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Abstract

Background: Reconstructing gene regulatory networks (GRNs) from expression data is one of the most important
challenges in systems biology research. Many computational models and methods have been proposed to
automate the process of network reconstruction. Inferring robust networks with desired behaviours remains
challenging, however. This problem is related to network dynamics but has yet to be investigated using network
modeling.

Results: We propose an incremental evolution approach for inferring GRNs that takes network robustness into
consideration and can deal with a large number of network parameters. Our approach includes a sensitivity
analysis procedure to iteratively select the most influential network parameters, and it uses a swarm intelligence
procedure to perform parameter optimization. We have conducted a series of experiments to evaluate the external
behaviors and internal robustness of the networks inferred by the proposed approach. The results and analyses
have verified the effectiveness of our approach.

Conclusions: Sensitivity analysis is crucial to identifying the most sensitive parameters that govern the network
dynamics. It can further be used to derive constraints for network parameters in the network reconstruction
process. The experimental results show that the proposed approach can successfully infer robust GRNs with
desired system behaviors.

Background
Gene regulatory networks (GRNs) are essential for con-
trolling cellular metabolism and the organismal develop-
ment. Under the command of transcription factors (TFs),
each gene influences the activity of the cell by generating
messenger RNA (mRNA) that guides the synthesis of
proteins by ribosomes in the cytoplasm (the location in
the cell where biochemical reactions and molecular
events take place). Gene network modeling uses gene
expression data to characterize the phenotypic behavior
of a system under study. With the reconstructed net-
works, biologists can generate and test hypotheses to
further understand the complex phenomena that occur

in nature systems and to explore the dynamics of those
systems.
Modeling GRNs manually on the basis of the experi-

mentally measured time-series data takes a considerable
amount of time. Therefore, an automated reverse-engi-
neering procedure is recommended [1,2]. This procedure
involves altering the gene network in some way, observing
the outcome, and using computational methods to infer
the underlying principles of the network. To derive a rea-
listic model, available domain knowledge (including func-
tional and structural information) can be integrated into
the computational methods. Figure 1 illustrates the general
procedure of inferring GRNs from quantitative expression
data. The inferring/modeling block of this figure indicates
the computational procedure used to derive network para-
meters for a given model, to build and simulate the model,
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and to evaluate it by comparing the behavior of the
inferred model with the original data set. In addition to
making use of expression data, one recently developed
strategy combines information from various sources to
narrow down the search space in the network. This strat-
egy shortens the time and effort required for the validation
and discovery of networks. For example, if some gene
names are known then they can be mapped into knowl-
edge bases (e.g., the Gene Ontology) to extract biological
knowledge (e.g., gene function) that can be used to deter-
mine the network structures. Our goal in this study is to
establish a methodology for network inference and to
investigate aspects of network dynamics that have not
been addressed previously.
To infer a network with desired system behavior, the

most important steps are to select a network model and
then to fit the network’s structural parameters to the
available expression data. Many models have been pro-
posed to address different levels of biological details, ran-
ging from the very abstract (involving Boolean values
only) to the very concrete (including full biochemical
interactions with stochastic kinetics). Abstract models
are easy to simulate and therefore less computationally
taxing, but it has been proven that they are not able to
capture certain system behaviors. In contrast, concrete

models are more suitable for simulating biochemical pro-
cess realistically, but, because of their computational
complexities, these models can only be applied to small
systems. To capture the underlying physical phenomena
of a gene network we took one of the most popular and
well-studied concrete models, the S-system model, as an
example of a biological network, and we used both simu-
lated and collected real gene expression data to recon-
struct the model. The S-system model is a type of
ordinary differential equation (ODE) model. It consists of
a particular set of tightly coupled ODEs in which the
component processes are characterized by power law
functions [3,4]. The system structure of an S-system is
described by the following equation:

dxi

dt
= αi

N∏
j=1

x
gi,j

j − βi

N∏
j=1

x
hi,j

j

Here, xi is the expression level of gene i, and N is the
number of genes in a genetic network. The non-negative
parameters ai and bi are rate constants that indicate the
direction of mass flow. The real-number exponents gi,j
and hi,j are kinetic orders that reflect the strength of
interactions from genes j to i. The above set of para-
meters defines an S-system model. To infer an S-system

Figure 1 Reverse-engineering a GRN. General procedure for reverse engineering a gene regulatory network.
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model is, thus, to estimate all of the 2N (N+1) parameters
simultaneously.
Although non-linear ODEs can more accurately model

the system dynamics of gene networks, they are difficult
to solve by traditional optimization techniques [2,3]. To
reduce the complexity of such models, Di Bernardo et. al
developed an approach that involves taking a series of
steady-state gene expression measurements following
transcriptional perturbations and reducing the linear
ODEs to a linear regression problem that can be solved
with relevant techniques [5]. In addition, some research-
ers employed the strategies of gene clustering for dimen-
sion reduction and gene classification for identification of
expression patterns to reduce task complexity [6-10]. As
evolutionary algorithms (EAs) have been widely used to
solve many difficult optimization tasks with good results,
they have been suggested as a way to infer gene networks
[3,4]. Among many studies on this topic, the most rele-
vant are those involving the use of EAs to infer S-system
models (e.g, [3,4,11]). In these studies, the network para-
meters of the S-system were arranged as a string of float-
ing numbers (i.e., the chromosome in EAs) that could be
evolved by genetic operators.
In recent studies of EA-based parameter inference, one

critical problem, network robustness [12-14], has not
been addressed. It is important to investigate the effect of
network parameter perturbations on the overall system.
These parameters not only are the numerical compo-
nents of the model, but also represent the activities or
interactions among proteins, transcription factors, and
mRNAs in the gene network. Each network parameter
has an important role in determining the behavior of a
biological system. Parameters that are very sensitive to
variation can introduce fragility into the system. In fact,
recent research has found that parameters can define the
dynamics of a model, and more important, studies have
shown that enforcing constraints on the parameters can
limit (control) model dynamics [15]. Specifically, by mea-
suring and analyzing the variations of network para-
meters and their effects on relevant genes, the gene-gene
interactions of an inferred model can be interpreted. To
ensure the robustness of the inferred network and to
further investigate gene interactions, it is important to
derive an acceptable value range for each parameter and
to restrict the parameter’s value to the specified range
during the network reconstruction process [13]. There-
fore, we take parameter sensitivity into consideration in
the network reconstruction procedure so that robust
results can be obtained.
Sensitivity analysis (SA) is an indispensable technique

that can help researchers to investigate the parameter
robustness properties of an inferred network. By varying
the parameter values within a certain range and per-

forming statistical calculations to measure the system
instability (or fragility), researchers can identify the criti-
cal parameters or discover seemingly unimportant para-
meters that may have a positive or negative influence on
a network. SA techniques have been used in many bio-
logical studies, such as genetic circuit design [16], mam-
malian circadian clock modeling [17], and target
prediction in signaling pathways [18]. In general, the
sensitivity of a parameter is defined as [19]:

SM
P =

∂M/M
∂P/P

=
percentage change in M

percentage change in P

Here, P represents the parameters that are varied in a
given range, M is the mathematical function describing
the system behavior, and ∂M means the change in M
due to the value changed in ∂P with respect to P.
In a dynamic system, there are two types of methods

often used to conduct SA: local SA and global SA. Local
SA can measure the sensitivity of a parameter from a
given range even if the system structure is unknown,
but it only considers one parameter at a time and
ignores the interactions between parameters [20,21].
Alternatively, global SA can examine parameter interac-
tions with different parameter magnitudes simulta-
neously [22,23], but this can only be done if the system
structure is known in advance. The above two methods
have been compared extensively [24,25]. It should be
noted that neither local SA nor global SA is superior:
the choice of method depends on the specific applica-
tion and the information available. In the biological
cases that involve the use of SA techniques, the sensitiv-
ity of parameters should be investigated from a biologi-
cal point of view in order to validate the results.
From the perspective of parameter dynamics, we pro-

pose a new approach to infer robust networks. Our
approach includes two major parts. The first part is a
sensitivity analysis procedure that selects sensitive net-
work parameters, determines value ranges for them, and
then sends the parameters with their constraints to the
inference mechanism. The second part is an evolution-
ary method responsible for inferring networks from the
results obtained in the first part. This approach, to our
knowledge, is the first work in network modeling that
integrates sensitivity analysis into an inference algorithm
to consider both internal (robustness) and external
(behavior) characteristics of the inferred network. To
validate the proposed approach, a series of experiments
has been conducted, in which the proposed SA proce-
dure was coupled with different EAs. The results have
been analyzed, and they show that this approach can be
used to infer robust networks successfully from artificial
and real gene expression profiles.
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Methods
Parameter sensitivity analysis
In the process of inferring a gene network from expres-
sion data the genes interact with each other, and the net-
work structure is generally unclear during the modeling
process. Most studies of global SA use known pathways
as examples and can therefore easily select the critical
parameters and control the total number of parameters
(usually few than 100) for further analysis [23-25]. In the
type of network inference problem addressed here, it is
not possible to identify and select the most important
parameters in order to perform global SA, because no
prior information about network structure is available.
To consider multiple network parameters simulta-

neously in such situations, we present a new method that
is a modification of a widely used global SA technique,
called multi-parameter sensitivity analysis (MPSA) [12,19].
MPSA is based on Monte Carlo simulations and on quan-
titative comparisons of cumulative frequency via corre-
sponding Pearson correlation coefficients among
parameters to identify those that are most sensitive. It can
be used to explore critical genetic reactions and to exam-
ine the robustness of a gene network as other global SA
methods do. In the method described here, the objective
function of the SA method is the fitness function that is to
be optimized in the evolutionary algorithm, which is the
mean squared error over the time course:

N∑
i=1

T∑
t=1

{
xa

i (t) − xd
i (t)

xd
i (t)

}2

In this expression, xi
d(t) is the desired expression level of

gene i at time t, xi
a(t) is the actual value obtained from the

inferred model, N is the number of genes in the network,
and T is the number of time points used to measure gene
expression data during the period.
Our modified method, m-MPSA, inherits qualities from

MPSA but has several advantages. First, MPSA is easy to
implement and modify. It allows users to select one para-
meter at a time or to consider multiple parameters at the
same time to perform sensitivity analysis. This characteris-
tic is crucial because, when the network structure is
unknown or uncertain, selecting one parameter at a time
is a good way to reduce the complexity of the search
space. Researchers can then concentrate on each para-
meter and temporarily neglect the combination sets at the
selection phase. Second, compared with most of the global
SA methods, the mathematical equations of MPSA are
more manifest and succinct, and the parameter sensitivity
is thus easy to calculate. Finally, the value ranges of para-
meters used in MPSA are the same as in an ODE model.
This means that the sensitivity of each parameter can be
directly mapped into an ODE model without any extra
computation.

In previous studies, researchers have shown that the
most influential (sensitive) parameters play key roles in
modeling a GRN; that is, a model’s behavior varies largely
because of its sensitive parameters [13]. Therefore, our
current study draws on the characteristics of sensitive
parameters, and it incorporates the sensitivity analysis
method into the incremental evolution approach to infer
a GRN. The proposed m-MPSA method is described in
the Sensitivity analysis algorithm below. It uses an
iterative process to calculate the sensitivity of each para-
meter, and it then ranks the sensitivities of all para-
meters. The input of this algorithm is the set of network
parameters to be determined; and the output, a list of
parameters ranked by their sensitivity values. With the
parameter sensitivities ranked, the evolutionary algorithm
can then infer robust solutions by exploiting the sensitive
parameters that are likely to significantly influence the
genetic model as a whole.

Sensitivity analysis algorithm()
Step 1: Select one parameter, i, at a time. (i = 1, 2, ..,

μ, μ is the number of network parameters).
Step 2: Set the parameter range Ri for each S-system

parameter, i. Initially, the commonly used search regions
[-3.0..3.0] and [0.0..10.0] are taken as the initial settings
for the parameters of kinetic orders and rate constants
respectively, as suggested in [26]. These settings are
used to define the parameter range Ri, by adding/sub-
tracting an amount of one third of the initial settings
to/from the current value of parameter i.
Step 3: For each Ri, a set of random values are created

with a uniform distribution within the specified range.
Each random value for parameter i, together with the
other (μ-1) parameters, constitutes a candidate solution
(In these experiments, 500 random values were gener-
ated, as suggested in [19].
Step 4: Construct the mathematical model (i.e., S-system

model) and calculate the objective function value for each
of the random values generated in Step 3.
Step 5: Determine whether the objective function

value of each random point obtained in Step 4 is accep-
table or unacceptable by a given threshold Cr (guided by
the literature or experience; it is defined as the triple of
the best available objective function value in the whole
population). The parameter value of a random point is
classified as unacceptable if its corresponding objective
function value is greater than Cr; otherwise, the para-
meter value is acceptable. Go back to Step 1 until all
parameters have been dealt with.
Step 6: Calculate the sensitivity for parameter i by using

its cumulative frequency (CFi). CFi measures the similar-
ity of two statistical distributions that are formed by the
acceptable and unacceptable values produced from Steps
3-5 for parameter i. The parameters are ranked according
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to their CF, and the ones with relatively low CF are con-
sidered to be sensitive.
Step 7: Output a parameter list in which the para-

meters are sorted by their CF values.
In addition to presenting the m-MPSA algorithm, we

provide here a walkthrough example to illustrate how it
operates in practice. In the example, we randomly choose
two parameters from one of the datasets (the largest one)
used in the experimental section, and we calculate the
sensitivity values of these parameters. The dataset con-
sisted of ten nodes, and there were altogether 220 para-
meters to be estimated. Without losing generality, we
assume that the algorithm selected the parameter P125
(Step 1), and then set the range R125 for P125 (Step 2). As
mentioned above, we used one third of the original
search region (which was [-3.0, 3.0] in the current study)
to set up the bounds for each parameter. Hence, if P125
had a value of 0.59, then the lower bound for this para-
meter was -0.41 (i.e., 0.59+1/3×(3.0-(-3.0))), and the
upper bound was 1.59. Then, 500 random values were
generated within the range [-0.41, 1.59] for P125 (Step 3),
and their corresponding objective (fitness) function
values were calculated (Step 4). Next, a threshold Cr was
determined to categorize the above 500 evaluation results
as acceptable or unacceptable. If the current best result
(out of the 500 evaluations) was 0.52, then a threshold of
1.56 (i.e., 0.52×3) was used to determine whether a result
was acceptable or not (Step 5). After that, two statistical
distributions were constructed for the acceptable and
unacceptable results identified above. For statistical pur-
poses, the value range [-0.41, 1.59] was divided into ten
intervals, and for each interval the numbers of acceptable
and unacceptable values were counted. Figure 2 (a)
shows the distributions for P125, in which acceptable and
unacceptable numbers were marked. The cumulative fre-
quency distributions were then constructed accordingly,
as presented in Figure 2 (b). Finally, the sensitivity value
of P125 was obtained by measuring the correlation coeffi-
cients of the two (acceptable and unacceptable) cumula-
tive frequency distributions (Step 6). In this case, the
sensitivity value of P125 was 0.8912.
A similar procedure was performed for the other para-

meter, P145, and a sensitivity value of 0.7695 was obtained.
Because P145 had a sensitivity value lower than that of
P125, it was considered to be more sensitive than P125. In
this way, after sensitivity values of all parameters were cal-
culated, they were ranked and sent to the incremental evo-
lution algorithm.
As mentioned above, more sensitive parameters are

more likely to have a significant influence on the entire
genetic model. Therefore, if no prior knowledge can be
applied to the reconstruction of a large GRN, researchers
can conduct sensitivity analysis for parameter selection
to guide the network inference method, and observe how

numerical quantities within different intervals can formu-
late candidate results (to determine the model dynamics).
Taking P145 as an example, the acceptable values for this
parameter fell in the range [-0.63, 0.17] that consisted of
167 acceptable network models (dynamics) in total. We
can exploit this result to infer P145 and explore the rela-
tionships of this parameter with other genetic reactions
(or parameters). In fact, researchers have shown that the
most influential (sensitive) parameters play important
roles in modeling a GRN. That is, the behavior variation
of a network model largely depends on its sensitive para-
meters [13].
In Figure 2, we can see that the variation of the para-

meter value range influenced the system dynamics. That
is, the system robustness was significantly affected by the
value range specified for a parameter. For instance, the
two distributions for P145 in Figure 2 (c) show that, if the
value range of P145 changed from [-0.43, -0.23] to [0.37,
0.57], then the acceptable values for P145 changed from
56 to 0. This means that the inference algorithm can
maintain the system robustness if it can locate P145

within the interval [-0.43, -0.23]. The above analysis con-
cludes that the proposed SA method can be used to find
sensitive parameters and to derive suitable value ranges
as search constraints, which can then be used in the
inference algorithm to construct robust networks.

Evolutionary algorithm for parameter optimization
To derive the network parameters of S-system model, we
also implement an evolutionary algorithm (EA) for para-
meter optimization to work with the above SA method.
EA is a population-based approach that evaluates many
solutions simultaneously in the search space, and it is
likely to find a global solution for a given problem.
Recently, a new population-based optimization techni-
que, particle swarm optimization (PSO, [27]), was pro-
posed as an alternative to the traditional EAs. PSO tries
to mimic the goal-seeking behavior of biological swarms.
The standard PSO algorithm contains a set of particles
and operates in an iterative manner. Each particle is char-
acterized by its position and velocity, and it moves in the
solution space. The position of each particle represents a
potential solution that is evaluated by a predefined fitness
function. PSO has some attractive characteristics. In par-
ticular, it has memory, so that knowledge of a good solu-
tion can be retained by all particles (solutions). During
the iterative search process, each particle remembers its
previous best position and the best position of any parti-
cle in the swarm. Then the particle uses the position
information to modify its position and velocity, and con-
tinues its movement in the search space. The details of
the PSO algorithm can be found in [27]. Some perfor-
mance comparisons between PSO and the most popular
EA method, the genetic algorithm (GA), have been made,
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underscoring the reliability and the convergence speed of
both methods. However, the result tends to be inconclu-
sive: each of the algorithms has shown better perfor-
mance than the other for some particular applications.
Consequently, hybrid techniques were proposed to effec-
tively exploit the qualities and the uniqueness of the two
methods. It is now commonly agreed that the hybrid
methods can lead to further performance improvements
[28-30]. Therefore, in this work, we develop a hybrid
method to exploit the solution memory of PSO and the
genetic operations of GA for network inference.
As has been mentioned, our primary goal is to investi-

gate how parameter sensitivity can be used to guide an EA
and derive robust networks. To concentrate on this issue,
we have chosen to implement a popular GA-PSO method
(to avoid the deviations caused by different computational
methods) for parameter optimization, and we have built
our SA method upon it. Breeding Swarms [30] is a fre-
quently used GA-PSO hybrid method that has demon-
strated its good performance in many benchmark test
functions. Therefore, we adopt this method for our net-
work inference application.
The hybrid GA-PSO method used in this work is illu-

strated in Figure 3. Initially, a population is randomly gen-
erated and evaluated. The individual solutions are ranked
according to their fitness values, and then they are divided
into two parts for running the PSO and GA methods sepa-
rately. As shown in Figure 3, the best individuals (includ-
ing (1-r)% of the whole population) are preserved and

enhanced by the PSO procedure. They are then sent to
the next generation. Meanwhile, on the right-hand side of
the figure, the remaining individuals (i.e., r% of the popula-
tion) are discarded. To replace the removed individuals, a
tournament selection scheme is used to choose the same
number of individuals from the best ones (before they are
updated by PSO), and the selected individuals are used to
create new individuals by the GA procedure.
In our implementation, we take a direct encoding

scheme to represent solutions for both the GA and PSO
parts, in which the network parameters (i.e., ai, bi, gi,j,
and hi,j in the S-system model) are arranged as a linear
string chromosome of floating-point numbers. The goal
here is to minimize the accumulated discrepancy
between the gene expression data recorded in the dataset
and the values produced by the inferred model. There-
fore, the error (objective or fitness) function defined pre-
viously is used directly for performance measurement.
For the PSO part, the equations for updating the parti-
cle’s velocity and position are the same as the ones listed
in the original PSO work [27], and for the GA part, the
operations of crossover and mutation described in [31]
are used.

Sensitivity-based incremental evolution method for
network inference
As described in the first section, to infer the S-system
model is to determine the 2N (N+1) parameters simulta-
neously. Solving this high-dimensional problem is

Figure 2 An example of sensitivity analysis. Example of using m-MPSA to obtain a sensitive parameter (P145) and an insensitive parameter
(P125). The solid and dashed curves in both cases represent the acceptable and unacceptable results, respectively.
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difficult, especially when the complexity of regulation
increases along with the number of genes involved. One
promising approach to this problem is to adopt the con-
cept of incremental evolution to infer the large number
of parameters. The underlying principle of incremental
evolution [32,33] is that a population is first evolved to
solve an easier version T’ of the original complex task T,
in which the solution region of T is more accessible
from region T’. More task versions with incremental
complexity can be arranged so that the original task can
be achieved progressively. Evidently, the main task
involved in implementing incremental evolution is the
formulation of a scheme to transfer the goal task into
another more evolvable task. In the process of task
transformation, the structure of the environment and
the overall goal must be preserved. This can usually be
achieved by arranging the task sequence manually, or,
alternatively, it can be done using an automated proce-
dure. In this work we modify the cutting plane mechan-
ism used in the high-dimension function optimization
problem to develop an adaptive strategy to automatically
perform incremental evolution.
In network inference, solving an easier version of the

original task means evolving partial solutions (i.e., subsets
of all network parameters) that can provide some guidance
for the search and move toward the target solution gradu-
ally. In the proposed method, parameter sensitivities are
calculated and used to determine the priorities of the para-
meters to be evolved (optimized). The sensitive parameters
are selected iteratively, by the proposed SA method and
the evolutionary method is employed to search the para-
meter dimensions accordingly.
An exploration phase is also included in the algorithm

for the injection of random effects. This maintains popula-
tion diversity and avoids a situation in which individuals
move near locally optimal solutions. The SA and explora-
tion procedures are both performed periodically with spe-
cific generation intervals. In this way, the overall solutions
can be derived gradually, and the inferred networks are

more robust to internal variations. The flow of the pro-
posed SA-based incremental evolution approach is illu-
strated in Figure 4, and the details of the approach are
described below.

Sensitivity-based incremental evolution algorithm()
Step 1: Initialize the population and start the evolution.
Note that Steps 2 and 3 are performed only at certain
generations (SA interval and exploration interval,
respectively).
Step 2: Perform sensitivity analysis (call the Sensitivity

analysis algorithm described above) to obtain a list of
parameters ranked by their sensitivity. This step is per-
formed only if the evolutionary cycle reaches a pre-
defined generation number (every 500 generations in
this work).

(a) Use a threshold (i.e., the correlation coefficient
ratio of the parameter CF values obtained from the
SA procedure) to select the most sensitive para-
meters. Then update the threshold in order to con-
sider more parameters in the next sensitivity analysis
iteration.
(b) Set new value ranges for all network parameters.
Sensitive parameters are given tight bounds, and
insensitive parameters are given loose bounds.

Step 3: Start the exploration procedure, again only if
the evolutionary cycle reaches a pre-defined generation
number (every 1000 generations in this work). In this
phase, a random value is generated for each parameter
from its new bounds, replacing each parameter’s current
value.
Step 4: Continue the evolutionary computation, using

the bounds obtained in Step 2 to restrict the corre-
sponding parameters.
In the above algorithm, the most critical feature for

enabling incremental evolution is found in Step 2. The
strategy is to perform the sensitivity analysis for network

Figure 3 GA-PSO method. Flow diagram of the hybrid GA-PSO method used in this work.
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parameters and to specify constraints on them. A net-
work parameter (in other word, a search dimension) is
added to the sensitive list and given a pair of tight con-
straints (specified by the upper and lower bounds) if its
sensitivity value is less than (or equal to) the threshold;
otherwise, a parameter is added to the insensitive list
and given loose constraints. In the above procedure, the
threshold used in Step 2(a) to identify the sensitive para-
meters has an initial value of 0.84 (chosen from the pre-
liminary study), and this value is increased gradually
with a step value of 0.1. The upper and lower bounds of
a sensitive parameter in Step 2(b) are determined from
the best value of this parameter available so far by add-
ing and subtracting an amount equal to twice the value
of a small constant (which is equal to the velocity
bound generally used in a PSO-based method – 0.2 in
this work). Bounds for the insensitive parameters are
defined in a similar way, except that a value of five
times the same constant is used.
The dimensions in the sensitive list have higher priori-

ties to be searched, and the corresponding parameter
values need to be determined at an earlier evolutionary
stage. As the algorithm describes, the search is accom-
plished by setting small-range bounds for each sensitive
parameter in accordance with the best value found so far,
and the evolutionary procedure is performed next to infer
a suitable parameter value within the specified bounds.
The creation of constraints for parameters is important in
the search for robust solutions, especially when a non-
deterministic search method (such as the evolutionary
algorithm) is employed to derive parameter solutions
(because many feasible but fragile solutions could be
evolved). If the parameter value exceeds the specified
boundary value, the system dynamics will be influenced,
and consequently, the network behaviors will change. To
generate tight constraints for sensitive parameters in the
search process is in fact to restrict search regions for the
integrated algorithm, which can thus obtain robust net-
works with desired behaviors. As indicated in [34], by

observing how parameters with varied boundaries direct a
system to move toward different system dynamics, we can
obtain new insights into a complex biological system and
understand the principle of biological design.
As the evolutionary method proceeds, parameters in the

insensitive list will be moved to the sensitive list incremen-
tally as the threshold is gradually increased. Therefore,
more parameters will be considered sensitive and their
values will be determined. Eventually, all the parameter
values will be obtained. Because sensitive parameters are
more influential to network behavior, enforcing tight con-
straints on these parameters maintains the robustness of
the entire genetic network. At the same time, it allows
other parameters to evolve during the search process. In
this way, the proposed method can infer robust network
models with the desired system behavior.

Results and discussion
To verify the proposed approach, we conducted a series of
experiments on several datasets collected from the litera-
ture. As mentioned, our main goal was to explore the use
of sensitivity analysis to infer robust networks, not to com-
pare different computational methods. Therefore, without
losing generality, we chose to implement three computa-
tional methods, including the traditional PSO method, a
GA-PSO hybrid method, and a differential evolution (DE)
method [35], and to build the proposed m-MPSA on
them. The main reason to select the above three methods
is that they are the most representative and popular evolu-
tionary algorithms used for optimization tasks. The same
SA strategy can also be embedded into other methods if
their implementation details are available.
The first and second phases of the experiments

involved comparing the external behavior and internal
robustness of the networks inferred by different methods.
Four datasets were used. For each dataset, the above
three algorithms were performed with three different set-
tings: (1) using only the original algorithms; (2) using our
m-MPSA to select sensitive parameters and to derive

Figure 4 The proposed approach. Flow diagram of the proposed sensitivity-based incremental evolution approach.
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parameter constraints in the incremental evolution pro-
cess (i.e., the proposed approach); and (3) using m-MPSA
to select sensitive parameters, but with random value
bounds during the incremental evolution process. The
third setting was mainly included to demonstrate the
importance of using appropriate bounds in the evolution-
ary process. In addition, one real dataset was used in the
third phase, which made it possible to investigate how
the proposed approach can be applied to the study of
real gene networks. This dataset came from a study of
gene expression in the SOS DNA repair system of E. coli.
For this dataset, network models were inferred and the
critical parameters were analyzed and discussed.

Performance of sensitivity analysis in network modeling
In this set of experiments, four datasets (with more
genes than most examples encountered in the literature)
were used to evaluate the proposed approach. The first
dataset was a five-node artificial network that has
become a popular model for comparing different meth-
ods in recent studies on network inference [36]. To col-
lect time series data, we started network operations and
continued operations for thirty simulation time steps.
The nodes had the following relationships:

Ẋ1 = 15.0X3X−0.1
5 − 10.0X2.0

1

Ẋ2 = 10.0X2.0
1 − 10.0X2.0

2

Ẋ3 = 10.0X−0.1
2 − 10.0X−0.1

2 X2.0
3

Ẋ4 = 8.0X2.0
1 X−0.1

5 − 10.0X2.0
4

Ẋ5 = 10.0X2.0
4 − 10.0X2.0

5

The second dataset was taken from [6]. It was an
eight-gene network created manually by the popular
GRN simulation software tool Genexp. The third dataset
was a ten-node network previously described in [4],
given by the following equations:

Ẋ1 = 5.0X4X−2.0
6 − 10.0X2.0

1

Ẋ2 = 10.0X3X1.0
8 − 10.0X2.0

2

Ẋ3 = 8.0X−1.0
1 X−1.0

4 − 10.0X2.0
3

Ẋ4 = 10.0X2.0
5 X9 − 10.0X2.0

4

Ẋ5 = 10.0X2.0
2 X−1.0

6 − 10.0X2.0
5

Ẋ6 = 5.0X2.0
9 X−2.0

10 − 10.0X2.0
6

Ẋ7 = 10.0X6X−1.0
10 − 10.0X2.0

7

Ẋ8 = 5.0X1X−2.0
2 X7 − 10.0X2.0

8

Ẋ9 = 10.0X3X−2.0
8 − 10.0X2.0

9

Ẋ10 = 8.0X2.0
1 X−1.0

7 − 10.0X2.0
10

The fourth dataset was part of a real experimental
dataset from a study of the rat central nervous system

(CNS) [37]. The original dataset included expression
data for 112 genes collected at 9 time points (including
the embryonic, postnatal, and adult stages). In this
experiment, we selected a group of eight nodes repre-
senting the largest sub-network of the representative
cluster reported in [6] as the target network. For the
above four datasets, three inference algorithms (PSO,
GA-PSO, and DE) with three different settings were
arranged, and twenty independent runs were conducted
for each arrangement. The population sizes for the four
datasets were 800, 1000, 1600, and 1000, respectively.
Tables 1, 2, 3, 4 show the results, in which the mean,
standard deviation, and best and worst performance of
the runs are listed for each arrangement.
As shown in Tables 1, 2, 3, 4, SA (setting 2) consis-

tently outperformed the other two settings for inferring
gene networks. It produced the best results for the aver-
age, best, and worst fitness values when used in con-
junction with any of the three inference methods.
Compared with other methods, the GA-PSO method
produces smaller standard deviations, which indicates
that it is more stable than the other methods. It should
also be noted that the performance when using a m-
MPSA method with random bounds (setting 3) was not
as good as when using m-MPSA to select parameters
and derive bounds for them. These results confirm the
effectiveness of the proposed bound-setting strategy.

Evaluation of network robustness
To evaluate the robustness of the networks inferred by
three different settings for each algorithm, we compared
fitness and the sensitivity values (averaged over all para-
meters for each network model) of the best solutions
recorded from the final generations in all runs. Tables 5,
6, 7 list the results of using different settings for the three
algorithms. The values recorded in the tables are the
averaged results of the twenty runs performed for each
setting. We can see that results for the four datasets pre-
sented in Tables 5, 6, 7 are consistent for all three infer-
ence algorithms. They confirm that the proposed SA-
based approach (setting 2) is able to infer networks with
lower fitness/error values (better system behavior) and
lower sensitivity values (more robust S-system models)
simultaneously. It should be noted that, because the
three algorithms have different computational features (e.
g., convergence rate, search strategy, and selection
approach), the thresholds (relative values determined
from the candidate solutions of each run) used for con-
structing the sensitive parameter list in each algorithm
were not the same during the evolutionary process.
Therefore, the sensitivities obtained from different algo-
rithms are not directly comparable.
Following the comparisons of the inferred networks, we

used an example to further illustrate the effectiveness and
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Table 2 Fitness values for dataset 2

PSO GA-PSO DE

Setting 1 2 3 1 2 3 1 2 3

Avg 0.5718 0.3647 1.5170 0.0589 0.0192 0.0769 2.7558 0.6857 1.8766

Best 0.3172 0.1315 1.1044 0.0310 0.0098 0.0530 2.2035 0.5169 0.9808

Worst 0.8492 0.4928 1.9613 0.1034 0.0314 0.1040 3.0571 0.9289 2.6480

SD 0.1729 0.1286 0.2743 0.0229 0.0062 0.0174 0.3933 0.1159 0.7201

Fitness results obtained by three inference algorithms with different settings for dataset 2.

Table 1 Fitness values for dataset 1

PSO GA-PSO DE

Setting 1 2 3 1 2 3 1 2 3

Avg 0.2845 0.0839 0.2502 0.0170 0.0054 0.0144 0.3150 0.1440 0.2856

Best 0.1801 0.0451 0.0997 0.0078 0.0020 0.0079 0.2485 0.1079 0.2452

Worst 0.4497 0.1442 0.3880 0.0236 0.0088 0.0215 0.3733 0.1820 0.3723

SD 0.1059 0.0327 0.0819 0.0048 0.0023 0.0053 0.0452 0.0237 0.0420

Fitness results obtained by three inference algorithms with different settings for dataset 1.

Table 3 Fitness values for dataset 3

PSO GA-PSO DE

Setting 1 2 3 1 2 3 1 2 3

Avg 1.8992 1.0233 1.9141 0.3586 0.1404 0.2973 3.6997 1.8465 3.6311

Best 0.8746 0.7241 1.3902 0.2325 0.0799 0.2162 2.4568 1.6471 2.2708

Worst 3.7303 1.3419 2.2926 0.5930 0.1941 0.3671 4.7652 2.0209 4.3125

SD 1.0149 0.1925 0.2829 0.1035 0.0378 0.0465 0.7628 0.1328 0.6616

Fitness results obtained by three inference algorithms with different settings for dataset 3.

Table 4 Fitness values for dataset 4

PSO GA-PSO DE

Setting 1 2 3 1 2 3 1 2 3

Avg 0.6657 0.4732 1.1542 0.1661 0.1128 0.2280 1.7835 0.7052 1.8918

Best 0.4486 0.3224 0.8873 0.1373 0.0691 0.1320 1.1684 0.5572 1.3348

Worst 0.7960 0.5952 1.3679 0.2020 0.1376 0.3642 2.2143 0.8420 2.5387

SD 0.1341 0.0915 0.1487 0.0225 0.0199 0.0813 0.3024 0.1073 0.3962

Fitness results obtained by three inference algorithms with different settings for dataset 4.

Table 5 Sensitivity values by PSO

Setting 1 Setting 2 Setting 3

Fitness Sensitivity Fitness Sensitivity Fitness Sensitivity

Dataset 1 0.2845 0.7622 0.0839 0.7203 0.2502 0.7554

Dataset 2 0.5718 0.7334 0.3647 0.7002 1.5170 0.7309

Dataset 3 1.8992 0.6865 1.0233 0.6463 1.9141 0.6620

Dataset 4 0.6657 0.7330 0.4732 0.7072 1.1542 0.7205

Comparisons of fitness and sensitivity values of the best solutions collected from the final generations. Experiments were conducted using the PSO method.
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importance of using sensitivity analysis to derive appro-
priate constraints for network parameters in the infer-
ence process. Here, we chose the third dataset (which
was the largest network considered in the experiments)
and investigated the corresponding parameter correla-
tions. In this example of eight-gene network, there were
144 parameters (P1~P144) to be determined, of which the
three most sensitive parameters, P14, P64, and P72 (identi-
fied as sensitive in at least fifteen out of twenty runs),
were analyzed. Because the GA-PSO algorithm can give
the best performance (as shown in Tables 5, 6, 7), data
were collected from the runs using this method without
(setting 1) and with (setting 2) the use of the SA method
to derive value ranges for network parameters.
The values of the above three parameters recorded

from the runs are shown in Figure 5, in which the upper
and lower parts are the results of the twenty runs con-
ducted for settings 1 and 2, respectively. In this figure,
the x-axis indicates the identity of a run, and the y-axis
indicates the parameter values. In the results, we noticed
two parameter correlations (or patterns) in the evolution-
ary process for each of the experimental settings. Table 8
lists the patterns most often obtained from the runs for
the two settings (these patterns appeared in at least five
runs). For setting 1, the two patterns (pattern-ns1 and
pattern-ns2) describe two qualitative relationships: P64
>P72 >P14 and P64 >P14 >P72. For setting 2, the patterns
are P64 >P14 >P72 (pattern-s1) and P14 >P64 >P72 (pat-
tern-s2). The runs in which the patterns were observed
are also indicated in the tables.
In Table 8, we can see that the qualitative relationship

P64 >P14 >P72 appeared in the results for both settings
(pattern-ns2 and pattern-s1). After further investigation,
we found that this relationship among the three para-
meters was important for producing good models (models

with low fitness/error and high robustness). Using our
specially designed SA method and parameter constraints,
this relationship can always be derived and kept in the
evolutionary process (in eleven out of twenty runs), but it
is not often obtained in the runs with setting 1 (only five
out of twenty runs with setting 1 showed the relationship).
Similarly, another parameter relationship, P14 >P64 >P72
(pattern-s2), obtained from setting 2, was useful for infer-
ring good models. To observe how the three parameters
varied during the runs, see Figures 6, 7. These figures illus-
trate typical examples of the patterns presented in Table 8.
In the figures, the x-axis indicates the generation number
(each unit represents 100 generations), and the y-axis indi-
cates the parameter value. As can be clearly seen in Fig-
ures 6, 7 the parameter values changed actively to move
toward the appropriate positions to obtain a successful
model in the runs using setting 2, whereas the values
remained static in the runs using setting 1. These results
verify the effectiveness of using SA in network inference.

Evaluation of the proposed approach on a real dataset
After evaluating the performance of the proposed SA-
based approach in network inference, we conducted a set
of experiments to investigate how our approach can be
applied to the study of a real gene network. Because the
GA-PSO algorithm has been shown to outperform other
methods in the above experiments, we used this method
with two settings (with and without SA) to conduct
experiments on a real dataset.
The data set used in this experimental phase comes

from a study of the SOS DNA repair system in E. coli.
Figure 8 illustrates the gene regulation that occurs in this
system [38]. In this system, the LexA protein (a repressor)
maintains its expression level in a normal state and is
bound to the promoter regions of SOS genes, including

Table 6 Sensitivity values by GA-PSO

Setting 1 Setting 2 Setting 3

Fitness Sensitivity Fitness Sensitivity Fitness Sensitivity

Dataset 1 0.0117 0.7885 0.0054 0.7363 0.0144 0.7678

Dataset 2 0.0598 0.8249 0.0192 0.7581 0.0769 0.7867

Dataset 3 0.3586 0.8432 0.1404 0.7502 0.2973 0.7856

Dataset 4 0.1661 0.8084 0.1128 0.7691 0.2280 0.7802

Comparisons of fitness and sensitivity values of the best solutions collected from the final generations. Experiments were conducted using the GA-PSO method.

Table 7 Sensitivity values by DE

Setting 1 Setting 2 Setting 3

Fitness Sensitivity Fitness Sensitivity fitness Sensitivity

Dataset 1 0.3150 0.7901 0.1440 0.7438 0.2856 0.7791

Dataset 2 2.7558 0.7722 0.6857 0.7149 1.8766 0.7654

Dataset 3 3.6997 0.7709 1.8465 0.7027 3.6311 0.7509

Dataset 4 1.7835 0.7701 0.7052 0.7273 1.8918 0.7609

Comparisons of fitness and sensitivity values of the best solutions collected from the final generations. Experiments were conducted using the DE method.
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uvrD, umuD, lexA, uvrA, recA, and polB. When DNA
damage occurs, the RecA protein senses the damage and
mediates LexA autocleavage. The decrease in LexA
relieves the repression of the SOS genes. The expression
of these genes then activates the SOS repair system. Once
the damage has been repaired, the concentration of recA
drops and this gene stops mediating LexA autocleavage.
The LexA level increases and begins to repress the SOS
genes again.
Inference of expression profiles with the decomposed
S-system model
In the experiments, six genes were selected from the
original experimental data reported in [39]. The genes
selected were uvrD, umuD, lexA, uvrA, recA, and polB.

These were selected because the interactions of the
6-gene network have been well studied and commonly
used in related studies, and the corresponding network
has been inferred successfully [11,40-43]. Using the reg-
ulatory relationships that have been described, we can
validate our proposed network inference method by
comparing our results to those reported previously.
Though there have been several studies on inferring

the SOS repair system, none of them used a tightly
coupled S-system model (the general S-system) to repre-
sent the gene network, and none of them inferred such
a model from expression data. To the best of our
knowledge, the most relevant work is [44], in which the
authors utilized a decoupled S-system model to infer the
SOS repair system. In a decoupled S-system, a tightly
coupled system of non-linear differential equations is
decomposed and analyzed as several differential equa-
tions [44,45], each of which can describe a specific gene
and can then be separately inferred (by considering one
gene at a time). Motivated by this research, we thus
adopted decoupled differentials to describe gene profiles,
and we employed the proposed approach to infer gene
interactions. In this way, we can not only examine the
inferred network behaviors, but also compare the

Figure 5 An illustrated example. The values of parameters P14, P64, and P72 obtained in the runs using setting 1 (upper part) and setting 2
(lower part).

Table 8 Parameter patterns

Setting 1 run-id

pattern-ns1: P64 >P72 >P14 9, 13, 14, 15, 16, 19

pattern-ns2: P64 >P14 >P72 1, 4, 7, 8, 12

Setting 2 run-id

pattern-s1: P64 >P14 >P72 1, 2, 3, 5, 6, 9, 11, 12, 14, 15, 20

pattern-s2: P14 >P64 >P72 4, 8, 10, 13, 18

The parameter patterns obtained using two settings.
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inferred gene regulations to the ones obtained in the
other studies mentioned above.
The SOS repair system dataset included 50 sampling

points for each gene. The six major genes (lexA, uvrA,

uvrD, recA, umuD, and polB) were inferred through the
decoupled S-system model. In the experiments, twenty
independent runs were conducted for each of the two
settings. Table 9 presents the results for the six genes of

Figure 6 GA-PSO with setting 1. The variation of parameter values in a typical run of GA-PSO with setting 1.

Figure 7 GA-PSO with setting 2. The variation of parameter values in a typical run of GA-PSO with setting 2.

Hsiao and Lee BMC Bioinformatics 2012, 13(Suppl 7):S8
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the SOS repair system dataset obtained by using settings
1 and 2. The mean, variance, best and worst fitness, and
average parameter sensitivity values of the twenty runs
are listed. Again, the results show that the SA-based
approach (setting 2) outperformed the original algorithm
in terms of both fitting the external behavior (with lower
fitness/error) and exploring the internal robustness (with
lower sensitivity) of a gene network. In addition, to
observe the inferred network behaviors, Figures 9, 10
compare the inferred and target behaviors. In these fig-
ures, the x-axis represents time, and the y-axis represents
the concentrations of particular gene products. As shown
in the figures, network behaviors very similar to those of
the real system can be inferred by our approach.
Analysis of critical parameters of the SOS repair system
To investigate the critical parameters that have signifi-
cant influences on the system dynamics of the SOS repair
system, we summarized the most sensitive parameters

identified by the proposed approach in Table 10. There
were 13 parameters selected and marked as crucial inter-
actions, each of which represented a regulatory relation-
ship between two genes (e.g., lexA -| uvrA). The letters G
and H in the table indicate which of the kinetic orders gi,j
and hi,j of gene i (as listed in the first column) is selected.
As mentioned previously, the identified parameters (or
gene regulations) can also be used to determine the net-
work structure of the system to be inferred. By exploiting
the structural information, the evolutionary algorithm
(here, GA-PSO) can infer better models with robust sys-
tem dynamics during the search process. In the SOS
case, the 13 parameters indicated in Table 10 can be
used to derive the scaffold of the SOS network, as shown
in Figure 11.
To compare the gene regulation events identified by our

approach to those found in the literature, we highlighted
the gene interactions in Table 10 (the asterisks in the table
are the ones collected from the literature) and summarized
the results in Table 11. The results show that, of the thir-
teen gene regulation events found in our experiments, ten
matched regulatory relationships known from other stu-
dies. For example, in Figure 11, the negative regulation of
lexA, uvrA, and uvrD by lexA has been successfully identi-
fied as the most crucial interaction in determining system
dynamics. Still, it is notable that the known negative regu-
lation of lexA by recA was not recognized. The main rea-
son for this is that our approach chose sensitive
parameters from the kinetic orders of the S-system model
on the gene level, but the above relationship was in fact
interpreted as a regulation of protein LexA by protein
RecA [11,43]. The concentration of protein RecA depends
on the sensing of DNA damage, and the interaction
between recA and lexA therefore depends on the events
occurring between DNA damage and DNA repair.
Because the on or off state of DNA damage sensing was

Figure 8 SOS DNA repair system in E.coli. SOS DNA repair system in E.coli (-| means inhibition and ® means activation). When DNA damage
occurs, the RecA protein becomes activated and mediates cleavage of the LexA protein. The repair system is activated by a drop in LexA
concentration.

Table 9 Results by GA-PSO

lexA uvrA uvrD

Setting 1 2 1 2 1 2

Avg 1.5778 0.5360 1.8404 0.7447 4.0382 1.3453

Best 0.6302 0.4084 1.1121 0.5333 1.6084 1.2191

Worst 1.9917 0.9554 2.1375 1.2190 7.4100 1.5640

SD 0.4145 0.1974 0.3572 0.2084 2.1226 0.1130

Sensitivity 0.8355 0.7977 0.8417 0.7838 0.7890 0.7890

recA umuD polB

Setting 1 2 1 2 1 2

Avg 3.0527 1.8589 6.0470 4.1333 21.1221 14.6093

Best 2.4037 0.9570 3.9336 3.9694 16.4665 10.7421

Worst 3.8859 2.2015 7.4803 4.5852 25.3341 16.6921

SD 0.5531 0.4623 1.0923 0.1756 2.7867 2.0940

Sensitivity 0.8669 0.7943 0.8315 0.7841 0.8507 0.7787

Results obtained by the GA-PSO algorithm with two settings.
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not directly described in the S-system model, the regula-
tion of lexA by recA on the protein level was not observa-
ble on the basis of kinetic orders. In other words, the
absence of this regulation was due to the model represen-
tation, rather than the inference approach. This shows
that, to infer the SOS repair system accurately on both the
protein and gene levels, a more comprehensive mathema-
tical model is needed to describe the regulatory details.

With only one exception (mentioned above) that was
caused by limitations of the model itself, our approach has
shown its strength in inferring real gene system that show
the expected network behavior and internal network
robustness.
After identifying the most sensitive parameters of the

SOS repair system, we again analyzed the gene regula-
tion relationships obtained from the runs to observe the

Figure 9 Overview network behavior of the SOS repair system. The inferred (left) and target (right) network behaviors of the SOS repair
system (An overview).

Figure 10 Gene expression in the SOS repair system. The target and inferred profiles of the six genes in the SOS repair system.
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correlation of parameters. The importance of investigat-
ing the relationships among parameter values of genes
has been emphasized in the study of systems biology,
especially when the boundary of a parameter value is
taken into consideration [15,34]. As presented and dis-
cussed in the second experimental phase, the qualitative
relationships among genes can be regarded as special
patterns (describing parameter correlations) that deter-
mined the system dynamics of a candidate model. By
exploiting these patterns, the inference algorithm can

refine the values of kinetic orders to obtain better
solutions.
In the case of the SOS repair system, the patterns of

regulatory interactions can be derived as in other cases,
by recording and analyzing the values of the most sensi-
tive parameters. Taking gene lexA as an example (see
Table 12), the algorithm categorized genes lexA and
uvrA as the critical gene regulators for lexA and two reg-
ulatory relationships, lexA -| lexA and uvrA -| lexA can
be established on the basis of this information. Figure 12

Table 10 The most sensitive parameters

Gene-id (i) Gene name Num of related gene gi,1/hi,1 gi,2/hi,2 gi,3/hi,3 gi,4/hi,4 gi,5/hi,5 gi,6/hi,6 gi,7/hi,7 gi,8/hi,8

lexA uvrA uvrD recA uvrY ruvA umuD polB

1 lexA 2 H* H*

2 uvrA 2 H* H*

3 uvrD 4 H* H* G H

4 recA 1 G*

5 umuD 3 G* G H*

6 polB 1 G*

The most sensitive parameters identified by the proposed approach. The letter G indicates that gi,j is the most influential parameter for gene i; while the letter H
indicates that hi,j is the most influential parameter. The asterisk means the regulation known in the literature (See Table 11 for details).

Figure 11 Inferred network structure. Structure of the 6-gene SOS repair system inferred by the proposed approach (dashed lines indicate
inhibition; solid lines indicate activation).

Table 11 Critical gene regulatory relationships

Gene-id (i) Gene name Gene regulation References

1 lexA lexA -| lexA (h1,1), uvrA -| lexA (h1,2) [11,40,43,44]

2 uvrA lexA®uvrA (g2,1), recA®uvrA (g2,4) [43,44]

3 uvrD lexA -| uvrD (h3,1), uvrA -| uvrD (h3,2) [11,41,43]

4 recA uvrD®recA (g4,3) [43]

5 umuD uvrA®umuD (g5,2), recA -| umuD (h5,4) [11,43]

6 polB uvrD®polB (g6,3) [44]

Summary of critical gene regulatory relationships obtained by the proposed framework with respect to the results in the literature. The parameters gi,j and hi,j are
kinetic orders of the S-system.
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illustrates the parameter values related to the patterns
derived from the twenty runs. In this figure, the x-axis
indicates the run number, and the y-axis represents the
parameter values of the specific pattern (gene regulation)
obtained in each run. In this figure, the upper and lower
parts present the results of inferring the network without
(setting 1) and with (setting 2) using the SA method,
respectively. The regulation patterns for gene lexA are
summarized in Table 12. As shown in Table 12, for
experimental runs using setting 2, fifteen out of twenty
runs consistently produced the same pattern uvrA -|
lexA > lexA -| lexA (pattern-s1). This pattern can guide
the inference algorithm to find better solutions. In con-
trast, the qualitative relationships between the two rela-
tionships uvrA -| lexA and lexA -| lexA obtained from

the runs using setting 1 are inconsistent and unstable
(pattern-ns1 and pattern-ns2 are in fact complementary).
The above results show that the proposed approach can
derive parameter bounds (which form useful patterns) to
restrict the variation of lexA, and it can therefore infer
models with better fitness and more stable (robust) sys-
tem dynamics. Without using the SA method, the infer-
ence algorithm alone cannot guarantee the preservation
of useful patterns during the iterative inference process.
Tables 13, 14, 15 list the regulation patterns analyzed

for four other target genes in the SOS system: lexA,
uvrA, uvrD, and umuD. Figures 13, 14, 15 show the
parameter values involved. The genes recA and polB
were ignored because there was only one gene regula-
tory relationship found for each of them (uvrD®recA

Table 12 Gene regulations for lexA

Parameter patterns for gene lexA

Setting 1 run-id

pattern-ns1:
uvrA -| lexA > lexA -| lexA

1, 3, 8, 9, 10, 12, 13, 14, 15, 17, 18

pattern-ns2:
lexA -| lexA > uvrA -| lexA

2, 4, 5, 6, 7, 11, 16, 19, 20

Setting 2 run-id

pattern-s1:
uvrA -| lexA > lexA -| lexA

1, 3, 4, 5, 6, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19

The patterns of gene regulations found for target gene lexA.

Figure 12 Parameter values for lexA. The parameter values related to the patterns found from the runs for lexA. The upper and lower parts
are results for settings 1 and 2, respectively.
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for recA, and uvrD®polB for polB, as shown in Table
11). This means that no qualitative relationship can be
established for these genes. The results in Tables 13, 14,
15 are consistent with Table 14, which again shows the
success of using SA in network inference.

Conclusion
In this work, we developed a sensitivity-based incremen-
tal evolution approach to cope with one important
issue, network robustness, which has not been addressed
in gene network inference. Our approach included two
parts. The first part was a sensitivity analysis method
that was used to select sensitive parameters for deriving
value bounds of these parameters. The second part was
an evolutionary algorithm that took the bounds as

constraints to perform parameter optimization. This
process leads to inferred networks that are robust and
produce the desired behaviors. To validate the proposed
approach, a series of experiments were conducted to
evaluate the external behaviors and internal robustness
of the networks inferred by different methods. The
results show that the proposed SA-based approach out-
performed other methods in all datasets. Moreover, we
analyzed in detail the results obtained from real time-
series expression data for the SOS repair system. The
analyses indicate that our approach can identify the cri-
tical parameters and use them to establish regulatory
relationships among genes. By enforcing these relation-
ships in the repetitive search process, our approach can
successfully infer robust networks.

Table 13 Gene regulations for uvrA

Parameter patterns for gene uvrA

Setting 1 run-id

pattern-ns1:
recA®uvrA > lexA®uvrA

all runs except for 10 and 17

Setting 2 run-id

pattern-s1:
recA®uvrA > lexA®uvrA

all twenty runs

The patterns of gene regulations found for target gene uvrA.

Table 14 Gene regulations for uvrD

Parameter patterns for gene uvrD

Setting 1 run-id

pattern-ns1:
recA -| uvrD > lexA -| uvrD > uvrD-| uvrD > uvrA -| uvrD

3, 4, 11, 13, 14, 16

Setting 2 run-id

pattern-s1:
recA -| uvrD > lexA -| uvrD > uvrD-| uvrD > uvrA -| uvrD

2, 3, 5, 10, 11, 14, 15, 16, 17, 19

pattern-s2:
lexA -| uvrD > recA -| uvrD > uvrD-| uvrD > uvrA -| uvrD

4, 7, 12, 13, 18, 20

The patterns of gene regulations found for target gene uvrD.

Table 15 Gene regulations for umuD

Parameter patterns for gene umuD

Setting 1 run-id

pattern-ns1:
recA -| umuD > uvrD -| umuD > uvrA -| umuD

2, 6, 7, 14, 16, 19

pattern-ns2:
recA -| umuD > uvrA -| umuD > uvrD -| umuD

1, 11, 17, 18, 20

Setting 2 run-id

pattern-s1:
recA -| umuD > uvrA -| umuD > uvrD -| umuD

3, 5, 6, 8, 9, 12, 13, 14, 15, 18

pattern-s2:
recA -| umuD > uvrD -| umuD > uvrA -| umuD

1, 2, 10, 11, 16, 20

The patterns of gene regulations found for target gene umuD.
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Figure 13 Parameter values for uvrA. The parameter values related to the patterns found from the runs for uvrA. The upper and lower parts
are results for settings 1 and 2, respectively.

Figure 14 Parameter values for uvrD. The parameter values related to the patterns found from the runs for uvrD. The upper and lower parts
are results for settings 1 and 2, respectively.
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