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Abstract

The clinical recognition of pulmonary arterial hypertension (PAH) is increasing, and with recent 

therapeutic advances, short-term survival has improved. In spite of these advances, however, PAH 

remains a disease with substantial morbidity and long-term mortality. The pathogenesis of PAH 

involves a complex interaction of local and distant cytokines, growth factors, co-factors, and 

transcription factors occurring in the right genetic and environmental setting. These factors 

ultimately lead to the detrimental changes in vascular anatomy and function seen in PAH patients. 

An important association between obesity/insulin resistance and PAH has recently been identified. 

Both conditions occur in the presence of a chronic low-grade inflammatory state, and although it is 

unlikely that a single pathway is solely responsible for the observed association, deficiencies in 

adiponectin, apolipoprotein E (ApoE) and peroxisome proliferator-activator receptor gamma 

(PPAR-γ) activity likely play a prominent role. Although incompletely understood, it is clear that 

further investigation is warranted and the role of weight loss and improved glycemic control in the 

treatment of at-risk patients with PAH and obesity should be determined.
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Introduction

Pulmonary arterial hypertension (PAH) is a disease characterized by abnormal pulmonary 

vascular remodeling, endothelial vasoconstriction, and thrombosis in-situ, ultimately leading 

to elevated pulmonary vascular resistance (PVR) [1–3]. These adverse changes to the 

vasculature affect right ventricular function and can progress to cor pulmonale, or right heart 

failure. Even with new PAH-specific medical therapy (i.e. phosphodiesterase inhibitors, 

endothelin receptor antagonists, and prostacyclins), this remains a disease with significant 

morbidity and mortality [4]. An important distinction must be made between PAH and other 

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and source are credited
*Corresponding author: Elisa Bradley, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center and 
Nationwide Children’s Hospital, Columbus, OH, USA, Tel: 614-722-5622 or 586-322-2378; Fax: 614-722-5638; 
elisa.bradley@osumc.edu. 

HHS Public Access
Author manuscript
J Mol Genet Med. Author manuscript; available in PMC 2018 March 16.

Published in final edited form as:
J Mol Genet Med. 2014 ; 2(Suppl 1): . doi:10.4172/1747-0862.S1-015.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



causes of pulmonary hypertension (PH), which can be divided into five subtypes by the 

World Health Organization (WHO) Dana Point classification system (Table 1) [5]. The more 

general term PH reflects the underlying presence of high pulmonary vascular pressure from 

any source, but is most commonly seen, in a clinical setting, with left sided heart disease 

secondary to systolic heart failure, diastolic dysfunction, and/or left sided valve disease 

(WHO group 2). This is often referred to as pulmonary venous hypertension or PVH. PAH, 

in contrast, is a distinct subtype of PH (WHO group 1) leading to elevated resistance in the 

pulmonary vascular bed, and is defined by the following criteria: mean pulmonary artery 

(mPA) pressure>25 mmHg at rest in the setting of normal pulmonary capillary wedge 

pressure (<15 mmHg) with pulmonary vascular resistance (PVR)>3 Wood units [6].

Causes of PAH include: idiopathic (without identifiable risk factors), heritable, and drug/

toxin-induced, among others (Table 1). PAH can also occur in the background of a 

preexisting medical condition such as connective tissue disease, infectious disease (Human 

Immunodeficiency Virus, Schistosomiasis, etc.), cirrhosis, or congenital heart disease. 

Identification of a single mechanistic process is particularly challenging in the setting of 

multiple etiologies and the complex interplay between cellular, environmental, and genetic 

factors that contribute to the disease process. Symptoms, including shortness of breath and 

decreased exercise tolerance, often develop gradually, leading to a delay in diagnosis and 

treatment. In fact, some patients initially present only after a syncopal episode, reflecting the 

presence of advanced disease with dramatic increases in PA pressure and low cardiac output 

(CO).

Recent diagnostic and technological advances have offered some insight into the underlying 

pathogenesis of this disease, providing the potential for novel therapeutic targets. One of the 

most intriguing aspects of research is the apparent association between PAH and insulin 

resistance (IR) [7,8]. In the following review, we aim to summarize the existing data and 

highlight some potential pathophysiologic mechanisms of PAH and its association with 

obesity and obesity-related IR.

PAH: Epidemiology and Pathophysiology

PAH, as defined by the above criteria, is a relatively rare disorder. Although uncommon, it is 

increasingly being recognized and diagnosed. Prevalence data from a recent French registry 

study suggest that 15 persons per million are affected by the disease [9]. Most of the 

available epidemiologic and outcome data from the United States (US) derives from the 

period prior to the advent of PAH-specific medical therapy and therefore may be inaccurate 

in estimating morbidity and mortality in the presence of newer medical therapies [10,11]. A 

more recent US demographic study, from the Registry to Evaluate Early and Long-Term 

PAH Disease Management (REVEAL) study group, found the mean age of onset of PAH to 

be 53 years old, with a higher female preponderance (79%) than prior registry data sets [4]. 

Concurrent with increased recognition of the disease, this changing demographic to an 

expanding at-risk older population (with higher rates of obesity and IR), suggests that the 

incidence of PAH could continue to escalate. Even with improvements in diagnosis, there is 

still a substantial delay (~2.8 years) between the time of symptom onset and subsequent 

invasive hemodynamic assessment [4]. This diagnostic delay may prove critical if there is 
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delayed introduction of targeted therapies. With currently available medical treatment, 

survival rates at one year have increased from 68% to 91–97% [11,12]. Nonetheless, PAH 

remains a disease with poor long-term survival and no curative treatment or intervention is 

yet available.

PAH is fundamentally a disorder of the pulmonary vasculature, but its pathogenesis involves 

the complex interplay of many different systems. PAH is a progressive disease characterized 

by aberrant endothelial function, changes in vascular tone, and disorganized vascular 

remodeling (secondary to the accumulation of immune and vascular cells within the lumen 

of arteries) (Figure 1). A complete understanding of the numerous factors behind these 

deleterious changes, however, is elusive. The classical view implicating an imbalance 

between vasodilatation and vasoconstriction appears to be overly simplistic to fully account 

for all of the changes that occur with PAH. Recent investigation into the cellular and 

molecular mechanisms of PAH have shed some light on the interplay between various vaso 

active factors, inflammatory mediators and growth inhibitors, and disordered platelet 

aggregation, all of which affect endothelial cells and vascular smooth muscle cells (SMCs) 

[13]. Numerous cytokines/chemokines, adipokines, growth factors, and transcriptional 

factors have been implicated (select factors in Table 2), reflecting the complicated 

multifactorial etiology driving the pathogenesis of PAH and providing a potential reason for 

differential presentation, etiology, and response to therapy [14]. Obesity and PAH appear to 

be related, although this association is not well understood.

Obesity, Insulin Resistance and Inflammation

The prevalence of obesity has markedly increased during the last twenty years [15] and is 

associated with a wide-range of comorbidities affecting nearly every organ system. In spite 

of the well-acknowledged correlation between obesity and vascular disease, evidence linking 

obesity with acute and chronic pulmonary disease has only recently become evident [16]. 

Studies have also illustrated a relationship between obesity and PAH. Autopsies performed 

on overweight/obese subjects have revealed hypertensive changes in the pulmonary 

vasculature not present in normal weight controls [17]. In the REVEAL registry, the 

prevalence of idiopathic PAH was higher in overweight/obese subjects, a finding in 

dependent of the presence of other PAH-related conditions, such as sleep apnea, systemic 

hypertension and diastolic dysfunction [4]. Although far from conclusive, these findings 

suggest that obesity itself may contribute to the development and/or progression of PAH and 

could serve as an important marker of patient outcome.

Excess adiposity is an important cause of IR, one of major factors involved in the 

pathogenesis of Type 2 Diabetes Mellitus (T2DM) and a key component of the metabolic 

syndrome [18]. Although a large number of known and potentially unknown mechanisms 

underlie this relationship [19] recent discoveries have suggested that immune-mediated 

chronic inflammation contributes to the insulin-resistant state [20]. Obesity and related 

comorbidities (including cardiovascular and pulmonary disease) are associated with a state 

of chronic low-grade inflammation that can be detected both systemically and within 

specific tissues [21] and is now recognized as a major cause of decreased insulin sensitivity 

[22]. Inflammatory pathway activation has been observed in all classical insulin target 
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tissues, including adipose, liver, skeletal muscle and the central nervous system, but also 

within the pulmonary vasculature and parenchyma [23–28].

In adipose tissue, macrophages play a central role in this phenomenon. Activation of a pro 

inflammatory pathway leads to the secretion of numerous cytokines, such as TNF-α, 

interleukin-6 (Il-6) and interleukin-1β (IL-1β) and down regulation of adiponectin [29,30]. 

These pro inflammatory cytokines not only induce changes in gene expression that affect 

metabolic regulation but also directly impair insulin signaling by binding to toll-like 

receptors (TLR2 and TLR4), ultimately leading to disruption in glucose uptake [31,32]. Pro 

inflammatory cytokines also impair suppression of adipose tissue lipolysis, leading to free 

fatty acid (FFA) release into the circulation [32–34], impaired insulin-stimulated muscle 

glucose uptake [35], and decreased suppression of hepatic glucose production [36]. One of 

the major cellular mechanism(s) responsible for FFA-induced IR involves activation of 

mammalian target of rapamycin (mTOR) [37], which inhibits protein kinase B (Akt), and 

ultimately prevents the translocation of GLUT-4 from the cytoplasm to the cell membrane 

for glucose transport [25,32,38–41]. Activation of the nuclear factor kappa B (NFκB) 

pathway, a major pro inflammatory pathway, has also been implicated in the pathogenesis of 

IR [25,42].

Clinical Evidence of an Association Between PAH and IR

The first retrospective clinical report of a relationship between IR and PAH in adults was 

published in 2009. Using data from the National Health and Nutrition Examination Survey 

(NHANES), female participants with a diagnosis of PAH, irrespective of cause, were nearly 

twice as likely to be insulin resistant (determined by the triglyceride/high-density lipoprotein 

cholesterol (TG/HDL-C) ratio) compared to BMI-matched controls and had worse six month 

event-free survival [7]. In this analysis, the degree of TG/HDL-C elevation was independent 

of body mass index (BMI). This finding may simply reflect a poor correlation between 

lipoprotein concentration and IR, especially in certain minority ethnic groups [43], but may 

also indicate a dissociation between IR and obesity in the PAH population. A nearly 

simultaneous publication showed an increased incidence of the metabolic syndrome in 

patients with pulmonary venous hypertension (PVH), which was not unexpected given the 

comorbidities that are found with PVH, as evidenced by higher BMI, and increased rates of 

hypertension, hyperlipidemia, T2DM, and coronary artery disease, and does not necessarily 

imply a causal relationship [44]. A subsequent clinical report by the same authors looked at 

the prospective relationship between IR and PAH, rather than PVH [8]. In this cohort, 

glycated hemoglobin (HbA1c) was used to define glucose intolerance (6.0–6.4%) and 

T2DM (>6.5%). Over half (56%) of enrolled PAH patients had either impaired glucose 

tolerance or unrecognized T2DM. Despite this finding, there was no significant difference in 

six-month event-free survival based on the presence or absence of IR. From the same group, 

a recently published case report showed significant improvement in PAH after substantial 

weight loss induced by laparoscopic Roux-en-Y gastric bypass surgery [45]. In this case 

study, the subject had a 20% reduction in body fat mass over 20 months that was associated 

with a decrease in IR (2.6 to 1.2) as measured by the homeostasis model assessment of 

insulin resistance (HOMA-IR). This patient also experienced hemodynamic improvements 

in PAH, characterized by a reduction in PVR from approximately 6.5 to 3.5 Wood units, a 
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decrease in mPA pressure from 60 to 35 mmHg, and improvement in New York Heart 

Association (NYHA) functional class and echocardiographic right heart findings. A similar 

case of another patient undergoing bariatric surgery, reported in 2008, also found 

hemodynamic improvements in PAH, but no measure of glucose tolerance was performed 

[46]. More robust dynamic measures of insulin sensitivity, such as the hyper insulinemic-

euglycemic clamp procedure, have not been conducted in patients with PAH after weight 

loss, and may be useful in future research. Although bariatric surgery is not commonly 

performed in this population, due to the high surgical risk these patients pose, other weight 

loss interventions may be successful in improving the hemodynamic status of overweight 

and obese patients with PAH.

Evidence Supporting the PAH-IR Association

Alterations in several cytokines/chemokines and adipokines, the pathways that produce such 

factors, as well as local and distant co-factors which are present in both adipocytes and the 

pulmonary vasculature, have been implicated as potential mediators of PAH and its observed 

association with IR. The most extensively studied factors will be briefly reviewed here 

(Figure 2).

Adiponectin

The importance of adipose tissue as an endocrine organ and dynamic mediator of metabolic 

processes is increasingly being recognized. Through the release of biologically active 

hormones (i.e. adipokines), adipocytes play a vital role in the development of both IR and 

obesity-associated chronic inflammation. One of the most important of these mediators, 

adiponectin, has key effects on metabolism, the immune system and the vasculature, all 

implicated in the pathogenesis of PAH.

Adiponectin is an almost exclusively adipocyte-derived peptide first characterized in 1996 

and encoded by the ADIPOQ gene [47]. Circulating adiponectin exists predominantly in 

oligimeric form, but also as multiples of hexamers and trimers. The higher molecular weight 

oligomers appear to be more active in glycemic control [48]. Plasma levels of adiponectin 

are paradoxically reduced in obesity, the metabolic syndrome, T2DM and in the presence of 

CVD [49,50] and increased in response to weight loss and thiazolidinedione (TZD)-induced 

peroxisome proliferator-activated receptor-gamma (PPAR-γ) activation [51,52]. Mice 

deficient in adiponectin become insulin resistant in response to a high-fat diet and, in the 

presence of inflammatory cytokines, there is a notable decrease in adiponectin production 

[53–55]. In contrast, modestly increasing the levels of circulating adiponectin effectively 

reverses the diabetic phenotype in obese insulin-resistant ob/ob mice with reduced 

macrophage infiltration and systemic inflammation [56]. These, and other findings, point 

toward a prominent role for adiponectin in obesity-related inflammation and IR.

Adiponectin has important effects on many of the pathogenic processes underlying PAH 

development: increased vascular tone, vascular remodeling and angiogenesis, as well as 

chronic perivascular inflammation. Heightened vascular tone is a central finding in the 

progression of PAH, and available therapeutic agents all target this change through the 
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process of vasodilatation or suppression of vasoconstriction. Adiponectin, independent of 

the presence of diabetes, has endothelium-dependent vasodilator properties, and conversely, 

a decrease in adiponectin levels leads to systemic hypertension [57]. Mice deficient in 

adiponectin have reduced levels of endothelial nitric oxide (one of the most potent 

vasodilators), a change also seen in experimental models of PAH [58]. Although direct 

evidence is lacking, these studies indicate a possible vasoactive role for adiponectinin PAH 

patients.

Platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and vascular 

endothelial growth factor (VEGF) levels are increased in the pulmonary arteries of rodent 

models and PAH patients, leading to the subsequent production and accumulation of SMCs 

[59–61]. This SMC accumulation into the vascular lumen is critical to the development of 

both arterial muscularization/hypertrophy and plexi form lesion formation seen in PAH. 

Growth factor gene expression is increased in response to phosphorylation of platelet-

derived growth factor receptor β (PDGFR-β) and the subsequent downstream activation of 

mitogen-activated protein kinases (MAPKs). Adiponectin inhibits PDGFR-β ligand binding, 

thus decreasing MAPK activation, and suppressing SMC migration and proliferation [62]. 

Evidence of this effect is apparent in rodent models of adiponectin deficiency, which exhibit 

increases in PDGF, VEGF, EGF and other mitogenic factors with SMC accumulation in the 

vascular lumen [59,61]. In addition to its direct effects on the pathway, adiponectin also 

alters the lung expression of the metabolically active PPAR-γ receptor [63] and affects 

circulating levels of ApoE [64], both of which are also involved in the PDGFR-β pathway 

(see below). Adiponectin also directly inhibits SMC proliferation by preventing growth-

factor induced upregulation of the proinflammatory AMPK/mTOR pathway, common to 

both PAH and obesity-related inflammation and IR [65,66].

It is now well recognized that chronic inflammation contributes to the development of PAH. 

An increase in macrophage infiltration, a key component of the inflammatory response, is 

central to the development of hypoxia –induced PH in mice [67]. This infiltration is also 

seen in lung tissue of human subjects with idiopathic PAH [28]. Individuals with PAH have 

increased levels of circulating cytokines, which may help predict poor patient survival, along 

with enhanced migration and accumulation of other active immune cells, including T 

lymphocytes and mononuclear fibrocytes, into the pulmonary vasculature [27,28,68–71]. 

Adiponectin has potent anti-inflammatory effects in macrophages and in the vascular 

endothelium itself [72]. In the pulmonary vasculature and other tissues, adiponectin has also 

been shown to directly inhibit the proinflammatory mTOR and NFkB pathways and reduce 

peri vascular inflammatory cell infiltration [65,66,72–75].

Adiponectin has direct effects on glycemic control (decreased gluconeogenesis, increased 

peripheral glucose uptake) and lipid handling (decreased lipolysis, down regulation of 

lipogenesis, increased fatty acid beta (β)-oxidation) which serve to increase insulin 

sensitivity [76]. Levels of adiponectin, in particular the higher molecular weight forms, are 

inversely correlated with body fat percentage in adults [77,78]. Over expression of 

adiponectin in obese mice leads to improved glycemic control and adiponectin treatment, in 

combination with leptin, has been shown to reverse IR in mice [56,79]. Limited evidence 
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indicates that certain metabolic abnormalities are more commonly seen in PAH patients, 

including IR and dyslipidemia which may contribute to poor patient outcomes [7].

Adiponectin deficiency is a common finding in both PAH and IR, perhaps providing a key 

link between the two disease states. This link may help explain, at least in part, the observed 

association between obesity and PAH and potentially lead to complementary and more 

effective treatments than are currently available.

PPAR-γ and the BMP2/PDGFR/ApoE axis

PPAR-γ is a member of the nuclear-receptor super family that serves as a ligand-activated 

transcription factor for pancreatic β-cell, macrophage, and vascular endothelium gene 

expression. PPAR-γ is most highly expressed in adipose tissue, however, where it plays a 

prominent role in fatty acid storage and glucose metabolism [80]. Long-chain fatty acids and 

eicosanoids serve as endogenous ligands for the receptor, but it has also been well described 

as the target for the TZD class of medications that are useful in the treatment of T2DM and 

IR [81]. PPAR-γ ligand-activation initiates gene transcription either through transactivation 

or transrepression [80,82]. Transactivation is a DNA-dependent process whereby target 

PPAR response elements are bound into a heterodimeric complex with the retinoid X 

receptor (RXR), resulting in target gene transcription. Alternatively, transrepression is the 

DNA-independent process by which PPAR-γ is also activated, but this activation leads to 

repression of gene transcription. Through these two mechanisms, genes targeted by PPAR-γ 
encode many of the proteins implicated in the pathogenesis of PAH, such as adioponectin, 

endothelin – 1 (ET-1), monocyte chemotactic protein – 1 (MCP-1), interleukin – 6 (IL-6), 

and asymmetric dimethylarginine (ADMA, an endothelial nitric oxide synthase inhibitor), 

among others [63].

There is emerging evidence that PPAR-γ gene regulation plays an important role in the 

vascular remodeling and SMC proliferation seen in PAH. Central to this hypothesis is the 

finding that patients with PAH have reduced lung expression of PPAR-γ [83]. A major 

cause of heritable PAH is a genetic mutation in the bone morphogenetic protein receptor II 

(BMP-RII) [84]. This mutation leads to a decrease in PPAR-γ activity, an increase in MAPK 

activity, through the PDGFR-β pathway, and stimulation of vascular remodeling, one of the 

key findings in PAH. A decrease in PPAR-γ expression also causes dysregulation of 

endothelial cell cycle progression further contributing to enhanced vascular SMC 

proliferation [85,86]. In addition, PPAR-γ increases gene expression of adiponectin and 

ApoE, both of which further inhibit SMC proliferation by converging on the PDGFR-β 
pathway [63,64,87–89]. In this complex chain of events, adiponectin binds the PDGFR-β 
ligand, whereas ApoE internalizes PDGFR-β, with both processes serving to decrease the 

PDGFR-β ligand-mediated stimulation of SMC proliferation. This pathway, part of the 

BMP-RII/PPARγ/ApoE axis, may therefore be a key component in the observed PAH/IR 

association. ApoE, a protein with potent anti-atherogenic action has reduced pulmonary 

expression in PAH patients and experimental evidence indicates that ApoE-deficient mice 

fed a high fat diet exhibit features of insulin resistance [87,90,91].
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As discussed previously, IR is associated with a chronic, low-grade inflammatory state that 

is evident in overweight/obese patients with PAH. This inflammatory state is accompanied 

by increased levels of cytokines/chemokines (IL-6, IL-1β, MCP-1 etc.) and decreased levels 

of adiponectin. These factors decrease insulin sensitivity through proinflammatory pathways 

such as NFκB. PPAR-γ acts to decrease NFκB signaling, T cell activation and impair 

production of harmful cytokines [92]. Many of these effects can be illustrated in studies 

involving the PPAR-γ agonist TZDs. These insulin-sensitizing agents have been shown to 

prevent vascular remodeling and atherosclerosis in the general systemic circulation [93–95]. 

Recent evidence, however, points to a direct role of TZDs in the pulmonary vasculature. 

Most notably, in a PAH rodent model, rosiglitazone reversed the changes observed in 

hypoxia-induced vascular remodeling [96].

PPAR-γ, in addition to adiponectin, may also have profound effects on the unopposed 

vasoconstriction that occurs with PAH. Pulmonary ET-1 expression and ADMA 

concentrations are increased in PAH subjects [98]. Cytokines secreted from perivascular 

adipocytes and macrophages inhibit nitric oxide production, a process which is 

predominantly mediated by ET-1 and to a smaller extent by ADMA. PPAR-γ acts to inhibit 

the gene expression of both ET-1 and ADMA, leading to vasodilatation [98].

Limitations of Current Knowledge and Future Directions

PAH is a progressive disease with significant morbidity and mortality despite recent 

advances in diagnosis and treatment. Ultimately, PAH is a vascular disease, but many 

different organ systems and factors are involved in its pathogenesis. PAH is characterized by 

aberrant endothelial function, changes in vascular tone, and disorganized vascular 

remodeling. Recent investigation into the cellular and molecular mechanisms of PAH has 

highlighted the complex interaction between various vasoactive factors, growth inhibitors, 

and disorders of platelet aggregation that act upon target endothelial and vascular SMCs. In 

spite of these advances, it remains unlikely that one factor or pathway is solely responsible 

for all the changes seen in PAH. At present, there is limited understanding of the underlying 

biologic and environmental interactions that contribute to the disease and its varying clinical 

manifestations.

The association between obesity, IR and PAH deserves further investigation. Whether this 

simply represents an association, or a true cause-and-effect relationship, has yet to be 

determined and should be recognized as an important limitation to our current 

understanding. Pathways observed in obesity-associated IR are also active in the pulmonary 

vasculature of PAH patients. These recent findings open up the possibility that therapeutic 

interventions targeted to IR and obesity may one day prove useful in the treatment of PAH. 

Treatments based on the observed changes in adiponectin, ApoE and PPAR-γ, and their 

interrelated metabolic pathways, are promising. In addition, weight loss interventions 

(whether surgical, medical or lifestyle) could potentially improve, or even reverse, the 

pathophysiologic changes seen in overweight and obese PAH patients.

Isolated case reports have illustrated major hemodynamic improvements after substantial 

weight loss induced by bariatric surgery [45,46]. At this time, however, there is no direct 
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evidence that treatment of obesity or insulin resistance changes the progression of disease or 

the response to PAH therapies. Animal studies suggest that PPAR-γ agonists can reverse the 

detrimental changes observed in the pulmonary vasculature, but no human studies are 

available at this time. In addition, heart failure is a relative contraindication to TZD use, and 

since most PAH patients have some degree of right ventricular systolic dysfunction (due to 

pressure overload from the pulmonary circulation), currently available TZD therapy is 

unlikely to be a viable treatment option for the majority of PAH patients. The role of other 

anti-diabetic medications also remains unclear. Incretin-based therapeutic agents (glucagon-

like peptide-1 [GLP-1] agonists, Dipeptidyl peptidase-4 [DPP-4] inhibitors, etc.) have been 

shown to alter PPAR- γ expression in hepatic and adipose tissue and to mitigate IR, but their 

effects on the pulmonary vasculature in PAH subjects are unknown [99,100]. The biguanide 

drug, metformin, not only reduces endogenous glucose production from the liver and 

improves peripheral insulin sensitivity but also has an antiproliferative effect on cell cycle 

progression and may restore vascular reactivity [101–104]. In a rat model of PAH, 

metformin administration inhibited MAPK activation of SMC growth and proliferation but 

no human data is available and the potential for use in PAH patients is theoretical [105]. 

Limited animal data also supports a possible vasodilatory role for statin medications in PAH 

patients but definitive human data is again lacking [106,107].

In summary, data from basic science research, along with limited clinical evidence, supports 

a common pathophysiologic link between obesity, IR and PAH. Therapies targeting cytokine 

alterations, such as changes in PPAR-γ and adiponectin, appear promising but clinical 

studies on human subjects are scarce or nonexistent. Furthermore, the effect of these 

treatments on the specific molecular interactions involved in PAH is unpredictable and the 

ability to translate these interactions to changes in screening, treatment, and patient care is 

largely unknown and requires further research.
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Figure 1. 
The key pathological mechanisms underlying vascular changes in pulmonary hypertension 

(PH). Potential new therapies for PH are also indicated. AEC: Alveolar Epithelial Cell; 

vWF: von Willebrand Factor; TXA2: Thromboxane A2; NO: Nitric oxide; EPC: Endothelial 

Progenitor Cell; ET-1: Endothelin-1; PGI2: Prostaglandin I2; sGC: Soluble Guanylate 

Cyclase; cGMP: Cyclic Guanosine Monophosphate; 5-HT: 5-hydroxytryptamine; VEGF: 

Vascular Endothelial Growth Factor; bFGF: Basic Fibroblast Growth Factor; TGF-a: 

Transforming Growth Factor-a; PDGF: Platelet-derived Growth Factor; HGF: Hepatocyte 

Growth Factor; PPARc: Peroxisome Proliferator-Activated Receptor-c;STAT3: Signal 

Transducer and Activator of Transcription 3; NFAT: Nuclear Factor of Activated T-cells; 

MCP-1: Monocyte Chemoattractant Protein-1; TNF: Tumour Necrosis Factor; IL: 

Interleukin; FKN: Fractalkine; CCL: Chemokine Ligand; cAMP: Cyclic Adenosine 

Monophosphate.
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Figure 2. 
Potential pathways underlying the association between obesity-induced insulin resistance 

and pulmonary arterial hypertension. ET-1: Endothelin-1; ADMA: Asymmetric Dimethyl-

Arginine; NOS: nNitric Oxide Synthase; PDGFR-β: Platelet-derived Growth Factor 

Receptor Beta; MAPK: Mitogen-activated Protein Kinase; AMPK: AMP Activated Protein 

Kinase; mTOR: Mammalian Target of Rapamycin; NFκB: Nuclear Factor Kappa-light-

chain-Enhancer of Activated B cells; ApoE: Apolipoprotein E.
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Table 1

Updated Clinical Classification of Pulmonary Hypertension.

1 Pulmonary arterial hypertension (PAH)

1.1 Idiopathic PAH

1.2 Heritable

1.2.1 BMPR2

1.2.2 ALK1, endoglin (with or without hereditary hemorrhagic telangiectasia)

1.2.3 Unknown

1.3 Drug-and toxin-induced

1.4 Associated with

1.4.1 Connective tissue diseases

1.4.2 HIV infection

1.4.3 Portal hypertension

1.4.4 Congenital heart diseases

1.4.5 Schistosomiasis

1.4.6 Chronic hemolytic anemia

1.5 Persistent pulmonary hypertension of the newborn

1′ Pulmonary veno-occlusive disease (PVOD) and/or pulmonary capillary hemangiomatosis (PCH)

2 Pulmonary hypertension owing to left heart disease

2.1 Systolic dysfunction

2.2 Diastolic dysfunction

2.3 Valvular disease

3 Pulmonary hypertension owing to lung disease and/or hypoxia

3.1 Chronic obstructive pulmonary disease

3.2 Interstitial lung disease

3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern

3.4 Sleep-disordered breathing

3.5 Alveolar hypoventilation disorders

3.6 Chronic exposure to high altitude

3.7 Developmental abnormalities

4 Chronic thromboembolic pulmonary hypertension (CTEPH)

5 Pulmonary hypertension with unclear multifactorial mechanisms

5.1 Hematologic disorders: myeloproliferative disorders, splenectomy

5.2 Systemic disorders: sarcoidosis, pulmonary Langerhans cell histiocytosis: lymphangioleiomyomatosis, neurofibromatosis, vasculitis

5.3 Metabolic disorders: glycogen storage disease, Gaucher disease, thyroid disorders

5.4 Others: tumoral obstruction, fibrosing mediastinitis, chronic renal failure on dialysis

Reprint with permission [5]
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Table 2

Select factors implicated in the development of PAH.

Cytokine/Chemokine Effect Target effect Location

Fractalkine (CX3CL1) ↑ Leukocyte recruitment T cells

RANTES (CCL5) ↑ Attracts monocytes and T cells; induces ET - 1 EC

Endothelin converting enzyme – 1 (ET-1) ↑ Vasoconstriction and mitogenic action EC

Monocyte chemotactic protein – 1 (MCP – 1, 
CCL2)

↑ Monocyte recruitment EC, SMC

Growth Factors

Platelet-derived growth factor (PDGF) ↑ Mitogen and chemoattractant for SMC, EC, 
fibroblasts; Resistance to apoptosis

EC

Epidermal growth factor (EGF) ↑ Induces proliferation and migration of SMC EC, SMC, Macrophages

Vascular endothelial growth factor (VEGF) ↑ Induces proliferation and migration of SMC EC

Seratonin (5-HT) ↑ Mitogenic effect on SMC, vasoconstriction EC

Seratonin transporter (5-HTT) ↑ Co-mitogenic effect on SMC required for 5-HT 
action

SMC

Survivin ↑ Inhibitor of apoptosis

Transcriptional Factors

Nuclear factor of activated T cells (NFAT) ↑ Increases inflammatory mediators including several 
interleukins and TNFα, and inhibits apoptosis

T cells, SMC

EC: Endothelial cells, SMC: Smooth muscle cells, TNFα: Tumor necrosis factor α
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