining. Where spent media was used in the secondary incubation, instead of cell
suspensions, the spent medium was prepared from overnight cultures of C. jejuni. The cells

Table 1. List of bacterial strains, plasmids and primers used in this study.

Name Specification Source

Bacterial Strains (C. jejuni unless indicated otherwise)

NCTC 11168 Wild-type [34]

NCTC 11168 ΔflaAB Δcj1338, Δcj1339c)::kanR [35]

NCTC 11168 GFP cj0046::PromoterporA-GFP+::CatR This study

81116 Wild-type [36]

RM1221 Wild-type [28]

RM1221 Δ1441 Δcje1441::CatR This study

E. coli Top 10 General cloning strain Invitrogen

E. coli M147 Non-methylating E. coli strain (dam dcm gal ara lac thr leu thi tonA tsx rpsL) [37]

Plasmids

pNEB193 General subcloning vector. High copy number AmpR, in frame lacZα-complementing vector New England Biosciences

pCporAGFP+ cj0046::PromoterporA-GFP+::CatR in plasmid pC46 [38] Duncan Gaskin (IFR)

pET28a T7 promoter expression plasmid. Used in this study for DNase assays. Novagen

Primers

1441KO_FDEcoRI 5’-GCATTGAAAGAATTCTATGAGTTAAAAAAGG-3’ This study

1441KO_RVPstI 5’-GCTTTTTAACGCTGCAGTTGATAGGTTGT-3’ This study

1441KO_2_fwd 5’-ATAGGATCCGTTACCAAGTGCCTAATCAC-3’ This study

1441KO_2_rev 5’-ATAGGATCCGGTTTGTATTGTGTATAATC-3’ This study

1441_fwd_schk2 5’-GGAAAATTATTATGAATTAG-3’ This study

1441_rev_schk2 5’-GCCAATAGCAAAAAATGAAC-3’ This study

GFP fwdreadin 5’-GGAGAAGAACTTTTCACTGGAGTTG-3’ This study

GFP revreadin 5’-GCAGTTACAAACTCAAGAAGGACC-3’ This study

cat_rev_readin 5’-GGACACGAAAAGAGTATTTCGACC-3’ This study

cat_fwd_readin 5’-GCATGATGCACTTGAATCGATAAGG-3’ This study

doi:10.1371/journal.pone.0121680.t001
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were subsequently pelleted by centrifugation, and the supernatant filter-sterilised using a
0.2 μm polyethersulfone filter, and frozen at -20°C until required.

Crystal violet staining
Cell suspensions were removed, and the tubes were washed with water and dried at 60°C for 30
min, followed by addition of 1 ml of 1% w/v crystal violet solution. Tubes were further incubat-
ed on a rocker at room temperature for 30 min. After incubation, the non-bound dye was re-
moved from the tubes by thorough washing in water followed by drying at 37°C. Bound crystal
violet was dissolved by adding 20% acetone/80% ethanol and incubating on a rocking platform
for 15 min at room temperature. The resulting dissolved dye was measured at a wavelength of
590 nm using a Biomate 5 spectrophotometer (Thermo Scientific) [39].

Assessment of cell viability by culture
To determine the number of viable cells, the planktonic fraction was eight-fold serially diluted
in PBS and 5 μl of each dilution spotted on Brucella agar plates. After two days of growth in
microaerobic conditions, the dilution resulting in two or more colonies was recorded. Cell via-
bility in biofilm assays was assessed upon initial addition of cultures into static culture and fol-
lowing static incubation, prior to crystal violet staining.

Creation of a C. jejuni strain expressing green fluorescent protein
To generate a strain of C. jejuni that constitutively expressed GFP protein, strain NCTC 11168
was transformed with plasmid pCporAGFP+ using standard protocols [40]. Plasmid pCpor-
AGFP+ contains the gfp gene from pWM1007 [41] under control of the C. jejuni porA promot-
er and a chloramphenicol resistance cassette, flanked by the 5' and 3' sequences of the cj0046
pseudogene [38]. Replacement of the cj0046 pseudogene with the GFP gene and chlorampheni-
col cassette was confirmed using the primers GFP fwdreadin, GFP revreadin, cat fwd readin
and cat rev readin. Fluorescence was assessed by microscopy using a Zeiss 200M fluorescent
and light microscope with Axiovision software.

DAPI staining of NCTC 11168 GFP biofilms
Biofilms previously grown on glass slides for 48 h were allowed to equilibrate to room tempera-
ture in dark, aerobic conditions, before staining with 4',6-Diamidino-2-Phenylindole Dihy-
drochloride (DAPI) using manufacturers guidelines (Invitrogen). Prior to addition of a
coverslip, Slowfade Gold antifade reagent (Invitrogen) was added to the slide as recommended
by the manufacturer. Slides were imaged using a Zeiss 200M fluorescent and light microscope
with Axiovision software.

Visualisation of extracellular DNA from biofilms
Following static incubation to allow biofilm formation in microaerobic conditions, the super-
natant was removed and the tubes were rinsed once with sterile PBS to remove loosely attached
bacterial populations. Adhered cells were recovered from the surface of six borosilicate tubes
and pooled: 1 ml of sterile PBS was added to the first tube and the adhered cells were gently re-
suspended using a sterile cotton wool swab. This suspension was removed and used to resus-
pend adhered cells from a second tube. This was repeated for all six tubes. The A600 of the
biofilm suspension was recorded, and the cells were diluted in sterile PBS to an A600 of 0.3. A
20 μl aliquot of cells was mixed with 4 μl 6× gel loading buffer and loaded on a 0.9% agarose
gel. A 1 kb ladder (NEB) was used for size comparison. Following 45 minutes electrophoresis
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in 0.5% TBE buffer at 100 V, the gel was stained with ethidium bromide, and DNA was visual-
ised using a GelVue UV light and documented using a U:Genius gel documentation system
(Syngene).

Creation of the C. jejuni RM1221 Δcje1441mutant
A C. jejuni RM1221 cje1441mutant (hereafter referred to as Δ1441) was created by insertional
inactivation of the cje1441 gene with a chloramphenicol resistance cassette. The cje1441 gene
and flanking regions were PCR amplified using the primers 1441KO_RVPstI and 1441KO_F-
DEcoRI and cloned into the pNEB193 plasmid (NEB). Subsequently the cje1441 was replaced
with the cat cassette from pAV35 [40] by inverse PCR using primers 1441KO_2_fwd and
1441KO_2_rev. As strain RM1221 is non-transformable due to eDNase expression [16], in vitro
methylation of the suicide plasmid was used to increase transformation efficiency [42]. Prior to
electroporation, RM1221 cells were incubated on ice in 15% (v/v) glycerol, 272 mM sucrose,
containing 10 mM EDTA for 1 hour. Following incubation the cells were washed with 15% glyc-
erol, 272 mM sucrose to remove the EDTA and transformed using standard procedures [40].

Assessment of swarming and autoagglutination
Motility of C. jejuni was assessed on 0.4% agar plates, as described previously [38]. Briefly, C.
jejuni overnight culture (5 μl) was spotted onto Brucella medium supplemented with 0.4% agar
and 0.05% TTC (2,3,5 triphenyltetrazolium chloride) before incubation at 37°C in microaero-
bic conditions for 48 h. The size of the halos were measured and compared to show relative
motility between strains and mutants tested. Autoagglutination was measured as described pre-
viously [43] by monitoring the decrease in A600 over a 24 h period following incubation in a cu-
vette at room temperature in aerobic conditions.

Degradation of extracellular DNA by C. jejuni RM1221
Degradation of exogenous DNA was investigated using two separate experimental approaches:
assessment of a) eDNA degradation by C. jejuni RM1221 during growth and b) the ability of C.
jejuni RM1221 to degrade purified DNA over a fixed time period. To assess eDNase activity in
the supernatant of growing cultures, overnight cultures of C. jejuni were pelleted and an aliquot
of the supernatant was removed for DNase activity assessment. DNase I (Fermentas) and
RNase (QIAgen) treatments were carried out following manufacturers guidelines and incubat-
ed at 37°C in a water bath for one hour.

Degradation of purified DNA by C. jejuni strains NCTC 11168, RM1221 and the RM1221
Δ1441mutant was also assessed over a fixed time period. C. jejuni RM1221 cells were allowed
to form a lawn on Skirrow plates. The cells were removed from the plate and suspended in 2 ml
Brucella medium before pelleting and washing twice in sterile PBS. Following washing, the cell
concentration was measured and the culture diluted to an A600 of 0.5 in sterile PBS. To digest
purified genomic DNA, 50 μl of cell suspension was added to approximately 2 μg of genomic
C. jejuni NCTC 11168 DNA, and incubated at 37°C in a water bath for up to three hours. At 30
min intervals, an aliquot was taken, the cells pelleted and the supernatant removed and frozen
at -20°C until analysis. For degradation of plasmid DNA, plasmid pET28a was purified from ei-
ther E. coli strain Top10 (dam+ dcm+) or M147 (dam- dcm-) using a commercial miniprep kit
(QIAGEN). To generate linear DNA, a 999 bp fragment was amplified from C. jejuni
NCTC11168 genomic DNA with primers cj1388comp_Fwd (5'-GGAGAATTCATGT-
CAAACTATCCAAAG-3') and pCASO51gDNARevScreen (5’-CCTACAGCTATAATGA-
TAGGCAAGG-3’) using HotStarTaq (QIAGEN). DNA concentration was determined using a
Nanodrop 2000 spectrophotometer (Thermo Scientific). Assays contained 70 ng DNA
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substrate and 1 μl cell suspension in a total volume of 10 μl. EDTA was added at a final concen-
tration of 50 mM. DNase (Fermentas) was added at a final concentration of 1 U and reactions
were supplemented with 1x DNase buffer (2.5 mMMgCl2). Prior to electrophoresis, samples
were mixed with 6x gel loading buffer and loaded onto a 0.9% agarose gel. A 1 kb ladder (NEB)
was used for size comparison. Following 45 minutes electrophoresis in 0.5% TBE buffer at 100
V, the gel was stained with ethidium bromide, and DNA was visualised using a GelVue UV
light and documented using a U:Genius gel documentation system (Syngene).

DNase I treatment of C. jejuni RM1221 Δ1441 biofilms
Biofilms were grown for 48 h in glass tubes. A volume of 4 μl DNase I, to give a final concentra-
tion of 4 U/ml (Fermentas) and 4 μl DNase I buffer (Fermentas) was added to test tubes at the
start of the incubation. Following treatment, biofilms were either re-incubated for the remain-
ing 48 h incubation, washed and crystal violet stained or washed and a new volume of cell cul-
ture or Brucella medium added to the tube.

Identification of DNase-encoding genes in C. jejuni genome sequences
A total of 16 complete and 2781 draft genome sequences of C. jejuni were obtained from public
collections such as pubMLST (http://pubmlst.org/campylobacter/) [44] (N = 2687), and the
NCBI (http://www.ncbi.nlm.nih.gov/genome/browse/), and the Virginia Tech University
PATRIC website (http://patricbrc.vbi.vt.edu/portal/portal/patric/Home) (N = 104) [45], and
are listed with accession numbers and assembly status (S1 Table). Genomes were searched
using MIST [46] and the BLAST+ (v2.28) suite with each individual gene of C. jejuni RM1221
CJIE1 (cje0213-cje0273), CJIE1 (cje0544-cje0601) and CJIE4 (cje1418-cje1474) [28]. Genes were
considered to be present if matching� 90% with the query sequence. Genomes were scored as
positive for cje0256, cje0566 or cj1441 if a positive score for the respective gene was matched
with� 60% of the respective CJIE1, CJIE2 or CJIE4 genes being present. The MLST-clonal
complex designation was determined for all genomes using MIST, with the definition file pro-
vided by the Campylobacter pubMLST website.

Statistical analysis
Statistical analysis was carried out using GraphPad Prism. At least three biological replicates
(each with three technical replicates) were used to calculate median and interquartile range.
Significance was measured using Mann-Whitney tests.

Results

DNase-encoding genes are differentially distributed in C. jejuni strains
We investigated the distribution of eDNase genes in a collection of 2791 publicly available C.
jejuni genome sequences, using the C. jejuni RM1221 CJIE1, CJIE2 and CJIE4 elements includ-
ing the eDNase genes dns (cje0256), cje0566 and cje1441 as query sequences (Table 2). Of these
genomes, 42% lacked any of the three eDNase genes. Orthologs of the dns gene were detected
in 37% of genomes, whereas orthologs of cje0566 and cje1441 genes were detected in 22% and
14% of the genomes, respectively. Only 13% (353 of 2791) of the genomes contained more
than a single DNase gene (Fig. 1), and only 25 genomes (0.9%) contained orthologs of all three
DNase genes (Table 2, S1 Table).

We also investigated whether the presence or absence of eDNase genes was associated with
specific multi-locus sequence typing (MLST) clonal complexes [50]. Of the major MLST geno-
types, the dns gene was proportionally overrepresented in clonal complexes ST-353, ST-354,
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ST-443 and ST-573, whereas the cje0566 gene was found more in ST-257, ST-354 and ST-573,
and cje1441 gene in ST-21, ST-573 and ST-574 (Table 2, S1 Table). Of the 25 genomes positive
for all three eDNase genes, the majority (17/25) was of clonal complex ST-573. Some of the
major MLST genotypes had none or relatively few isolates with DNase genes, such as ST-464,
ST-283, ST-42 and ST-45. Most of these MLST-types are found within agricultural environ-
ments involved in food production [50], suggesting that genetic background and shared envi-
ronments may play a role in transfer of the DNase gene-containing insertion elements.

C. jejuni strain RM1221 is unable to form a biofilm during static
incubation
We selected C. jejuni strain RM1221 to further investigate the potential role of eDNase genes
in biofilm formation, as it is one of the three isolates containing all three investigated eDNase
genes. In previous studies investigating the role of chicken juice on biofilm formation by C.
jejuni [39], we observed that chicken isolate RM1221 formed a poor biofilm in Brucella media
alone. We confirmed this by comparing biofilm formation by C. jejuni strains NCTC 11168,
81116 and RM1221 using crystal violet staining, as there is a clear difference between the levels
of biofilm formation of strains NCTC 11168 and 81116 versus strain RM1221, as the latter
showed very little difference to the negative control (Brucella media only) (Fig. 2). Analysis by
light microscopy showed that although RM1221 cells display initial attachment to the glass sur-
face, this does not progress to the development of microcolonies (S1 Fig), unlike strains NCTC

Table 2. Distribution of eDNase genes dns, cje0566 and cje1441 inC. jejuni lineages.

Clonal complexa Totalb dns+ cje0566+ cje1441+ Negative

ST-21 764 335 (44%) 73 (10%) 247 (32%) 260 (34%)

ST-22 52 14 (27%) 3 (11%) 1 (4%) 36 (64%)

ST-42 50 16 (32%) 3 (6%) 3 (6%) 32 (64%)

ST-45 169 42 (25%) 18 (11%) 2 (1%) 109 (64%)

ST-48 201 72 (36%) 3 (1%) 1 (0.5%) 125 (62%)

ST-52 51 15 (29%) 21 (41%) 2 (4%) 17 (33%)

ST-61 70 2 (3%) 23 (33%) 1 (1%) 44 (63%)

ST-206 157 21 (13%) 67 (43%) 6 (4%) 69 (44%)

ST-257 204 51 (25%) 151 (74%) 1 (0.5%) 34 (17%)

ST-283 38 0 (0%) 3 (8%) 0 (0%) 35 (92%)

ST-353 166 113 (68%) 16 (10%) 8 (5%) 44 (27%)

ST-354 111 94 (85%) 55 (50%) 19 (17%) 9 (8%)

ST-443 100 59 (60%) 5 (5%) 1 (1%) 39 (39%)

ST-464 195 40 (21%) 10 (5%) 8 (4%) 145 (74%)

ST-573 19 19 (100%) 19 (100%) 17 (89%) 0 (0%)

ST-574 62 15 (24%) 11 (18%) 49 (79%) 8 (13%)

ST-658 59 21 (35%) 8 (13%) 1 (2%) 35 (59%)

noc 155 54 (35%) 58 (37%) 25 (16%) 48 (31%)

otherc 168 47 (28%) 59 (35%) 9 (5%) 72 (43%)

Total 2791 1033 (37%) 608 (22%) 403 (14%) 1164 (42%)

a. MLST clonal complex definitions were obtained from http://pubmlst.org/campylobacter

b. Number of draft and complete genome sequences obtained from published studies [47, 48] and draft genome sequences deposited in NCBI and

pubMLST [44, 49]. Isolate names, MLST-sequence type and clonal complex, source and accession details are listed in S1 Table.

c. Other clonal complexes represented are ST-49, 179, 362, 403, 433, 446, 460, 508, 607, 661, 677, 692, 702, 1034, 1275, 1287, and 1332.

doi:10.1371/journal.pone.0121680.t002

DNase andCampylobacter jejuni Biofilms

PLOS ONE | DOI:10.1371/journal.pone.0121680 March 24, 2015 7 / 21

http://pubmlst.org/campylobacter


11168 and 81116 [35, 39]. Assessment of cell viability showed that there was no difference in
viability between strains RM1221, NCTC 11168 and 81116 following static culture for up to 48
hours (S1 Fig). Strain RM1221 showed comparable levels of motility to NCTC 11168 in broth
cultures, suggesting that the lack of biofilm formation was not due to reduced motility or ab-
sence of flagella [33, 35]. The absence of biofilm formation by RM1221 was also not due to dif-
ferences in growth in shaking cultures, nor chemotactic motility as measured by swarming, or
autoagglutination, which were all comparable to strain NCTC 11168 (Fig. 2) and significantly
higher than that of an aflaggelated mutant of NCTC 11168 (ΔflaAB).

C. jejuni RM1221 is able to degrade pre-existing biofilms of other C.
jejuni strains
We subsequently investigated whether the factors inhibiting biofilm formation by strain
RM1221 are also able to affect biofilm formation of other C. jejuni strains. To test this, we grew

Fig 1. Distribution of eDNase genes inC. jejuni genome sequences. The Venn diagram shows the distribution of the eDNase genes dns (cje0256),
cje0566 and cje1441 in the genome sequences of 1630 eDNase gene-positive C. jejuni strains (Table 2). Most genomes (1248 of 1630) only have a single
eDNase gene, 357 genomes have two eDNase genes, while only 25 genomes, includingC. jejuni RM1221, contain all three eDNase genes. The Venn
diagram is encircled by the RM1221 chromosome showing open reading frames (blue), CJIE1–4 insertion elements (red), and the position of the three
eDNase genes (black). Finally, the bottom part shows an amino acid sequence alignment of the Dns, CJE0566 and CJE1441 proteins, with the signal
sequence and Pfam domains indicated. Signal sequences were predicted using PSORTb version 3.0.2.

doi:10.1371/journal.pone.0121680.g001
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Fig 2. Strain RM1221 is unable to form amonospecies biofilm but exhibits both swarming and
autoagglutination (AAG). Biofilm formation (A) of RM1221 (light grey bars) was measured by crystal violet
staining and compared to NCTC 11168 (white bars), 81116 (dark grey bars), and a test tube containing only
Brucella medium (black bar). Swarming ability (B) was calculated by measuring halo area on soft agar after
48 hours incubation in microaerobic conditions. Autoagglutination assessment (C) was carried out by
observing the reduction in A600 measurement over a 24 hour period. Both B and C show data for 11168 (white
bars), RM1221 (light grey bars), 81116 (dark grey bars) and 11168 ΔflaAB (dark grey bars). Bars represent
the median, error bars show range and significance was measured using Mann-Whitney tests (* = P<0.05).

doi:10.1371/journal.pone.0121680.g002
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biofilms of C. jejuni NCTC 11168 and 81116 for 24 h, and then incubated them for a further 24
h with fresh media containing either biofilm forming strains (NCTC 11168 or 81116) or strain
RM1221. Fresh Brucella media was used as a negative control. Replacement with either fresh
medium or medium containing 81116 or NCTC 11168 had two consequences: biofilm at the
primary air-surface interface was enhanced, and a new biofilm formed at the new air-surface
interface (Fig. 3). Biofilm levels were significantly reduced in tubes containing C. jejuni
RM1221 in the secondary culture (Fig. 3), suggesting that not only is RM1221 a poor biofilm
forming strain, but the presence of viable C. jejuni RM1221 can degrade a pre-existing
Campylobacter biofilm.

To assess whether the negative effects of strain RM1221 on biofilm levels is due to the pres-
ence of the cells or an extracellular factor, cell-free media was prepared from C. jejuni RM1221
cultures grown under microaerobic conditions at 37°C overnight (see Materials and Methods).
Cell-free supernatant from C. jejuni RM1221 culture was added to a 24 h biofilm culture of C.
jejuni NCTC 11168, and this resulted in degradation of the biofilm to background levels
(Fig. 3). As a control, cell-free supernatant from a C. jejuni NCTC 11168 culture did not affect
biofilm formation. This suggests that the factor disrupting biofilm formation is soluble in spent
media and is either actively secreted, results from cell lysis, or is a metabolic by-product.

Disruption of cje1441 restores biofilm formation and abolishes
degradation of existing biofilms
One of the major differences between strains NCTC 11168, 81116 and RM1221 is the presence
of the CJIE1-CJIE4 insertion elements (Fig. 1), of which each contain secreted proteins and se-
cretion systems [15, 16, 51]. Since biofilms of C. jejuni strain 81–176 contain eDNA and are en-
hanced by the addition of exogenous DNA [33], we hypothesised that the ability of RM1221 to
degrade biofilm is the result of a secreted DNase (cje0256 (dns), cje0566, or cje1441). Like strain
81–176, eDNA can be observed in a mature biofilm of strain NCTC 11168 (S2 Fig). We were
able to inactivate the cje1441 gene in strain RM1221 by insertion of an antibiotic resistance cas-
sette (see Materials and Methods). We were not able to inactive the dns or cje0566 genes despite
repeated attempts, which confirms the proposed role of dns and cje0566 in preventing natural
competence [15, 16]. Likewise, we were unable to complement the cje1441mutation, as con-
structs expressing the eDNase genes from a constitutive promoter invariably accrued spontane-
ous promoter mutations, suggesting that expression of C. jejuni eDNase genes in E. coli is toxic.

Inactivation of the cje1441 gene in RM1221 resulted in a significant increase in biofilm for-
mation when compared to wild type RM1221, and produced similar levels of biofilm when
compared to strain NCTC 11168 (Fig. 4). The level of biofilm eDNA of the Δ1441mutant was
comparable to stain NCTC 11168 (S2 Fig). Strain RM1221 did not form a biofilm and eDNA
was not detected in these assays. Inactivation of cje1441 did not affect chemotactic motility,
nor did it affect autoagglutination or growth (S3 Fig), suggesting that motility and flagellar ex-
pression were comparable to that of the parental wild-type strain RM1221. Biofilms formed by
the Δ1441mutant were sensitive to DNase I treatment (Fig. 4), supporting the observation that
DNA is present in the ECM of the Δ1441mutant and contributing to the biofilm structure.
Furthermore, we observed that co-culture of strain NCTC 11168 and the Δ1441mutant re-
sulted in biofilm levels similar to those observed with NCTC 11168 alone, thus cje1441 contrib-
utes to the ability of RM1221 to degrade pre-formed C. jejuni biofilms (Fig. 4).

C. jejuni RM1221 is able to degrade exogenous DNA
To demonstrate the DNA-specific activity of the C. jejuni RM1221 eDNases, we mixed genomic
DNA from C. jejuni strain NCTC 11168 with washed RM1221 cells, and incubated this mixture
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Fig 3. Co-incubation of pre-formed biofilms with RM1221 leads to biofilm degradation. Biofilms of
NCTC 11168 (A and D) and 81116 (B) were allowed to form in static aerobic conditions for 24 hours before a
further 24 hour treatment with RM1221 cell culture (A and B), or the cell free spent media of RM1221 (C).
Graphs A, B and C showmedian A590 values of each treatment. Bars represent the median, error bars show
range and significance was measured using Mann-Whitney tests (* = P<0.05).

doi:10.1371/journal.pone.0121680.g003
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Fig 4. Inactivation of the cje1441 eDNase gene restores biofilm formation byC. jejuni strain RM1221.
(A) shows biofilm formation of NCTC 11168 (white bar), Δ1441 (dark grey bar), RM1221 (black bar) and a
Brucella medium only control (light grey bar). The Δ1441mutant shows similar levels of biofilm formation to
NCTC 11168 and a significant increase in biofilm formation compared to the parent strain RM1221. (B)
Shows that the biofilm produced by the Δ1441mutant is susceptible to degradation by DNase I (white bar)
and leads to levels of staining indistinguishable from the Brucella medium only control (black bars). (C)
Shows biofilm formation of the Δ1441mutant following secondary co-culture with strain NCTC 11168 (white
bars), the Δ1441mutant (dark grey bars), Brucella medium (black bars), or the RM1221 parent strain (light
grey bars) showing that deletion of cje1441 inhibits the biofilm degrading ability of RM1221. Bars represent
the median, error bars show range and significance was measured using Mann-Whitney tests (* = P<0.05).

doi:10.1371/journal.pone.0121680.g004
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at 37°C. No DNA degradation was observed when C, jejuni strain NCTC 11168 was mixed with
genomic DNA (Fig. 5). However, addition of C. jejuni RM1221 resulted in time-dependent deg-
radation of C. jejuni genomic DNA over a three hour time course (Fig. 5). DNA degradation was
abolished in the C. jejuni Δ1441mutant, suggesting that the CJE1441 eDNase makes an impor-
tant contribution to the DNA degradation observed in the parental RM1221 strain (Fig. 5). We
also tested whether RM1221 was able to degrade its own DNA, to exclude a role for DNAmeth-
ylation. As with the NCTC 11168 genomic DNA, RM1221 genomic DNA was rapidly degraded,
indicating that the DNase activity is non-specific (data not shown). Cell suspensions of RM1221
could also degrade linear PCR fragments and uncut plasmid DNA, both methylated and non-
methylated (S4 Fig). This DNase activity was inhibited in the presence of EDTA. This DNase ac-
tivity was not detected in strain NCTC 11168 or the Δ1441mutant.

Analysis of levels of extracellular DNA purified from overnight growth cultures of C. jejuni
NCTC 11168, 81116 and RM1221 showed the presence of high molecular weight nucleic acids,
running with the same mobility as genomic DNA, in the supernatants from strains NCTC
11168 and 81116 but not for RM1221 (Fig. 5). These fragments were sensitive to DNase I diges-
tion but not RNase A treatment, suggesting that they are high molecular weight DNAmole-
cules. As with previous experiments, we did not observe any significant differences in cell
viability or growth, suggesting that variations in eDNA release between the C. jejuni strains is
not caused by variations in viability (i.e. cell death and lysis) or rate of growth (data not shown).

Taken together these results suggest that C. jejuni NCTC 11168 releases DNA during
growth, and that this DNA contributes to biofilm formation. RM1221 can degrade this DNA
and thus disrupt both de novo biofilm formation and pre-formed biofilm. This activity is highly
dependent on the CJE1441 eDNase, expressed from the cje1441 gene on the insertion element
CJIE4. This DNase is likely an endonuclease that is dependent on metal ions for activity.

Discussion
Biofilms play an important role in the lifestyle of many bacteria, and cause both considerable
problems in healthcare and the food industry. One problematic aspect of biofilm formation is
its contribution to transmission and survival of bacterial and fungal pathogens. There is also
now an increasing body of evidence that suggests biofilms may assist in C. jejuni food chain
persistence [24, 39, 52] and recent work has shown that eDNA is important in the maturation
of C. jejuni strain 81–176 biofilms [33]. A better understanding of the mechanisms involved in
biofilm formation by C. jejuni could lead to development of applications targeting C. jejuni
transmission in the food chain. In this study, we have shown that there are differences in bio-
film formation between three C. jejuni reference isolates, and have shown that eDNase activity
results in degradation of pre-formed C. jejuni biofilms, as well as prevention of de novo biofilm
formation. This work highlights how naturally-occurring eDNase activity may be able to weak-
en or destroy natural biofilms, e.g. in food processing environments.

Most C. jejuni isolates are naturally competent, and readily take up DNA from the environ-
ment and in some cases, recombine this into their genome. One of the consequences is that C.
jejuni shows a high level of genetic diversity, both at the sequence level and at the level of genet-
ic content [29, 53]. In this study we have used C. jejuni reference strain RM1221, which is not
naturally transformable due to the expression of three eDNase genes from the CJIE1, CJIE2
and CJIE4 insertion elements [15, 16]. Although the biological function of the eDNase activity
in C. jejuni is yet to be elucidated, it is possible that it protects isolates with the insertion ele-
ment against allelic exchange with insertion element-negative flanking sequences, as this incurs
the risk of losing the insertion element, which offer some evolutionary advantage. Our investi-
gation of a large (N = 2791) collection of C. jejuni genome sequences showed that the eDNase
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genes are differentially distributed in C. jejuni, and that very few genomes contain three copies
of an eDNase gene. However, with 58% of the C. jejuni genomes included being positive for at
least one eDNase gene, this suggests that there will be eDNase-expressing isolates present in
many agricultural environments, and these may have a profound effect on biofilms produced
or colonised.

We here also show that the expression of eDNase activity has another consequence, severely
reducing biofilm formation by C. jejuni strain RM1221. Further support for a role of the
eDNases in restricting biofilm formation was obtained by inactivation of the cje1441 eDNase
gene in strain RM1221, which allowed RM1221 to form biofilms. The eDNase activity and lack
of natural competence has so far precluded robust genetic manipulation of strain RM1221
(other than conjugation via tri-parental mating [41]), and our successful inactivation of
cje1441 is to our knowledge the first genetic manipulation of the RM1221 chromosome. The

Fig 5. C. jejuniRM1221 is able to degrade DNA in both static and shaking suspensions. The ability of NCTC 11168 (A), RM1221 (B) and the Δ1441
mutant (C) to degrade NCTC 11168 genomic DNA was assessed by incubation of cell suspensions with genomic DNA at 37°C for three hours. Both NCTC
11168 and the Δ1441mutant are unable to degrade the genomic DNA, with a band of genomic DNA of>10 kb remaining for the duration of the assay, while
incubation with RM1221 results in degradation of genomic DNA (B), indicated by the ‘smearing’ shown as the time course progresses. RM1221 overnight
suspensions were also shown to contain no eDNA when compared to NCTC 11168 and 81116 (D), again indicating that RM1221 is able to degrade its own
exogenous DNA.

doi:10.1371/journal.pone.0121680.g005
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eDNase genes pose technical problems for genetic manipulation and cloning, as their intracel-
lular expression can lead to cytoplasmic DNase activity and cell death, thus hampering cloning
and expression in E. coli. This has also been reported for eDNase proteins of other bacteria,
such as the eDNase proteins from the predatory bacterium Bdellovibrio bacteriovorus, where
expression was found to be lethal in E. coli [14]. Similarly, expression of active DNase I by E.
coli could only be achieved by the use of the very tightly controlled expression plasmid
pDOC55 [54]. Such plasmids are not available for C. jejuni, and hence genetic manipulation of
the eDNase genes in C. jejuni is technically challenging.

The importance of eDNA in bacterial biofilms is now well recognised [4, 33], and has at-
tracted attention as a target for enzymatic or chemical treatment for disinfection purposes.
DNase I is effective in interfering with the biofilms of the foodborne pathogens Listeria mono-
cytogenes [55] and of E. coli [56], but also mixed species biofilms. Biofilms found in activated
sludge flocs have eDNA from lysed cells forming close interactions with the viable cells within
the biofilm [57], and affected microcolony formation within the biofilm. Similarly, mixed bio-
films with Staphylococcus epidermidis and Candida albicans are also affected by DNase treat-
ment [58], suggesting that DNase is able to modify both mixed species and mixed kingdom
biofilms. Addition of exogenous DNase is effective in reducing biofilms of pathogenic bacteria,
such Neisseria gonorrhoeae [59], Garderella vaginalis [6] and L.monocytogenes [60].

Many species which form biofilms are also able to produce and export extracellular DNase
proteins, and eDNase proteins have multiple functions. The P. aeruginosa eDNase PA3909 is
involved in DNA degradation, providing an additional nutrient source, and its expression is in-
duced in phosphate limiting conditions [13], whereas in Shewanella oneidensis, expression of
the nucleases ExeM and ExeS is strongly induced if DNA is the sole nutrient source, and dele-
tion of the ExeM gene leads to a significantly reduced growth rate [61]. Finally, the eDNase
genes of Staphylococcus aureus are involved in immune evasion, and their expression during
host infection aids the escape of S. aureus from the DNA ‘nets’ which are secreted by neutro-
phils [8]. In the case of C. jejuni [15, 16], and other bacteria such as Vibrio cholerae [62], the
eDNase proteins restrict natural transformation.

Many bacteria which produce eDNase enzymes are still able to form biofilms and appear to
utilise the enzymes in order to modify their biofilm structures. Two well-studied examples of
eDNase-positive bacterial species that can form biofilms are V. cholerea [11] and S. aureus
[63]. Since the eDNase genes of RM1221 are classified as non-specific DNA/RNA endonucle-
ases, they are not expected to have stringent specificity regarding the source, methylation or se-
quence of the DNA targeted for digestion, and this was confirmed by absence of eDNA in
RM1221 cultures (Fig. 5). We hypothesize that rapid degradation of eDNA restricts its deposi-
tion on surfaces, and as such inhibits the initial stages of attachment of C. jejuni to these sur-
faces [39].

It is important to note that not all bacterial species show reduction of biofilm formation fol-
lowing treatment with DNases. When the opportunistic pathogen Burkholderia cenocepacia
was exposed to DNase it produced significantly denser biofilms [64], while Helicobacter pylori
biofilms remain unaffected following treatment with DNase I [65]. Finally, the presence of
eDNA on a surface inhibits biofilm formation by Salmonella enterica serovars Typhimurium
and Typhi [66]. These examples show that DNase treatment may not be effective in the case of
all single species biofilms. However many naturally occurring biofilms, such as are found in
processing plants, are comprised of multiple species and so DNase treatment should still be
considered an effective mechanism of at least partially degrading biofilms and allowing better
penetration of antimicrobials.

Treatment of biofilm-based bacterial infections with DNases has increased in recent years.
Impregnation of the biomaterial polymethylmethacrylate with DNase I lead to reduced
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adherence of P. aeruginosa and S. aureus, without a detrimental effect on adhesion and prolif-
eration of human cells [67]. Human recombinant DNase dornase alpha (brand name Pulmo-
zyme) is frequently used in the treatment of cystic fibrosis [68], and it also degrades DNA
within biofilms isolated from children with recurrent acute otitis media [69]. DNase I treat-
ment has also been shown to reduce established Bordetella bronchiseptica and B. pertussis bio-
films from the mouse respiratory tract [70]. In vitro treatment of biofilms of non-typeable
Haemophilus influenzae with DNase I also allowed increased bacterial killing by β defensins
[71], this suggests that even in biofilms where DNase I treatment does not have a direct biofilm
reducing effect it can still be a useful addition to a treatment regimen.

Treatment with DNase enzymes is becoming a common intervention in treatment of some
biofilm infections and chronic conditions such as cystic fibrosis, but DNase production is cost-
ly. This is not considered problematic within the medical industry, but the high cost of produc-
tion severely limits its potential for use in the food chain. Within the food industry, the use of
naturally produced bacterial eDNases could be a suitable alternative to DNase I use. Bacteria
such as Aeromonas sp. produce several secreted DNase enzymes [72] and in species such as
Streptococcus agalactiae, some of these eDNase proteins are heat stable [73]. Many of the
DNase-positive bacteria have low complexity growth requirements and do not have the ethical
or legal issues, which may preclude or limit the use of DNase obtained from animals, or recom-
binant products from genetically modified organisms. The cell-free extracts of C. jejuni
RM1221 retain their DNase activity, and are able to degrade C. jejuni biofilms even after a ten
minute heat treatment (data not shown). This suggests that the eDNase enzymes of RM1221
are relatively heat stable and could potentially be a source of easily obtainable DNase proteins
for use during food chain cleaning, although such an application requires further consideration
and investigation to ensure that any supernatant derived products is safe for use, particularly
from pathogenic bacteria.

In conclusion, eDNase activity inhibits biofilm formation by C. jejuni RM1221, and this
eDNase activity can be utilised to degrade biofilms formed by other C. jejuni strains, using ei-
ther live RM1221 cells or cell-free supernatant. Since DNase treatment has been proved to be
so effective against both bacterial and fungal biofilms, extraction of eDNase enzymes from C.
jejuni strains such as RM1221 could in future provide a cost effective alternative source of
DNase enzymes, and assist in developing applications improving food safety by prevention of
biofilm-assisted transmission of foodborne pathogens such as C. jejuni.

Supporting Information
S1 Fig. C. jejuni strain RM1221 is unable to form microcolonies or biofilms. (A) and (B)
show representative images of the air/liquid interface of a glass slide following 48 hours of static
incubation at 37°C in aerobic conditions. (A) shows a slide incubated with RM1221 cells and
(B) shows a slide incubated with NCTC 11168. The highlighted area in (A) shows potentially
attached RM1221 cells, although no progression to microcolony formation is observed. (C)
shows representative images of spot plates following 48 hour static incubation at 37°C in
aerobic conditions.
(TIF)

S2 Fig. Extracellular DNA is present in C. jejuni biofilms. (A) Representative image of Green
fluorescent protein (GFP)-expressing NCTC 11168 biofilms (strain NCTC 11168 GFP+, see
Table 1) counter stained with DAPI. A diffuse blue dye can be seen around the GFP-expressing
cells suggesting that there is a large quantity of eDNA present within the mature biofilm. (B)
Three biological replicates showing ethidium bromide-stained DNA isolated from biofilm
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samples from strains NCTC 11168, RM1221, and Δ1441 after agarose gel electrophoresis.
(TIF)

S3 Fig. C. jejuni RM1221 Δ1441 and its parent strain show no significant difference in
swarming, autoagglutination or growth. C. jejuni strains NCTC 11168 (white), its non-motile
ΔflaABmutant (dark grey), RM1221 (black bars) and the Δ1441mutant (light grey) were com-
pared for their ability to swarm (A) and autoagglutinate (B). In both tests no statistical differ-
ence was observed between Δ1441 and the wild-type. Panel C shows growth over a 24 hour
period for Δ1441 (light grey triangles), RM1221 wild-type (black circles) and NCTC 11168
(white squares). Bars represent the median, error bars show range and significance was mea-
sured using Mann-Whitney tests.
(TIF)

S4 Fig. C. jejuni RM1221 cell suspension has EDTA-dependent endonuclease (DNase) ac-
tivity. Plasmid DNA (70 ng) was incubated with cell suspensions for 60 minutes at 37°C prior
to agarose gel electrophoresis. Plasmid DNA is almost entirely degraded in reactions contain-
ing RM1221 cell suspension, but not NCTC 11168 or Δ1441.
(TIF)

S1 Table. Presence/absence analysis for homologs of the cje0256, cje0566 and cje1441
eDNase genes in C. jejuni.
(XLSX)
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