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TheMiddle East respiratory syndrome (MERS) is a lethal zoonosis caused byMERS coronavirus (MERS-CoV) and poses
a significant threat to public health worldwide. Therefore, a rapid, sensitive, and specific serologic test for detecting
anti-MERS-CoV antibodies in both humans and animals is urgently needed for the successful management of this ill-
ness. Here, we evaluated various novel luciferase immunosorbent assays (LISA) based on nucleocapsid protein (NP)
as well as fragments derived from spike protein (S) including subunit 1 (S1), N terminal domain (NTD), receptor-
binding domain (RBD) and subunit 2 (S2) of S for the detection of MERS-CoV-specific IgG. Fusion proteins, including
nanoluciferase (NLuc) and various fragments derived from theNP or S protein ofMERS-CoV,were expressed in human
embryonic kidney 293 T cells. LISAs that detected anti-MERS-CoV IgG were further developed using cell lysates
expressing various fusion proteins. Panels of human or animal samples infected with MERS-CoV were used to analyze
the sensitivity and specificity of various LISAs in reference to a MERS-CoV RT-PCR, commercial S1-based ELISA, and
pseudovirus particle neutralization test (ppNT). Our results showed that the S1-, RBD-, and NP-LISAs were more sen-
sitive than the NTD- and S2-LISAs for the detection of anti-MERS-CoV IgG. Furthermore, the S1-, RBD-, and NP-LISAs
were more sensitive (by at least 16-fold) than the commercially available S1-ELISA. Moreover, the S1-, RBD-, and NP-
LISA specifically recognized anti-MERS-CoV IgG and did not cross-react with samples derived from other human CoV
(OC43, 229E, HKU1, NL63)-infected patients. More importantly, these LISAs proved their applicability and reliability
for detecting anti-MERS-CoV IgG in samples from camels, monkeys, and mice, among which the RBD-LISA exhibited
excellent performance. The results of this study suggest that the novel MERS-CoV RBD- and S1- LISAs are highly effec-
tive platforms for the rapid and sensitive detection of anti-MERS-CoV IgG in human and animal samples. These assays
have the potential to be used as serologic tests for the management and control of MERS-CoV infection.
© 2019 ChineseMedical Association PublishingHouse. Published by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The Middle East respiratory syndrome (MERS) is a lethal zoonosis
caused by MERS coronavirus (CoV) [1,2]. MERS-CoV infection in humans
causes asymptomatic or mild respiratory illness, severe pneumonia, multi-
organ failure, and even death [3–5]. According to theWorld HealthOrgani-
zation (WHO), as of May 9, 2019, there were 2,419 laboratory-confirmed
cases of MERS and 836 deaths (35% of case-fatality rate) reported from
27 countries (https://www.who.int/csr/don/09-may-2019-mers-saudi-
arabia/en/). Themajority of MERS cases occurred in the Middle East, espe-
cially in Saudi Arabia [1,3,6–9]. The largest epidemic of MERS outside of
Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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Table 1
Comparison of LISAs with ppNT and S1-ELISA.a

Name Description

Convalescent sera Individual serum from laboratory confirmed MERS p
Pooled convalescent sera Pooled serum samples from laboratory confirmed M

Non-MERS-CoV sera
Control sera from patients infected by common hum
(OC43, NL63, 229E, HKU1)

Normal sera (negative) control Serum samples from 40 healthy blood donors

a +, positive;−, negative.

HIGHLIGHTS

Scientific question
This study evaluated novel luciferase immunosorbent assays
(LISAs) based on nucleocapsid protein (NP) as well as fragments
derived from spike protein (S) for detection of MERS-CoV-specific
IgG in humans and animals.

Evidence before this study
Enzyme-linked immunosorbent assay (ELISA),microneutralization
(MN), immunofluorescence assay (IFA), and pseudovirus particle
neutralization test (ppNT) have been performed to detect serum
antibodies against MERS-CoV. There remains a need to develop
novel serological assays independent of protein purification, spe-
cial secondary antibody, virus cultivation and Biosafety Level 3
(BSL-3) laboratory.

New findings
In this study, novel LISAs based on the MERS-CoV S fragments
andNPwere developed. Human and animal samples infectedwith
MERS-CoVwere measured by the newly developed LISAs aswell
as reference methods including commercial S1-ELISA and ppNT.
The results showed that the S1-, RBD-, and NP-LISAs were able
to specifically distinguish MERS-CoV-infected samples from sam-
ples infected by other HCoV as consistent as the reference
methods. Comparing with the commercially available S1-ELISA,
the S1- and RBD-LISAs were 64-folds more sensitive. Moreover,
the applicability and reliability of the LISAswere verified by detect-
ing anti-MERS-CoV IgG in samples from camels, monkeys, and
mice. The RBD-LISA exhibited superior sensitivity and specificity.

Significance of the study
The novel MERS-CoV RBD- and S1-LISAs were developed inde-
pendent of protein purification and special secondary antibody,
and showed super specificity and efficiency for the detection of
anti-MERS-CoV IgG in human and animal samples. These assays
are recommended for serological diagnosis of MERS-CoV infec-
tion in the investigation of epidemic characteristic, origin tracing
and vaccine study ofMERS-CoV, theywould contribute to the sci-
entific control and prevention of MERS.
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the Arabian Peninsula occurred in South Korea in May 2015, and the index
case was a traveler who visited the Middle East [10,11]. To date, all con-
firmed MERS cases have been linked to the Middle East. Human-to-
human transmission of MERS-CoV has been well documented in family,
community, and healthcare settings [5,12–14]. MERS-CoV poses a signifi-
cant threat to public health worldwide because of the high fatality rate of
MERS infection and potential outbreaks of MERS-CoV infection in
healthcare facilities. Furthermore, there are no specific vaccines or thera-
peutics for the prevention or treatment of MERS-CoV infection [15–21].

Dromedary camels have been implicated as a zoonotic source of human
infections [3,4,16,22–31], and MERS-CoV RNA and viable virus have been
isolated from them [7,22,32]. The seroprevalence of MERS-CoV antibodies
atien
ERS p
an cor
is very high in dromedary camels within Eastern Africa and the Arabian Pen-
insula [22,24,25,29,33–39]. The continuing MERS epidemic in the Mid-
dle East is believed to be related to the failure to control the zoonotic
sources, particularly dromedary camels, resulting in ongoing camel-to-
human transmission [2,26,40–42]. Moreover, MERS-like CoVs have
been detected in bat species globally, and thus, are thought to be the res-
ervoirs of MERS-CoV [7,41,43,44]. However, the exact source of many
primary MERS cases remains unknown, and the transmission mecha-
nisms are poorly understood.

The MERS-CoV genome encodes 16 non-structural proteins (nsp1–16)
and four structural proteins, including the spike (S), small envelope (E),
membrane (M), and nucleocapsid (N) proteins. The viral structural pro-
teins, S and N, have the highest immunogenicity [45]. The S protein un-
dergoes protease cleavage into S1 and S2 subunits. The S1 and S2
subunits mediate coronavirus entry into host cells by binding to the
receptor on the host-cell surface via the receptor-binding domain (RBD)
of the S1 subunit [32,46–48]. Both the S and N proteins are the major
immunodominant regions of MERS-CoV, and are often applied as target an-
tigens for detection of a humoral immune response after infection.

Real-time quantitative reverse transcription-polymerase chain reaction
(qRT-PCR) is a common method for the diagnosis of MERS-CoV infection
[6,49]. However, it is not suitable for the detection of infection in some clin-
ical units and large-scale epidemiological screening. Specific antibodies play
important roles in determining the severity of human infection, and detection
of these specific antibodies is used in the epidemiological investigation of
MERS-CoV infection in animals and humans. Several methods can be used
to detect serum antibodies against MERS-CoV, such as enzyme-linked immu-
nosorbent assay (ELISA), microneutralization (MN), immunofluorescence
assay (IFA), the plaque reduction neutralization test (PRNT), and the
pseudovirus particle neutralization test (ppNT). Among these assays, MN,
IFA, and PRNT depend on virus cultivation, and thus, require equipment
and facilities located within a Biosafety Level 3 (BSL-3) laboratory
[1,3,12,18,35,39,50–54]. While there are commercial anti-MERS-CoV sero-
logic test kits for humans and animals including ELISA and IFA, rapid and sen-
sitive serological assays for the detection of anti-MERS-CoV IgG independent
of purified protein, specific secondary antibody, virus cultivation and BSL-3
facilities are still urgently needed.

An ultrasensitive and high-throughput luciferase immunosorbent assay
(LISA) based on recombinant antigens fused with NanoLuc luciferase
(NLuc) has been reported to detect IgG against several pathogens
[55–58]. This assay has the advantage of not requiring a BSL-3 laboratory
facility and species-specific labeled secondary antibodies for detection. In
this study, we developed various novel LISA platforms based on the
MERS-CoV NP or fragments of S. The diagnostic performance of various
MERS-CoV LISA were evaluated using serum panels from MERS-CoV-
infected humans and animals, as well as sera from patients infected with
other human CoV.

2. Materials and methods

2.1. Samples and ethics

Several panels for anti-MERS-CoV IgG detection were collected and
stored at −70 °C before testing. The detailed information is described in
Number Expected result ppNT ELISA LISA

S1 RBD NP

ts 5 + + + + + +
atients 2 + + + + + +
onaviruses

7 − − − − − −

40 − − − − − −



Table 2
Summary of the detection results in animal samples.

Samplea RT-PCRb ppNT S1-LISA RBD-LISA NP-LISA

C1 + − − − −
C2 + + + + −
C3 + + − − −
C4 + + + + +
C5 + + + + +
C6 + + + + +
C7 + − + + +
C8 + + + + +
C9 + + + + +
C10 + + + + −
C11 + + − + −
C12 + + + + +
C13 + − − − −
C14 + + − + −
C15 + + + + +
C16 + + + + +
C17 + + + + +
C18 + + + + +
C19 + + + + +
C20 + + − + −
C21-C38 − − − − −
R1 ND − − − −
R2 ND + + + +
R3 ND + + + +
M1 ND + + + +
M2 ND + + + +

a C, camel serum; C21-C38, normal camel serum controls; R1, marmoset serum,
infected 3 days; R2, rhesus serum, infected 14 days; R3, rhesus serum, infected
21 days; M, MERS-CoV-infected mice.

b Detection of nucleic acid extracted from swab samples; ND, not determined; +,
positive;−, negative.
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Tables 1 and 2. In brief, these panels included the following. 1) Normal
serum samples from 40 healthy blood donors without MERS-CoV infection,
which were stored in our laboratory. 2) Convalescent sera from five
MERS-CoV infected patients. Sera from five MERS-CoV patients with
high antibody titers and sera from five MERS-CoV patients with medium
titers were mixed to prepare two pooled convalescent serum samples.
Control sera from seven non-MERS-CoV patients were from individuals
with antibodies to common human CoV (HCoV), namely, HCoV-229E,
HCoV-NL63, HCoV-OC43, and HCoV-HKU1, all of which were supplied
by the WHO [59]. 3) Serum samples from confirmed MERS-CoV-
infected camels from Saudi Arabia, were supplied by the University of
Hong Kong. Serum samples from MERS-CoV-infected monkeys and
mice were stored in our laboratory. Besides all the samples listed in
Tables 1 and 2, one convalescent serum sample from the first imported
MERS-CoV-infected patient in China was also detected in the study to
characterize the LISAs. The present studies were approved by the Insti-
tutional Review Board of the National Institute for Viral Disease Control
and Prevention, China CDC, and by the Ethics Committee of Southern
Medical University (SMU No. 20160428).
2.2. Construction and characterization of recombinant proteins comprised of var-
ious fragments of MERS-CoV proteins fused with luciferase

As shown in Figure 1A, MERS-CoV NP (1–414 aa) and fragments of
MERS-CoV S [S1 (1–734aa), N-terminal domain (NTD) (18–353 aa), RBD
(367–606 aa), and S2 (788–1353 aa)] were amplified by RT-PCR. All of
these gene fragments were cloned into the luciferase expression vector
pNLF-1-N (Promega, Madison, WI, USA). All recombinant plasmids were
confirmed by DNA sequencing. Human embryonic kidney (HEK) 293 T
cells were seeded in a cell culture plate and cultured until the confluence
reached >85%. Then recombinant plasmids were transfected into HEK
293 T cells using jetPRIME® transfection reagent (Polyplus, Illkirch,
France) according to the manufacturer's instructions. After 48 h, cells
were lysed on ice for 30min in lysate buffer, and the supernatantswere har-
vested after centrifugation at 12,000 × rpm for 5 min at 4 °C. The expres-
sion of NP or S fragments in the fusion proteins was verified by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and west-
ern blotting (WB). Nluc activities in the supernatants were detected after
reacting with the luciferase substrate mix (Promega). Relative fluorescence
intensity (RFI) values were immediately determined using the Gaomax
luminometer (Promega).
2.3. Development of the LISAs based on MERS-CoV NP and fragments of S

Briefly, 96-well Costar flat-bottomed luminometry plates were
coated with protein G (5 μg/mL, 100 μL/well) in carbonate buffer
(pH 9.6) overnight at 4 °C. After three washes with phosphate-
buffered saline (PBS) containing 0.05% Tween 20 (PBS-T), the plates
were incubated with blocking solution (PBS containing 5% non-fat
milk) for 1 h at 37 °C. Then the wells were washed, and aliquots of seri-
ally diluted sera (100 μL) were added to the wells and incubated for 1 h
at 37 °C. The plates were washed and incubated with diluted Nluc-
fusion proteins (50 μL) for 30 min at 37 °C. Then the plates were washed
again, and luciferase substrate (50 μL) (Promega) was added to each
well. RFI values were determined using a Gaomax luminometer
(Promega). Each sample was tested in duplicate. The cut-off values
were determined as two-fold the average of the normal controls. Nega-
tive controls were an equal volume mixture of sera from healthy blood
donors. Results were expressed as the mean RFI from duplicate wells,
and values were corrected by subtracting the RFI value of the back-
ground wells incubated with HEK 293 T cell extracts in the absence of
sera.
2.4. qRT-PCR screening assay

Detection of MERs-CoV-specific nucleic acid in the samples was per-
formed using qRT-PCR targeting genes upstream of the envelope (upE)
and NP (N) as previously reported [60–62].
2.5. Euroimmun S1-based ELISA for MERS-CoV

A commercially available anti-MERS-CoV ELISA IgG kit was based on
the purified MERS-CoV spike protein S1 domain (S1-based ELISA,
Euroimmun, Lübeck, Germany). The samples were serially diluted and
tested according to the manufacturer's recommendations [63]. Euroimmun
recommends interpreting results in a semiquantitative way as follows: a
ratio of the extinction of the control or patient sample over the extinction
of the calibrator<0.8, 0.8–1.1, and≥1.1were defined as negative, border-
line, and positive, respectively.
2.6. MERS-CoV S-based ppNT

A MERS-CoV S-based ppNT was used to detect the neutralization activ-
ities of serum samples as previously reported [63]. The detection results
were expressed as RLI. Serum neutralizing antibody activity was evaluated
as the pseudovirus inhibition rate: Inhibition rate (%) = (RLInormal con-
trol − RLIsamples)/RLInormal control] × 100. An inhibition rate ≥ 50% was
characterized as positive neutralization activity.
2.7. Statistical analysis

All data were analyzed using GraphPad Prism 5 (GraphPad Software
Inc., La Jolla, CA, USA) and SPSS (IBM, New York, NY, USA). Pearson's cor-
relation coefficients among different assays were calculated, and statistical
significance was defined as a p value < 0.05.



Figure 1.Design diagrams of NLuc-fusion proteins and their expression inmammalianHEK 293 T cells. (A) Design diagram offiveNLuc-antigen fusion proteins. TheNLucwe
used can be secreted. We list the marked “linker” as linker sequence (GSSG). (B) Expressions of the recombinant NLuc-S1, NLuc-NTD, NLuc-RBD, NLuc-S2, and NLuc-NP
proteins were identified by a specific monoclonal antibody via WB.

W.Wang et al. / Biosafety andHealth 1 (2019) 134–143 137
3. Results

3.1. Expression of recombinant MERS-CoV NP and fragmented S proteins fused
with luciferase

To establish a novel detection method for MERS-CoV IgG, five recombi-
nant plasmids based onNLucwere constructed, which separately contained
the full-length of MERS-CoV NP or S1, NTD, RBD, and S2 of S, (Figure 1A).
These plasmids were confirmed by restriction endonuclease digestion, gel
electrophoresis and DNA sequencing. The recombinant plasmids were
used to transfect HEK 293 T cells, and expression of the target proteins in
the supernatants of the cell lysates were determined by WB using murine
polyclonal antibodies against MERS-CoV (Figure 1B). These results con-
firmed the construction of the recombinant plasmids and expression of
the target fusion proteins.

3.2. The optimal antigen or antigenic domains needed for anti-MERS-CoV IgG
detection

MERS-CoVNP and S1, NTD, RBD, and S2 of the S protein (Figure 1) were
used to develop the LISA by characterizing the binding domains needed for
anti-MERS-CoV IgG. In order to avoid the difference in transfection efficiency
and protein expression from different preparations, we measured the lucifer-
ase activity of crude cell lysates to determine the RFI, which was usually
between 108 and 1011. For individual antigens, cell lysates with a minimum
of 107 RFI were added to each reaction in the LISA. In addition, we included
positive and negative controls in each reaction plate to ensure that the results
were consistent and reproducible. Normal (negative) controls of serum sam-
ples from 40 healthy blood donors were diluted by 1:100 and used to deter-
mine the background values and calculate the cut-off levels of anti MERS-
CoV IgG detection by LISA. The cut-off values were determined to be 2-fold
of the average RFI value of normal adult controls, i.e., 21,388, 17,344,
15,748, 18,398 and 15,259 for S1-, RBD-, NP-, NTD-, and S2-LISAs for
MERS-CoV IgG, respectively. The serum sample from the first imported
Figure 2 MERS-CoV-infected patient in China was serially diluted and de-
tected. The S1- and RBD-LISAs confirmed the positivity of the sample at a di-
lution as low as 1:1600, which was slightly better than the NP-LISA.
However, the NTD-LISA was unable to distinguish the positive sample from
the normal control at the dilution of 1:400, and S2-LISA was not able to de-
tect the difference at a dilution of 1:100 (Figure 2). This indicated that the
S1-, RBD-, and NP-LISAs were superior to the NTD- and S2-LISAs for detect-
ing MRES-CoV IgG from human samples.

3.3. Comparison of the characteristics of MERS-CoV LISAs and the commercial
S1-ELISA and ppNT for the detection of anti-MERS-CoV IgG

To further confirm the efficiency of S1-, RBD-, and NP-LISAs, a panel of
samples supplied by the WHO (Table 1) were used to compare the efficacy



Figure 2. Sensitivities of the LISAs based on different NLuc-antigens. Serum samples from the first imported MERS patient in China collected 28 days after admission to the
hospital (positive; Pos) were serially diluted and detected. One sample from a healthy blood donor was used as negative control (negative; Neg). Cut-off values were deter-
mined from serum samples from 40 healthy blood donors. RFI, relative fluorescence intensity.
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of various LISAs in detecting anti-MERS-CoV IgG, together with the com-
mercially available Euroimmune S1-ELISA and ppNT kits as controls. The
results are summarized in Table 1 and illustrated in Figure 3. The NP-,
Figure 3. Specificity and cross-reactivity of a LISA and commercial S1-ELISA were tested with a panel of sera. The panel included single and pooled convalescent sera from
confirmed MERS patients and negative control serum. The details of the sample descriptions are shown in Table 1.
S1-, and RBD-LISAs showed high consistency with S1-ELISA and ppNT.
All of these methods were able to specifically distinguish MERS-CoV-
infected samples from other HCoV-infected samples (Table 1 and
Figure 3). Subsequently, correlations of S1-, RBD-, and NP-based LISAs
with that based on the S1-ELISA were analyzed (Figure 4). The scatter
plots showed excellent correlations between the S1-ELISA and the S1-,
RBD-, NP-LISAs, with Pearson's correlation coefficients of 0.8096, 0.8218,
and 0.8731, respectively. To further evaluate the sensitivity of the S1-
ELISA and S1-, RBD-, NP-LISAs, several serum samples supplied by the
WHO were diluted serially and detected by each of these assays
(Figure 5). The RBD-LISA confirmed the positivity of all samples and S1-
LISA confirmed two of four (the volume of the fifth serum was not enough
for the detection) at a dilution as low as 1:25,600. RBD-LISA, and S1-
LISA were highly superior to that of NP, which detected all samples as
positive at a dilution of 1:1600. However, all four positive samples
were not detected by the S1-ELISA, even at a 1:400 dilution, indicating
that the lower limits of detection of the MERS-CoV LISAs were 16–64-



Figure 4. Correlation of the MERS-CoV LISAs (RFI) with the S1-ELISA (ratio) for detecting IgG antibody. Ratio of the S1-ELISA results was plotted against the RFI of the S1-
LISA, RBD-LISA, and NP-LISA. The samples used in the plots included five convalescent serum samples from a MERS-CoV-infected patient with multiple dilutions and three
sera from normal (negative) controls listed in Table 1.

Figure 5.Analysis of the sensitivity of MERS-CoV S1-ELISA and LISAs. Five samples (four convalescent sera fromMERS-CoV-infected patients and one normal serum used as
negative control, the volume of the fifth convalescent serumwas not enough for detection) were serially diluted and dispensed into the wells of the same plate. Each sample
was tested in duplicate. Data are representatively from at least two independent experiments.
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fold higher than those of the S1-ELISA. Moreover, a receiver operating
characteristic (ROC) analysis was conducted to determine the sensitiv-
ity and specificity of the S1-ELISA, S1-, RBD-, and NP-LISAs (Figure 6).
When the serum was diluted to 1:100, the area under the curve (AUC)
was calculated to be 1.0 for all four assays, and both the percentage of
sensitivity and specificity for each assay was estimated to be 100% at
the given cut-off values. When the serum was diluted to 1:400,
1:1600, and even 1:6400, the AUC for the S1-LISA and RBD-LISA was
calculated to be 1.0, while the AUC for the NP-LISA and S1-ELISA de-
clined slightly to 0.98 and 0.88, respectively. Additionally, the percent-
age of sensitivity and specificity for the S1-LISA and RBD-LISA was
maintained at 100% at the given cut-off values; however, the sensitivity



Figure 6. ROC analysis. AUC values for the WHO antibody panel were determined using a 1:100 dilution (left) or 1:100, 1:400, and 1:1600 to 1:6400 dilution (right) using
commercial Euroimmun S1-ELISA (A), in-house S1-LISA (B), RBD-LISA (C), and NP-LISA (D).
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for NP-LISA and S1-ELISA declined to about 80% and 70%, respectively,
even though the specificity was still 100%. These results indicated that
the S1- and RBD-LISAs were superior to the NP-LISA and S1-ELISA in
sensitivity and specificity for detecting anti-MERS-CoV antibodies in
human serum samples.
3.4. Application of LISA in detecting anti-MERS-CoV IgG from animal samples

To further evaluate the efficiency of MERS-CoV-LISA, serum samples
from uninfected camels (controls), MERS-CoV-infected camels (confirmed
to be positive by RT-PCR), monkeys, and mice were detected using the
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above-mentioned LISAs, with ppNT as the control. The results are shown in
Table 2. All 18 normal camel samples (C21–C38)were confirmed to be neg-
ative by all the methods tested. A total of 17 of 20 MERS-CoV-infected
camel samples were positive by ppNT, while C1, C7, and C13 were nega-
tive, which was inconsistent with RT-PCR results. Notably, C7 was positive
for anti-MERS-CoV IgG based on the S1-, RBD-, and NP-LISAs, while C3was
detected as positive by ppNT but as negative for anti-MERS-CoV IgG based
on S1-, RBD-, andNP-LISAs.Moreover, samples C11, C14, and C20were de-
termined to be positive by ppNT and RBD-LISA, but were negative by S1-
and NP-LISA. Our results also showed that the two samples from MERS-
CoV-infected marmoset monkeys (R2 and R3) and the two samples from
MERS-CoV infected mice (M1 and M2) were positive via ppNT, as well as
S1-, RBD-, and NP-LISAs. The results showed that if RT-PCR results served
as the standard, the sensitivity of S1-, RBD-, and NP-LISA was 70%, 85%,
and 60% respectively, and the specificity was 100% for all assays. When
ppNT results served as the standard, the sensitivity was 81%, 95%, and
71%, respectively, and the specificity was 95% for all assays. The results
showed that S1-, RBD-, and NP-LISAs were highly consistent with the
ppNT results. In conclusion, MERS-CoV S1-, RBD-, and NP-LISAs showed
high consistency with ppNT and RT-PCR. The RBD-LISA showed the
highest consistency with ppNT (Table 2).

4. Discussion

MERS is an emerging infectious disease with a high fatality rate [64].
Diagnosis of MERS-CoV infection using anti-MERS-CoV IgG is typical for
post-exposure epidemiologic studies or seroprevalence investigations
[18,48,53,54,63]. Although anti-MERS-CoV serologic test kits are commer-
cially available, such as ELISA and IFA developed by Euroimmun (Lübeck,
Germany), the performance (especially sensitivity as a screening test) of
these kits needs to be optimized. In this study, we reported various novel
MERS-CoV recombinant antigen-based LISAs that do not require a BSL-3
laboratory or species-specific secondary antibodies. Furthermore, these
LISA-based assays are potentially useful for the rapid, specific, and sensitive
detection of anti-MERS-CoV IgG in both humans and animals.

Traditionally, PRNT and MN have been the standards for detecting
MERS-CoV-specific antibodies. However, these assays are time-
consuming, laborious, and require high-level biosafety facilities [53,60].
The performance of the commercial MERS-CoV S1-based ELISA has been
assessed by different groups [18,35,51,65,66], all of which have shown
that the sensitivity of this assay needs to be improved, as it shows high
cut-off values from the optical density (OD) ratio (the manufacturer's in-
structions provided a higher breakpoint for ELISA IgG to warrant specific-
ity, with a borderline OD ratio cut-off of 0.8–1.1 and positive ≥1.1). LISA
is characterized by rapid preparation, ultra-sensitivity, high-throughput,
and simple operation [55,56]. Cell lysates are directly used in the detection
assay, which avoids purification and post-expression modifications [55]. In
the current study, we developed LISAs for the detection of anti-MERS-CoV
IgG in human and animal sera based on novel and ultrasensitive NLuc ap-
proaches. We compared LISAs with the commercially available S1-based
ELISA kit using a panel of anti-MERS-CoV IgG sera. Our data indicated
that several LISAs (RBD-, S1-, and NP-LISAs) were highly correlated and
more sensitive (by at least 16-fold) than the S1-based ELISA in detecting
anti-MERS-CoV IgG in patient samples. We also confirmed that the RBD-,
S1-, and NP-LISAs were able to specifically recognize anti-MERS-CoV IgG
without cross-reactiondy with samples derived from other HCoV (OC43,
229E, HKU1, NL63)-infected patients.

Recently, Alagaili et al. [33] and Okba et al. [67] reported a luciferase
immunoprecipitation system (LIPS) and detected MERS-CoV antibody
with improved sensitivity and specificity. Compared to LIPS, LISA does
not need pre-incubation of Ruc-antigen and samples and transfer of the
mixture to a special 96-well filter plate containing the protein A/G beads.
Moreover, LISA does not need a special plate washer with vacuum to cap-
ture the antigen-antibody-beads complex [55,68]. In the LISA system,
Nluc replaced the Renilla luciferase used in LIPS. NLuc has been shown to
generate a glow-type luminescence (signal half-life >2 h) with 150-fold
greater activity than Renilla luciferase. It is also brighter than Firefly lucif-
erase [56]. Lastly, it is easy to construct fusion proteins based on Nluc en-
zyme with the full length of 171 amino acids, which makes it an excellent
reporter protein [69].

CoV structural proteins, especially S and NP proteins, play important
roles in CoV infection and detection. In addition, NP is probably the most
abundant antigen after CoV infection [45], and antibodies to NP have
been used as serological diagnostic biomarkers. To optimize the antigens
for anti-MERS-CoV IgG detection, we constructed various NLuc fusion pro-
teins based on MERS-CoV NP protein or fragments of S protein. Our results
showed that S1-, RBD-, and NP-LISAs were more sensitive than the NTD-
and S2-LISA for detecting anti-MERS-CoV IgG. Moreover, ROC analysis
showed that S1- and RBD-LISAs were superior to the NP-LISA and S1-
ELISA in regard to the sensitivity and specificity of detecting anti-MERS-
CoV IgG in serum samples.

MERS-CoV is a zoonotic disease that causes global public health
concerns. Dromedary camels, bats, and other animals are potentially in-
volved in MERS-CoV transmission [1,12,35,42,60]. Antibodies against
MERS-CoV in domestic livestock (including dromedary camels) in the
Middle-East and Africa were investigated using ppNT, MN, and IFA assays
[7,27,29,34–36,48,53,60,70]. MERS-CoV IgG seropositivity gradually in-
creased in dromedary calves from the Middle East with increasing age
based on the S1-ELISA. Currently, there are several knowledge gaps regard-
ing the zoonotic origin and animal-human interface of MERS-CoV infection
due to limited tools and resources [12,49]. It is very important to establish a
platform to screen anti-MERS-CoV IgG among different species in endemic
areas and conduct a traceable investigation of animal epidemic foci. Theo-
retically, samples from vectors, such as mites and mosquitoes, as well as
other animals, including bats, mice, camels, and monkeys, could be de-
tected by LISA; however, these may not be detected using a typical ELISA
due to the lack of suitable enzyme-labeled secondary antibodies. In this
study, the commercial S1 ELISA did not detect positive sera samples from
camels, monkeys, or mice. However, the positive samples were successfully
detected by several LISAs established in this study, which proved the appli-
cability and reliability of LISAs. Additionally, anti-MERS-CoV IgG detected
by LISAs demonstrated a strong correlation with ppNT and RT-PCR from
several animal hosts including camels, mice, and monkeys. Furthermore,
RBD-LISA was the most sensitive LISA developed in this study. In conclu-
sion, we have developed several novel LISAs for the detection of anti-
MERS-CoV IgG in humans and animals. These assays have the potential to
be used for large-scale screening of anti-MERS-CoV IgG and study of sero-
logical epidemiology of MERS-CoV infection among all species.
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