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Abstract: As part of a new snowpack monitoring framework, this study evaluated the feasibility of
using an LED LIDAR (Leddar) time of flight sensor for snowpack depth measurement. The Leddar
sensor has two additional features over simple sonic ranging sensors: (i) the return signal is divided
into 16 segments across a 48◦ field of view, each recording individual distance-to-target (DTT)
measurements; (ii) an index of reflectance or intensity signal is recorded for each segment. These two
features provide information describing snowpack morphology and surface condition. The accuracy
of Leddar sensor DTT measurements for snow depth monitoring was found to be < 20 mm, which
was better than the 50 mm quoted by the manufacturer, and the precision was < 5 mm. Leddar and
independent sonic ranger snow depth measurement showed strong linear agreement (r2 = 0.98).
There was also a strong linear relationship (r2 = 0.98) between Leddar and manual field snow depth
measurements. The intensity signal response was found to correlate with snow surface albedo and
inversely with air temperature (r = 0.77 and −0.77, respectively).
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1. Introduction

Wintertime snow accumulation and associated snowmelt provide a significant contribution to
water resources in regions with seasonal snow packs [1] as surface water is “locked up” in a frozen
storage state [2,3]. Snow depth and density measurements are required to quantify the amount of
snow water equivalent (SWE) that will be released from the snowpack at the time of melt. Of the
two variables, snow depth is the major component of SWE [4]. Alberta Rocky Mountain headwater
snowpack monitoring [5] has been operational for several decades, using both destructive and
non-destructive techniques [6]. A snow probe and weighing tube are used to obtain field validation
depth and SWE [7,8]. This provides an accurate single point measurement but disturbs the snowpack
in the process, making future measurements difficult to repeat at the same location. The second
operational monitoring method in the headwaters uses non-destructive sonic ranging devices [9] to
measure snowpack depth [10,11]. Such units can be mounted on a tower pointing over the ground
surface. Ultrasonic pulses are emitted and echoes are received by the sensor. The return signal is
used to calculate snow depth by differencing distance-to-target (DTT) measurements when the snow
surface is present from the DTT observation of the no-snow ground surface, following air temperature
compensation. These sensors have a high degree of accuracy, but depth is an average obtained from
the total sensor footprint (the further from the target, the larger the footprint) including undulations in
the ground and snow surface. Snowpack depth is continuously recorded over the snow season. Sonic
ranging sensors do not describe the snowpack morphology, structure, or density characteristics.

The intent of this study was to examine a low-cost (≈1000 Canadian dollars) and low-power
(4 watt) alternative to the contemporary sonic ranging snow depth sensor. The low-cost low-power
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Leddar Tech IS16 (hereafter referred to as Leddar) sensor is a LIDAR (light detection and ranging) based
“time of flight” device. It emits a single LED (light emitting diode)-diffused light source beam in the near
infra-red (NIR) 940 nm wavelength. The return signal is divided into 16 segments. Both temperature
compensated DTT and light intensity are observed and measured for each segment. The Leddar
unit has added features over the sonic ranging sensor, those being a DTT and intensity response for
each of the 16 segments of its footprint. There is limited light transmission into the surface of natural
snowpacks [12], making LED technology an ideal candidate for snow depth monitoring by calculating
the difference of the DTT snow surface from the bare earth DTT. Sonic ranging sensor pulses penetrate
freshly fallen snow, producing an underestimation of snowpack depth [11,13]. Beyond evaluating
the potential to observe snow surface height and snowpack depth, a further goal of this study is to
evaluate which, if any, snowpack features can be inferred from the additional intensity signal attribute
collected by LED ranging sensors.

The snowpack surface texture and reflectance change over time as the pack evolves due to increasing
and decreasing depths from snow accumulation, ablation, compaction, and wind/gravity-induced
redistribution [14,15]. As the snowpack evolves, variation in crystal grain size and structure [16–18],
density, and the amount of water within the pack occurs [19,20]. Ice lenses form within the pack during
melt and refreeze cycles [6]. Impurities such as dust or dirt settle in the snowpack [19]. Coalesced
and/or wet snow has a lower albedo than freshly accumulated snow [21]. As the snowpack ages and
eventually becomes isothermal, the reflectance signature changes [22,23].

The spectral response or albedo of snow is dependent on snow crystal grain size, age of the snow,
and amount of water and impurities in the pack [12]. This causes the spectral response to be different
at various stages of metamorphism. “Fresh” new snow produces the highest spectral reflectance over
aging snow, soils, and vegetation [16] in the 940 nm band, in which the Leddar unit operates. At the
940 nm band, spectral albedo ranges from approximately 0.5 to 0.9. The continuous spatiotemporal
intensity signal has the potential to be used to detect changes in snowpack surface characteristics.
For example, it should be possible to use the intensity signature to detect when snow is falling on
the pack’s surface, since fresh snow has a higher reflectance than older snow. These variations in the
snowpack should be detectable in the Leddar’s DDT and intensity signals. The expectation is to see an
increase in the spectral response for new snow accumulation and a decrease as the snowpack compacts
and metamorphoses over time.

This study assessed the performance and features of the Leddar sensor. The objectives were to:
(1) examine the Leddar sensor performance and the controls on the Leddar intensity signal; (2) compare
the continuous temporal snowpack depth measurements of the Leddar with a standard sonic ranging
sensor and infrequent field depth data observations to quantify sensor precision and accuracy for this
particular application.

2. Materials and Methods

2.1. Leddar and SR50A Sensor Specifications

The Leddar and SR50A sonic ranging sensors used in this study each capture DTT measurements.
An approximation of the respective Leddar and SR50A DTT sampling areas is shown in Figure 1a.
The LeddarTech IS16 sensor (Figure 1b) is a solid-state, pulse-based, time-of-flight LED LIDAR
ranging instrument that receives return signals on a 16-channel photodetector [24]. The unit’s internal
processing chip performs a full waveform analysis on all segments of the return signal. When the
“object demerging” feature is enabled, it is possible for the sensor to detect multiple objects at varying
distances and intensities within its field of view (FOV). LED technology is sensitive to ambient
temperature [25], and an inverse relationship exists between external temperature and light output
(illumination) [26]. A temperature sensor is located on the Leddar circuit board near the emitter
optics [24,27]. Proprietary algorithms compensate for this temperature sensitivity and are used to
calculate distance measurements within the manufacturer’s specified precision and accuracy [28].
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surface. A temperature corrected measurement for DTT is averaged over the entire footprint as a 
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Figure 1. (a) Leddar and SR50A sonic ranging device co-located on a tower. Approximation of sensor
beam footprint; not to scale. Leddar segment 1 orientation is the north side of the tower. The sensor
emits defuse LED light and receives return signals for 16 segments. The ground surface footprint is
dependant on the height of the sensor above the target, and the beam length and depth. (b) LeddarTech
IS16 pulsed based time of flight LED LIDAR sensor logging to a Raspberry Pi 3.

The photodetector chip on the Leddar sensor has limited distance detection [27] and uses the
intensity (amount of light captured by the receiver) property as part of the calculation for detecting
multiple objects at varying distances within the FOV. The Leddar sensor range is zero to 50 m (Table 1).
The sensor has a 48◦ × 8◦ sampling FOV. The ground surface footprint (seen in Figure 1a) is dependant
on the height of the sensor above the target and defined by the beam length and depth. The length of
the beam on the ground is 0.89 multiplied by the distance to the target. Each segment is 1/16 of the
total beam length. The depth of the beam is 0.14 multiplied by the distance of the sensor to the target.

LeddarTech technology is used for industrial applications, such as vehicle collision detection,
in which fast response times from the sensor are required [27]. The distance measurement accuracy
reported by the manufacturer is 50 mm, the precision of the sensor (if the intensity return signal is
greater than the manufacturer’s specification of 15) is 6 mm, and the resolution is 10 mm. For this study,
the Leddar sensor was statically mounted over the ground surface at a fixed height of 2.93 m with a
calculated beam length of 2.61 m (each segment length is 0.16 m) and depth of 0.41 m. In comparison,
the SR50A sensor emits ultrasonic pulses. The sensor’s footprint on the ground surface is circular
with an approximate radius of 0.27 multiplied by the height of the sensor above the target surface.
A temperature corrected measurement for DTT is averaged over the entire footprint as a single reading.
The distance range of the SR50A is 0.5 to 10 m. The SR50A DTT measurement accuracy as reported by
the manufacturer is 12 mm on a 3 m high mount, and the resolution is 0.25 mm. A comparison of the
technical specifications of Leddar and SR50A units is shown in Table 1.
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Table 1. Leddar and SR50A sonic ranger manufacturer technical specifications [24,29].

Sensor Leddar IS16 SR50A Sonic Ranging Device

Type Leddar LED Multichannel LIDAR sensor,
built-in processing chip performing
proprietary temperature adjusted

Full-Waveform analysis for multi-object
detection distance measurement

SR50AA Sonic Ranging Sensor with
independent temperature compensation

Manufacturer LeddarTech Inc. Campbell Scientific (Canada) Corp.
Distance 0 to 50 m 0.5 to 10 m

Operating Temp −40 ◦C to +50 ◦C −45 ◦C to +50 ◦C
Accuracy ±50 mm Quoted for a moving target ±10 mm or 0.4% of DDT (greater value)
Precision 6 mm (manufacturer specification

if intensity > 15)
Resolution 10 mm 0.25 mm

Measurement Rate Up to 50 Hz Less than 1.0 second
Emitter Single LED diffused light source beam Sonic Ranging ultrasonic pulses
Receiver Measurement of backscatter on a 16-Channel

photodetector array
Listening for return echoes

Beam Length 48◦ (Distance from sensor * 0.8905) 30◦ (Radius = 0.268 * Height)
Segment Length 1/16 of the Beam Length (Beam Length / 16) N/A

Beam Depth 8◦ (Distance from sensor * 0.1402) N/A
Wavelength 940 nm (infrared) 50 kHz (Ultrasonic) electrostatic transducer

2.2. Field Deployment Setup, Configuration, and Data

Leddar and SR50A instrument testing and snowpack validation were completed at the University
of Lethbridge West Castle Field Station (WFS), located in the headwaters of the Oldman River Basin,
Alberta, Canada from 2017 (December 14) to 2018 (April 27). The Leddar unit was mounted on
the weather station tower coincident with a SR50A such that the beams of the two sensors partially
overlapped, as shown in Figure 1a. The ground surface beneath the Leddar and SR50A sensors had a
downward slope of 0.07 m over a distance of 3.0 m. Meteorological data was collected at the tower site
for wind speed, wind direction, temperature (temp), barometric pressure (BP), relative humidity (RH),
and incoming and reflected shortwave (SW) and longwave (LW) radiation (Figure 2). A temperature
sensor under the Leddar unit at the ground surface collected ground temperature. A totalizing
precipitation gauge located nine meters south of the tower provided cumulative precipitation data.

To validate Leddar and SR50A sensor snow depth measurements, eleven site visits took place
from December 21 to April 27. Biweekly to monthly field measurements occurred during the months
of December to March. At the onset of snowmelt, sampling was done at a weekly to daily time interval.
Snow depth field measurements using a graduated avalanche probe were taken by standing behind
the tower out of the sensor field of view and sampled directly under the Leddar unit. Field depth
measurements collocated and coincident in time with the Leddar deployment were collected to support
and validate both the Leddar and SR50A measurements. Leddar, SR50A, and meteorological data were
extracted from the 15-minute timestep dataset for a four-hour time period when field measurements
occurred. The mean, minimum, and maximum were calculated for the SR50A. The mean for the
Leddar was derived from the mean value of all segments. Minimum and maximum were extracted
based on the range of values from all segments of the Leddar sensor.
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Figure 2. The West Castle Field Station tower and snow depth monitoring sensors (Leddar and SR50A),
the totalizing precipitation gauge located south of the tower, and the meteorological sensors for the
2017–2018 snow season collecting wind speed, wind direction, air temperature (temp), barometric
pressure (BP), relative humidity (RH), and incoming and reflected shortwave (SW) and longwave (LW)
radiation. A temperature sensor was located at the ground surface to collect ground temperature.

2.2.1. LeddarTech IS16 (Leddar) Configuration and Laboratory Calibration

The Leddar configuration settings determine the accuracy, precision, and resolution of the emitted
and return signals for DTT and intensity measurements (Table 2). The Leddar’s LED pulse rate is
102.4 kHz. The parameter configuration selected maximized the accuracy and precision of object
detections that resulted in a maximum range of 21.3 m [24]. “Crosstalk removal” and “object demerging”
were both enabled to reduce return signal degradation from objects detected in other segments.

Table 2. Leddar measurement configuration settings used for the 2017–2018 snow season.

Parameter Configuration Description

Distance Units cm Unit of measurement for distance to target
Accumulations 1024 Range: 0 to 1024. Higher values enhance the range for DTT below 10 m,

reduce the measurement rate and noise
Measurement Rate 1.5625 Hz Range: 1.5625 to 50 Hz. Rate of signal measurement. Lower values give

highest accuracy and precision (also known as Refresh Rate)
Oversampling 8 Range: 1–8. High values reduce measurement rate and increase accuracy
Point Count 12 The number of base sample points

Threshold Offset 0.00 Range: −5% to 100%. Modifies intensity threshold. At 100%, no detections.
Negative values increase likelihood of false measurements.

LED Control Automatic LED power level setting
Change Delay 1 (640 ms) Number of measurements before sensor changes LED power level

Object Demerging Enabled Indicates detection of multiple objects in return signal
Crosstalk Removal Enabled Degradation compensation from object detections in other segments

Useful Range 21.3 m Leddar sensor computed value based on configuration settings

The control and logger system for the Leddar sensor had a similar design to that of [30], wherein
the Leddar unit was used for 3D digital canopy foliage sampling. The Leddar unit (Figure 1b) was
connected to a Raspberry Pi 3 (RP) running the Raspbian OS through a 2.0, 12 Mbits/s USB cable
(Figure 3). A computer program [31] executed Leddar SDK (software development kit) commands to
obtain DTT, intensity, and status flag for a 15-minute time step. At the start of the collection interval,
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the Leddar unit was “turned on” to acquire continuous pulse measurements for a period of one minute.
For each measurement, the 16-channel photodetector divided the return signal into separate segments
where a full waveform analysis was performed by the Leddar onboard processing chip. The resulting
measurement was returned to the RP. The program then went into a “wait” state for the next 14 minutes.Sensors 2020, 20, x FOR PEER REVIEW 7 of 21 
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Figure 3. Data flow diagram of the Leddar-Raspberry Pi for the 2017−2018 Snow Season. TS refers to
timestamp, Seg# refers to segment number, DTT-F# is the distance to target for flag number, Int-F# is the
intensity for flag number, Cnt-F# is the number of returns received for the status flag number, Tot-Flags
is the total count of both flag numbers, and %F1 is the percentage of Flag = 1 returns for the segment.

The RP program converted Leddar range measurements (R) into vertical distance (VT) [32] values
using Equation (1).

VT = (Ri + Rc) cos(ϕ) cos(α + β(i − 8.5) + γ(i − 8.5)2) (1)

Ri is the range measurement of the ith segment, Rc is the fixed shift of the range measurement
from the true range, ϕ is the fixed zenith boresight shift, α is the azimuth boresight shift, β is the ith

segment’s angle deviation from the boresight on Leddar beam plane, and γ is the 2nd order non-linear
angle deviation (8.5 is the offset to the center of segments 1 to 16). Leddar calibration parameters were
determined in the laboratory. The Leddar unit was mounted facing a flat level reference surface with
no zenith deviation (ϕ = 0). Measurements were taken at varying boresight angles (α) and vertical
distances (VT) from Leddar optical emitter center to the reference surface. Rc, α, β, and γ are the
calibration parameters. VT, Ri, and ϕ are known values. This made it possible to infer Rc, β, and γ
from Equation (1) based on the Gauss–Newton algorithm with Huber robust function [33] to get the
best parameter fit in order to evaluate the accuracy of the Leddar measurement.

Two data files were created: the first containing the raw measurements per pulse for each of the
16 segments stored on the RP (see Figure 3 *raw.txt Data File at the top right of the diagram); the
second created from the downloaded raw RP data file through a post-processing step. The raw RP
data file contained a record for each segment number, timestamp, VT, intensity, and status flag of the
return signal. For each of the 16 segments, two possible status flags could be received, those being
“Flag = 1” and “Flag = 35.” Depending on the status flag received for the measurement cycle, the
program captured between 20 to 60 observations for the 15-minute time interval. The post processing
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step creates a single record in the second data file for each 15-minute collection interval using the
raw RP data as the input file. The record contains the timestamp; and for each segment the record is
appended to include segment number, the mean distance to target and intensity for each flag, the count
of the number of measurements for each flag, the total number of measurements, and a percentage of
the number of “Flag = 1” returns for the given 15-minute measurement interval (see Figure 3 *Final.csv
Data File at the bottom left of the diagram).

The Leddar’s on-board processing chip computes status “Flag = 1” as a valid return signal of a
single object detected in the emitted beam. “Flag = 35” is a valid return but is interpreted by the sensor
as more than one object detected within the same segment as a result of the enabled “object demerging”
configuration setting. “Flag = 35” is considered noise in the data due to an implicit assumption that
no objects should exist between the statically mounted Leddar sensor and the ground or snowpack
surface. These measurements are retained in the final post processed data file, but they are not used
for the snowpack depth calculation. The presence of “Flag = 35” does not mean all data for a given
segment are invalid. If the timestamp contains data with the “Flag = 1” status, a valid return signal has
been received for the specific segment. As part of the quality control process, the “noisy” (Flag = 35)
VT and intensity values are discarded from the specific segment. The count of noisy returns is retained
and used in the analysis.

2.2.2. SR50A Sonic Ranging Device

The SR50A was configured using a Campbell Scientific CR1000 data logger [29] with standardized
temperature-adjusted programming for a 15-minute data collection interval for the distance to target
measurement. Real-time temperature compensation is performed using the temperature sensor located
adjacent to the Leddar and SR50A on the instrument tower (Figure 2).

2.2.3. Meteorological Sensors

Quality assurance corrections were applied to the complete meteorological dataset. The totalizing
precipitation weighing gauge accumulates rain and snow in a catchment bucket. It is susceptible
to diurnal and long-term drift, evaporation, the under-catch of snow caused by wind during a
precipitation event, and the over-catch from blowing snow [34,35]. Totalizing precipitation weighing
gauge data adjustments followed the methodology described by [36,37]. Initial manual cleaning was
completed to correct gauge measurements resulting from sensor maintenance tasks such as emptying
liquid when the catchment bucket was full. To correct for diurnal, long term drift, and evaporation,
negative and small positive changes were removed using a threshold of 0.11 mm unless a precipitation
event was in progress in prior and subsequent measurements. To reduce overestimation of under catch
above the sensor, the correction of the wind field was limited to speeds greater than 1.2 ms−1 and less
than 6.5 ms−1. Precipitation measurements were calculated using the change in the catchment bucket
volume from the previous measurement.

Incoming shortwave radiation (SWI) and reflected shortwave radiation (SWR) were collected
from a Campbell Scientific CNR1 [38] net radiometer mounted on the same tower as the Leddar and
SR50A units. CNR1 SWI and SWR data were used to calculate albedo (ratio of SWR over SWI) for
both a one-hour and daily averaged interval. Measurements greater than one were discarded as SWI
must always be greater than SWR. Undulations in the snow surface or other highly reflective objects in
close proximity to the CNR1 can produce additional backscatter that is recorded by the sensor [39].
There were five days when the albedo calculation was greater than one. For those days, daily albedo
was computed using the mean from the previous and subsequent day.

2.3. Aggregated Datasets for Analysis

The final post-processed 15-minute dataset contained 12,844 records. Snow depth (Dsnow) was
calculated for each of the Leddar segments and SR50A sensors by subtracting the baseline “no-snow”
(Vo = 2.93 m) ground measurements from subsequent “snow” surface (VT) measurements (Equation (2)).
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The mean Leddar Dsnow, VT, and intensity were calculated across the 16 segments, where VT is estimated
from Equation (1). Several of the Leddar segments possessed “noisy” (Flag = 35) data records, which
were removed prior to calculating the means.

Dsnow = Vo − VT (2)

Aggregated datasets were created using quality-controlled data for all sensors to reduce the
dataset to a manageable size. A daily timestep was created using the 24-hour mean for all variables.
To maintain a higher temporal resolution while retaining diurnal variability, a second data file
contained records for the mean of the 15-minute data at a one-hour timestep. The dataset contained
3159 one-hour observations. The “proportion of clean returns” is the total number of one-hour
observations containing “Flag = 1” (clean) data relative to the “total number of observations” for the
timestep. The calculated percentage is the “total observations” divided by the total number of “clean”
observations. The “proportion of noisy returns” is the total number of one-hour observations divided
by the total number of “Flag = 35” (noise) one-hour observations.

2.4. Controls on the Leddar Intensity Signal

To investigate the drivers of the Leddar intensity signal through time, a Pearson’s correlation
matrix was computed for the hourly dataset to examine relationships and potential collinearity between
variables. Variables selected were wind speed (WS), daily albedo, air temperature, relative humidity
(RH), ground temperature, SR50A snow depth, hourly precipitation, the Leddar VT, intensity, and
proportion of clean returns per timestep. Univariate statistical analysis was completed for the Leddar
intensity and proportion of clean return signals for air temperature, daily albedo, VT, and relative
humidity after being identified as “variables of interest” in the correlation matrix. The correlation
analysis was limited to only sample periods when complete snow cover was present beneath the
Leddar unit (21 December 2017 to 27 April 2018).

2.5. In-Situ Evaluation of LeddarTech IS16 Sensor’s Precision, Accuracy, and Performance

An initial test of the Leddar sensor precision was completed in the field on 14 December 2017
before the start of the 2017–2018 data collection. A 1.22 m × 2.44 m painted plywood reflective target
used by [40] for LIDAR radiometric calibration was placed level on the ground to compensate for the
sloped surface under the Leddar sensor to increase the intensity of the return signal. Leddar DTT
and intensity data as well as SR50A DTT measurements were captured in 15-minute increments for a
four-hour time period. The SR50A and the Leddar segment 16 beams did not fall fully within the target
surface due to the sensor field of view being larger than the target dimension. The Leddar beam length
was 2.61 m, which exceeded the painted target’s length of 2.44 m. Leddar status “Flag = 1” observations
were used to calculate the mean distance to target and intensity for each of the 16 segments.

A second analysis was completed to evaluate the precision of the Leddar unit when operating over
a snowpack surface under completely stable conditions; i.e., during a period when the snowpack was
in a stable state such that settling, compaction, and crystallization had no significant impact on sensor
observations. Several criteria were used to select a time period to test for consistent measurement in
snow depth once snowpack settling had taken place. Influences from solar radiation were removed
by selecting a sampling interval between 20:00 to 06:00. The air temperature was less than –5.0 ◦C
prior to and throughout the sampling interval to avoid the melting and refreezing metamorphoses of
crystalline structures [14,16]. No precipitation event occurred for several days prior to observation to
remove accumulation, compaction, and settling influences [21]. Wind speeds approaching zero were
desired to remove redistribution of the snowpack surface [15]. Due to an unusually warm winter with
few days between precipitation events, there was only one time period from 26 December 2017 to
27 December 2017 meeting these criteria.
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3. Results and Discussion

The Leddar daily data were used to plot both snowpack depth and intensity for the winter
2017–2018 snow season. Figure 4 shows snowpack depth variability across the 16 segments of the
sensor footprint, while increases in depth through time represent the snow fall accumulation events.
Settling, compaction, or a mid winter melt are seen as decreases in depth over time. Snowpack surface
morphology and texture within the sensor field of view are illustrated orthogonal to the time axis.
The rapid reduction in snow depth at the end of the time series was due to spring melting as air
temperatures and day length increased in mid to late April.
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Figure 4. Leddar snow depth 15 December 2017 to 27 April 2018.

The Leddar intensity for the 16 segments is shown in Figure 5. At the beginning and end of the
series, low intensities are associated with patchy snow combined with bare soil and vegetation at the
ground surface level. Higher intensity values occur, when snow cover completely fills the sensor field
of view. During the period of 100% snow covered area (SCA), intensity increases immediately following
snow accumulation events and then gradually decreases as the snowpack settles and metamorphoses.
These patterns of increasing and decreasing intensity are synchronous with increases and decreases
in depth, but the magnitudes of depth and intensity change are not visually correlated. Intensity
responses are strongest at nadir segments with decreasing values toward the outer edge of the field
of view. The laser radar equation shows there is an inverse relationship with DDT and the intensity
response [32,41]. Segments at nadir are closest to the ground surface and have the highest intensity.
For each segment starting at nadir going to the edge segments of the sensor, distance to the ground
increases and there is a corresponding decrease in intensity.
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3.1. LeddarTech IS16 Sensor Performance

3.1.1. Signal Data Noise

The Leddar DTT measurement is dependent on the “clean” (“Status Flag = 1”) return signals and
intensity amplitude. Due to the Leddar demerging configuration setting being “enabled,” the sensor
occasionally recorded signals with a “Flag = 35” status (noisy returns). Analysis was completed for
the entire hourly time series (14 December 2017 to 27 April 2018) dataset to evaluate the amounts of
“clean” (proportion of clean returns) and “noisy” (proportion of noisy returns) return signals for all
segments (Table 3a). The proportion of timestep observations with no clean returns (Table 3b) is the
amount of missing clean data for the individual 15-minute data sampling measurements. Intensity
(Table 3c) for segments near nadir received the highest values, while edge segments received the lowest
intensity measurements. Of note, the two edge segments on both sides of nadir had minimum intensity
values below the manufacturer’s specifications for DTT accuracy threshold which occurred during the
time period of no-snow. Segment 10 had an abnormally high noise fraction throughout most of the
observation period. This segment does not appear to be representative of the sensor. The noise was
potentially caused by internal damage or contamination within the optical receiver.

The noise was plotted over time to find potential relationships with snowpack conditions and
meteorological influences. Figure 6 shows the proportion of the data per time step that received noisy
returns in relation to the total number of returns. The least amount of noise was observed in the middle
of the series once the SCA was fully present at the end of December and before melt conditions initially
occurred in mid-March. Segments near nadir experienced more noise during episodic snowmelt
periods late in the winter season, when there was higher water content in the snowpack. Some noise
may have been caused by solar contamination, precipitation, wind redistribution of snowpack surface
grains, or higher moisture content when the pack entered a freeze/thaw stage or became isothermal
and melted out.
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Table 3. From 14 December 2017 to 27 April 2018, n = 3211 (1-hour timestep) per segment (SEG) for
the entire data collection period. (a) Leddar data series proportion of clean and noise returns. (b) The
proportion of timestep observations with no clean returns refers to the amount of data for all 15-minute
measurement cycles where the sensor did not detect any clean readings. (c) Leddar intensity signal
minimum, maximum, mean, and range.

SEG Proportion of
Clean Returns

Proportion of
Noisy Returns

Proportion of Timestep
Observations with no Clean Returns

Intensity
Min Max Mean Range

1 99.2% 0.8% 0.0% 10.0 45.2 29.3 35.2
2 99.7% 0.3% 0.0% 13.7 61.6 40.8 47.9
3 97.5% 2.5% 0.0% 18.6 82.0 55.0 63.4
4 96.4% 3.6% 0.1% 24.8 105.1 70.9 80.3
5 94.6% 5.4% 0.1% 26.0 123.2 83.4 97.2
6 91.1% 8.9% 2.1% 30.3 128.0 87.8 97.6
7 88.9% 11.1% 2.2% 32.1 134.0 92.6 101.9
8 84.9% 15.1% 5.6% 31.6 131.7 92.7 100.1
9 81.7% 18.3% 5.5% 31.3 134.5 94.8 103.1

10 33.4% 66.6% 38.5% 29.2 135.3 105.1 106.1
11 87.5% 12.5% 1.2% 29.3 136.1 94.3 106.8
12 84.8% 15.2% 5.9% 24.6 118.8 83.9 94.2
13 88.4% 11.6% 0.3% 20.4 96.1 66.3 75.7
14 97.0% 3.0% 0.0% 17.6 75.6 51.9 58.0
15 98.5% 1.5% 0.4% 12.9 57.8 39.7 44.8
16 96.9% 3.1% 1.4% 7.7 38.3 26.0 30.6

(a) (b) (c)
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Time series of readings culminated in Table 3a—proportion of noisy returns.

3.1.2. Temperature Sensitivity

The high-resolution time series data demonstrated the intensity amplitude shifted by 10 or
more units immediately before some snowfall events (Figure 7). This indicated at least some of the
shift in signal intensity associated with snowpack accumulation events was not a function of the
snowpack surface condition but instead was impacted by the inverse relationship between LED light
output power and ambient temperature [42]. Figure 7 show five events (precipitation: blue bars;
air temperature: black; intensity: red) with increases and decreases in the intensity response prior
to and during the events. These data show that signal intensity tends to vary inversely with air
temperature leading into the precipitation event, and is likely a hardware response demonstrating
some thermal sensitivity within the Leddar unit. Consultation with the manufacturer confirmed both
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internal hardware components and environmental conditions influence the sensitivity of the Leddar
intensity signal [28]. Further analysis is required to separate out the ambient temperature influence on
the hardware vs. the surface reflectance response; however, this preliminary illustration of an inverse
relationship with temperature suggests that temperature-based correction of the intensity response,
while not implemented here, could be achievable.
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3.1.3. Controls on the Leddar Intensity Signal

The full winter season 1-hour dataset with Leddar intensity signal, proportion of clean returns, air
temperature, daily albedo, and Leddar VT data show moderate to strong correlations (Table 4).

Table 4. Pearson’s Correlation coefficient (r) for the Leddar (mean of all segments) sensor and other
meteorological variables for the given timestep. “% Clean” is the proportion of clean returns.

Daily Albedo Air Temperature Leddar VT Leddar Intensity
r r r r

Leddar Intensity 0.77 −0.77 −0.43 -
Leddar % Clean 0.59 −0.57 −0.13 0.74

The daily albedo and Leddar intensity return signal show a correlation of 0.77. There should
be a relationship between these two variables as they are both a measure of reflectance. Higher
reflectance values are received from fresh dry snow when smaller snow grain sizes are present [43].
Lower reflectance values occur as the snowpack metamorphoses as a result of changes in crystal
structure and increased snow grain size [22,44]. Reflectance of aged, wet, and melting snow is
lower than that of fresh, dry snow [21,45]. Ice layers formed from melt/freeze cycles have similar
reflectance properties to that of wet snow [12,19]. Albedo and the proportion of clean Leddar returns
showed a moderate correlation of 0.59, which indicates that noise tends to diminish as snowpack
reflectance increases.

There is a correlation of−0.77 between the air temperature and the Leddar intensity signal (Table 4).
In addition to potential hardware influences (discussed above), air temperature also influences the
snowpack properties of grain size and structure [16]. As air temperatures increase and approach 0 ◦C,
the snowpack begins to ripen (higher water content) and surface reflectance reduces [46].
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There is negative correlation between air temperature and the proportion of clean Leddar returns
at −0.57 (Table 4). The proportion of clean returns was elevated during cooler temperatures. As air
temperature approached 0 ◦C and warmer, more noise was present in the data. This could be influenced
by another driver that auto-correlates with seasonal variations in temperature, such as freeze/thaw
conditions at the surface of the pack during the melt phase, suggesting noise levels increase as the
snow surface melts.

No relationship exists for VT and the clean return signal (r = −0.13), but VT and intensity
demonstrate a correlation of −0.43. The further the target is from the sensor, the less backscatter
received [47]. Since the Leddar unit was statically mounted on a tower facing the ground surface, the
largest DDT values occur before the snowpack is present. At this point, the sensor is observing the
vegetation and soils which have a lower spectral reflectance than snow in the NIR 940 nm band. As the
snowpack builds, DDT is reduced, and Leddar intensity increases due to the higher albedo of snow,
as well as the shorter range. As the pack starts to melt out, spectral reflectance values decrease from
the higher water content in the snowpack as well as the increased distance to the ground surface.

Intensity and proportion of clean returns are positively correlated (r = 0.74, Table 4). The intensity
signal and proportion of clean returns were plotted through time once the snowpack emerged. Box plots
in Figure 8 are broken down by hour-of-the-day and further by month. Both the proportion of clean
returns (Figure 8a) and the intensity signal (Figure 8b) show diurnal patterns. Signal “noise” and
intensity ranges are elevated during daylight hours from midday onwards, which appear to correspond
with temperature and daylight variations. Maximum noise and lowest intensity are associated with
warmer afternoon temperatures, while minimal noise and slightly elevated Leddar reflectance occur
in the morning after sunrise but during local diffuse sky radiation. The pattern was more dominant
in March and April, when most daytime air temperatures were above 0 ◦C. The least amount of
noise occurred in February when air temperatures were between −20 to −35 ◦C with only a few days
approaching or above 0 ◦C. There are two potential contributing factors: (i) occasional melt, ripening
processes, and higher water content at the surface of the snowpack; and/or (ii) solar contamination
of the signal during the afternoon. With the diurnal variation in sensible heat flux and net surface
radiation balance over the snowpack, it is possible the Leddar signal is sensitive to the changing
snowpack surface structure and increasing snow grain size. There is a corresponding increase in noise
levels in March and April when diurnal energy inputs to the pack can be most extreme. Any sensitivity
to changes in surface structure, would be expected to be observed during the onset of melt conditions
late in the season.

Solar contamination cannot be ruled out, however, as the skyview surrounding the instrument
tower is most open to the west with mountain ridges dominating the south and north skyline.
Consequently, if solar contamination occurs, it would be expected in the afternoon, with the level of
contamination increasing as the solar zenith and range in azimuth increase later in the season. It is
believed that both surface freeze/thaw processes and solar contamination play a role in influencing
diurnal intensity and noise patterns, but further investigation is required to quantify the relative
influence and identify which is dominant.
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Figure 8. Proportion of clean signals (a) and mean hourly Leddar signal intensity (b) by month from
December to April. The box delineates the lower 25th and upper 75th percentiles. The dashed T-lines
are the minimum and maximum values and open circles to the left and right of the dashed T-line are
outliers. The black dot inside the box is the mean.

3.2. Range and Depth Observations

3.2.1. Leddar Calibration

The root-mean-square-error (RMSE) of range-to-VT calibration conducted in the laboratory using
Equation (1) was 13.0 mm. The parameter values (and standard error): β, 3.134◦ (0.010◦); γwas −0.044◦

(0.003◦); and Rc was −0.307 m (< 0.001 m). The calibrated β was just over the LeddarTech product
specification of 3.0◦ [24].

Results of the Leddar and SR50A reflective target testing from 14 December 2017 (as described
in Section 2.5), are shown in Figure 9. The Leddar DTT follows a systematic arc from the optical
receiver to the target surface [24]. Segment DTT is shortest at nadir and increases toward the edge
segments. The range of DTT values show consistent measurements for all segments within 20 mm
and a maximum standard deviation for all segments of 5 mm (Figure 9a) over a four-hour duration.
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The SR50A measurement varied to a higher degree with a DTT range of 210 mm and a standard
deviation of 70 mm. Under controlled conditions, variation in the Leddar measurements was very
low and more precise than the SR50A. The intensity signal (Figure 9b) follows an expected systematic
inverse pattern with highest values at nadir and decreasing towards the outer segments. The footprint
for segment 16 was at the edge of the target and was contaminated with bare soil and grass returns,
resulting in the lowest intensity relative to other segments. The intensity measurement over the
four-hour period for segment 16 was 11.1 which was below the Leddar manufacturer’s threshold
of 15. However, the DTT standard deviation for segment 16 was 3 mm. The temporal stability
of measurements from this Leddar sensor testing are consistent with the findings of [48] in their
preliminary investigation of the Leddar technology.
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Figure 9. Reflective target placed on the ground under the Leddar unit. SR50A footprint and Leddar
Segment 16 were not contained within the target surface. (a) Boxplot of Leddar and SR50A DTT,
(b) boxplot of Leddar Intensity. (Note: SR50A does not return intensity signal measurements).
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3.2.2. Snow Depth Validation

The full winter season 1-hour Leddar and SR50A depth dataset contained 3211 records. Table 5
shows snowpack depth for the SR50A and each Leddar segment when the snowpack reached
maximum depth on 8 April 2018 at 10:00. Snow depth varies across the Leddar field of view with
lowest measurements of 0.75 m in segments 5 through 7 and largest observations of 0.85 m for segments
14–16. This difference is easily within the expected variance associated with the slightly sloping ground
surface and undulations in the snowpack surface. The snow depth recorded for the SR50A was 0.83 m.
The SR50A measurement falls within the range of the Leddar snow depth for segments 13 and 14.
SR50A observations are not necessary expected to be the same as any individual Leddar segment due
to the size and shape of the different sampling footprints (Figure 1).

Table 5. Maximum snowpack depth occurred on 8 April 2018 10:00. Leddar segments and SR50A snow
depth. From 14 December 2017 to 27 April 2018 winter season 1-hour dataset, n = 3211.

SR50A Leddar Segment (m)
(m) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.83 0.81 0.79 0.80 0.77 0.75 0.75 0.75 0.76 0.77 0.75 0.78 0.78 0.81 0.85 0.85 0.85

Comparable Leddar, SR50A, and field validation data are presented in Table 6. The Leddar
“Proportion clean returns” reduces as air temperatures increase during melt conditions. The Leddar
footprint shows a range in snow depth from a low of 0.08 m to a high of 0.17 m across all segments.
The SR50A snow depth measurement was between zero to 0.04 m for all site visits except the last when
significant melt occurred in a short period of time.

Table 6. Manual field measurement, SR50A, Leddar (all 16 segments), mean air temperature, and daily
albedo. Manual snow depth measurements taken from behind the tower out of the sensor footprints
under the Leddar unit, but exact location varied with each visit. All data collected on calm days with
no precipitation.

Site Visit Date 21-Dec 05-Jan 20-Jan 21-Feb 04-Mar 09-Apr 15-Apr 19-Apr 26-Apr 27-Apr 27-Apr

Start Time 18:30 11:00 15:00 10:45 14:45 14:00 14:00 18:15 06:00 07:00 11:15
End Time 22:30 15:00 19:00 14:45 18:45 18:00 18:00 21:45 10:00 11:00 12:30

Snow Depth (m)
Manual Field Sample 0.35 0.40 0.36 0.70 0.74 0.77 0.53 0.58 0.28 0.20 0.17
SR50A Mean 0.31 0.44 0.36 0.66 0.72 0.71 0.59 0.57 0.29 0.21 0.17
SR50A Min 0.29 0.42 0.35 0.65 0.72 0.70 0.59 0.56 0.28 0.20 0.06
SR50A Max 0.31 0.45 0.36 0.69 0.72 0.73 0.60 0.58 0.29 0.22 0.20

Leddar Mean 0.28 0.36 0.31 0.61 0.66 0.65 0.54 0.53 0.23 0.14 0.12
Leddar Min 0.24 0.32 0.27 0.54 0.61 0.59 0.48 0.46 0.16 0.08 0.06
Leddar Max 0.38 0.40 0.37 0.70 0.74 0.75 0.62 0.61 0.32 0.24 0.21
Proportion clean returns 92% 83% 81% 93% 93% 59% 47% 49% 79% 63% 28%

Air Temperature (◦C) −6.2 3.2 −0.3 −13.4 −7.4 7.4 7.5 5.0 4.8 5.1 16.8
Daily Albedo 0.84 0.83 0.80 0.81 0.85 0.77 0.69 0.73 0.59 0.58 0.58

A regression plot of Leddar and SR50A snow depth (Figure 10a) shows strong agreement between
the two sensors (r2 = 0.98). Figure 10b shows the mean for the Leddar snowpack depth values across
all segments plotted against the single field snow depth measurement below the Leddar unit. There is
low confidence that the manually collected field data represent the whole Leddar or SR50A sampling
footprint. Single manual sampling depth observations were obtained from the back of the tower outside
the sensor footprints reaching approximately 1 m to the location under the Leddar unit attempting to
minimize snow surface disturbance. The manual measurements fall within the Leddar segment array
distribution range as seen in Table 6 but were not co-located to any individual segment. The Leddar
segment means tend to fall below the field measurement resulting in a bias on the order of ~0.05 m due
to variability in snow depth among all segments or manual field measurement errors such as the probe
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not penetrating to the ground surface from ice layers at the base of the pack. However, despite this
small bias Leddar and field depth data show a strong regression (r2 = 0.98).

Sensors 2020, 20, x FOR PEER REVIEW 17 of 21 

 

tower outside the sensor footprints reaching approximately 1 m to the location under the Leddar unit 
attempting to minimize snow surface disturbance. The manual measurements fall within the Leddar 
segment array distribution range as seen in Table 6 but were not co-located to any individual 
segment. The Leddar segment means tend to fall below the field measurement resulting in a bias on 
the order of ~0.05 m due to variability in snow depth among all segments or manual field 
measurement errors such as the probe not penetrating to the ground surface from ice layers at the 
base of the pack. However, despite this small bias Leddar and field depth data show a strong 
regression (r2 = 0.98). 
 

  
(a) (b) 

Figure 10. (a) Plot of Leddar segment mean against SR50A mean snowpack depth. (b) Plot of Leddar 
segment depth range (bars) and mean (blue square) against manual field measurements. 

3.2.3. Leddar Snow Depth Stability  

Table 7. Leddar and SR50A sensor snow depth data from 20:00 26 December 2017 to 06:00 27 
December 2017 nighttime sampling period meeting the minimum specifications. 

Leddar Snow Depth (m) 
Segment Mean STDev Min Max Range 

1 0.191 0.001 0.190 0.194 0.004
2 0.181 0.001 0.180 0.183 0.003 
3 0.189 0.001 0.188 0.190 0.002 
4 0.179 0.001 0.178 0.181 0.003 
5 0.157 0.001 0.156 0.158 0.002 
6 0.162 0.001 0.161 0.164 0.003 
7 0.161 0.001 0.160 0.163 0.003 
8 0.174 0.001 0.173 0.176 0.003 
9 0.179 0.001 0.178 0.182 0.003 

10 0.169 0.001 0.168 0.172 0.003 
11 0.173 0.001 0.172 0.175 0.003 
12 0.176 0.001 0.175 0.178 0.003 
13 0.191 0.001 0.189 0.193 0.003 
14 0.212 0.001 0.211 0.215 0.004 
15 0.197 0.002 0.195 0.200 0.005 
16 0.211 0.001 0.210 0.214 0.004 

SR50A (m) 0.174 0.008 0.164 0.185 0.021 
 
The night-time sampling interval that met the stable sampling constraints of air temperatures 

consistently below −5 °C with no precipitation or wind, was a 10-hour period between 20:00 on 26 
December 2017 to 06:00 27 December 2017. Table 7 shows snow depth for the Leddar segments and 

Figure 10. (a) Plot of Leddar segment mean against SR50A mean snowpack depth. (b) Plot of Leddar
segment depth range (bars) and mean (blue square) against manual field measurements.

3.2.3. Leddar Snow Depth Stability

The night-time sampling interval that met the stable sampling constraints of air temperatures
consistently below −5 ◦C with no precipitation or wind, was a 10-hour period between 20:00 on
26 December 2017 to 06:00 27 December 2017. Table 7 shows snow depth for the Leddar segments and
SR50A. The range in snow depth measurement of each individual Leddar segments was <5 mm, while
the range in SR50A snow depth over the single footprint was >20 mm. The precision observed for the
Leddar sensor exceeds the manufacturer quoted 6 mm when intensity is greater than 15 [24].

Table 7. Leddar and SR50A sensor snow depth data from 20:00 26 December 2017 to 06:00 27 December
2017 nighttime sampling period meeting the minimum specifications.

Leddar Snow Depth (m)
Segment Mean STDev Min Max Range

1 0.191 0.001 0.190 0.194 0.004
2 0.181 0.001 0.180 0.183 0.003
3 0.189 0.001 0.188 0.190 0.002
4 0.179 0.001 0.178 0.181 0.003
5 0.157 0.001 0.156 0.158 0.002
6 0.162 0.001 0.161 0.164 0.003
7 0.161 0.001 0.160 0.163 0.003
8 0.174 0.001 0.173 0.176 0.003
9 0.179 0.001 0.178 0.182 0.003

10 0.169 0.001 0.168 0.172 0.003
11 0.173 0.001 0.172 0.175 0.003
12 0.176 0.001 0.175 0.178 0.003
13 0.191 0.001 0.189 0.193 0.003
14 0.212 0.001 0.211 0.215 0.004
15 0.197 0.002 0.195 0.200 0.005
16 0.211 0.001 0.210 0.214 0.004

SR50A (m) 0.174 0.008 0.164 0.185 0.021



Sensors 2020, 20, 2292 18 of 21

4. Conclusions

This proof of concept study examined the feasibility of using a LeddarTech IS16 LED LIDAR-based
sensor for snowpack surface morphology, depth, and reflectance measurements. The sensor was
co-located and tested against a Campbell Scientific SR50A sonic ranging snow depth sensor during the
2017–2018 winter season. Controls on the intensity signal, comparison to SR50A snow depths, Leddar
distance-to-target (DTT) precision, and accuracy were evaluated.

The Leddar sensor data showed variability in magnitude of the intensity signal during the
formation, settling, ripening, and ablation of the snowpack as well as when precipitation events took
place. Prior to snowpack formation, vegetation and soils produced more noise in the dataset as well
as lower intensity responses. Lower intensity and increased noise also occurred during surface melt
conditions. More noise was present in segments closer to nadir than at the edges of the Leddar footprint.
Diurnal variations in the intensity and noise levels increased later in the season, suggesting that solar
contamination of the Leddar signal could be present and that mitigation measures need to be explored.
There was a high correlation between albedo and the intensity signal (0.77) as well as noise (0.59).
Air temperature demonstrated a negative correlation (−0.77) with intensity, which was likely at least
partly a function of hardware sensitivity, though it could also be influenced by surface melt lowering
the intensity response. Further analysis is required to quantify and better understand the impact of air
temperature on the intensity signal.

The Leddar sensor data showed variability in snow depth measurements across the 16-segment
footprint during snowpack accumulation, compaction, and ablation events. Examining sensor
performance when the snowpack was in a stable state showed Leddar snow depth observations varied
<5 mm in comparison to >20 mm for the SR50A measurements. These Leddar observations exceed
the manufacturer’s specification for accuracy at 50 mm and precision of 6 mm for intensity values
greater than 15. Despite the environmental sensitivities experienced by the Leddar unit, the sensor
demonstrated accurate and precise depth measurements throughout the winter season. The Leddar
and SR50A snow depth measurements displayed a strong linear relationship (r2 = 0.98), with virtually
no bias and a slope of 0.99. Leddar and manual field measurements also showed strong agreement
(r2 = 0.98). Leddar measurements during initial testing using a reflective target were within 20 mm for
DTT, compared to 210 mm for the SR50A sensor.

LED LIDAR has great potential for low-cost monitoring of a range of snowpack conditions,
including depth measurements for 16 independent beam segments, surface morphology, and possibly
surface reflectance if temperature influences on the internal optics can be mitigated. The base
components used in this study were obtained for a combined approximate cost of <CA$1000, which is
similar to a new sonic ranging sensor. Meanwhile, in-situ Leddar snow depth observations can be made
at higher precision and accuracy, over multiple segments along a transect, while the intensity signal
and noise response show promise for either characterising snow surface properties and/or perhaps
precipitation. Compared to traditional laser-based ranging sensors, LED LIDAR has a low intermittent
operational power requirement, making it a suitable candidate for remote deployment where power
options are limited.
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