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Advances in high-throughput sequencing have revolutionized the manner with which we
can study T cell responses. We describe a woman who received a human papillomavirus
(HPV) therapeutic vaccine called PepCan, and experienced complete resolution of her
cervical high-grade squamous intraepithelial lesion. By performing bulk T cell receptor
(TCR) b deep sequencing of peripheral blood mononuclear cells before and after 4
vaccinations, 70 putatively vaccine-specific clonotypes were identified for being
significantly increased using a beta-binomial model. In order to verify the vaccine-
specificity of these clonotypes, T cells with specificity to a region, HPV 16 E6 91-115,
previously identified to be vaccine-induced using an interferon-g enzyme-linked
immunospot assay, were sorted and analyzed using single-cell RNA-seq and TCR
sequencing. HPV specificity in 60 of the 70 clonotypes identified to be vaccine-specific
was demonstrated. TCR b bulk sequencing of the cervical liquid-based cytology samples
and cervical formalin-fixed paraffin-embedded samples before and after 4 vaccinations
demonstrated the presence of these HPV-specific T cells in the cervix. Combining
traditional and cutting-edge immunomonitoring techniques enabled us to demonstrate
expansion of HPV-antigen specific T cells not only in the periphery but also in the cervix.
Such an approach should be useful as a novel approach to assess vaccine-specific
responses in various anatomical areas.
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INTRODUCTION

Human papillomavirus (HPV) is best known as the causative
agent of cervical cancer, but it can also cause cancers at other
mucosal sites including the anus, oropharynx, penis, vagina, and
vulva. It is estimated that HPV is responsible for 42,700 cancers
in the US each year (1), including more than 90% of anal
and cervical cancers and about 70% of oropharyngeal, vaginal,
and vulvar cancers (1). Incidences of HPV-associated anal and
oropharyngeal cancers have increased notably, and although
incidence of cervical cancer has stabilized after significant
decreases over the past several decades (2), this remains the
fourth most common cancer among women globally (3). The
available prophylactic vaccines are effective for preventing HPV
infections, but they cannot eliminate established infections;
therapeutic vaccines could fill this need. Such vaccines would
benefit young women (narrowly, those ≤24 years old), and
broadly, any woman who plans to become pregnant (4)
because increased incidence of preterm delivery (from 4.4% to
8.9%) is associated with surgical treatments (e.g., loop electrical
excision procedure [LEEP]) for high-grade squamous
intraepithelial lesion (HSIL) (4, 5). Furthermore, HPV
infection has been shown to be associated with inability to
conceive (6, 7), spontaneous abortion (8), and male infertility
(9, 10). With the goal of circumventing these adverse obstetrics
and reproductive outcomes as well as for treating cervical cancer,
a variety of HPV therapeutic vaccines are in development
including DNA-based (11), peptide-based (12, 13), and
bacterial vector-based (14) delivery.

We evaluated the safety of an HPV therapeutic vaccine
(PepCan) in a single-center, single-arm, dose-escalation Phase
I clinical trial treating women with biopsy-proven HSILs
(NCT01653249) (15, 16). PepCan consists of four current good
manufacturing practice (cGMP)-grade peptides covering the
human papillomavirus type 16 (HPV 16) E6 protein (amino
acids 1-45, 46-80, 81-115, and 116-158) and Candida albicans
skin test reagent (Candin®, Nielsen Biosciences, San Diego, CA).
PepCan was shown to be safe, and resulted in a histological
regression rate of 45% which is roughly double that of a historical
placebo (22%) (17). In addition, circulating, peripheral T-helper
type 1 (Th1) cells (p=0.0004) were increased, and the HPV 16
viral load was significantly decreased (p=0.008) (15).

Recent advances in high-throughput sequencing technology
have enhanced our ability to appreciate how the T cell receptor
(TCR) repertoire may reveal the role of T cells in
immunotherapy for HPV-related diseases (18–20). The actual
diversity present in a human body is estimated to be around 1013

unique TCRs (21). Next generation sequencing can facilitate the
simultaneous analysis of millions of TCR sequences.
Abbreviations: CIN 3, cervical intraepithelial neoplasia 3; cGMP, current good
manufacturing practice; ELISPOT, enzyme-linked imunospot; FFPE, formalin-
fixed paraffin-embedded; HNC, head and neck cancer; HPV, human
papillomavirus; HPV 16, human papillomavirus type 16; HSIL, high-grade
squamous intraepithelial lesion; IFN-g, interferon-g; IL-4, interleukin-4; LBC,
liquid-based cytology; LEEP, loop electrical excision procedure; PBMCs,
peripheral blood mononuclear cells; TCR, T cell receptor; Th1, T-helper type 1;
TNF, tumor necrosis factor.
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Understanding the cytotoxic T cell repertoire, in parallel with
observing clinical responses, would be insightful for revealing
immune mechanisms behind immunotherapies for chronic
infectious diseases or cancer (18, 22–25). However, the use of
high-throughput sequencing technology alone can only identify
putatively vaccine-specific T cells on a statistical basis, but it is
not able to verify their specificity on an immunological basis. In
this article, we utilize multiplexed PCR-based TCR sequencing
using genomic DNA to characterize TCR repertoires in
peripheral blood mononuclear cells (PBMCs), stimulated
CD3+ T cells, cervical formalin-fixed paraffin-embedded
(FFPE) tissues, and cervical liquid-based cytology (LBC)
samples from one subject who was a histologic responder from
the Phase I clinical trial mentioned above. In addition, single-cell
RNA-seq and TCR sequencing approaches were utilized to reveal
the TCR sequences of HPV-specific T cells with a specificity to
the HPV 16 E6 91-115 amino acid region revealed by the
enzyme-linked immunospot (ELISPOT) assay. We provide
proof-of-principle that a traditional assay, such as ELISPOT,
can be combined with a cutting-edge technology to better
characterize the specificities of T cells generated by vaccination.
RESULTS

Clinical Trial Design and
Vaccine Response
The subject, a 41-year old Caucasian woman, participated in a
single-arm, open-label Phase I clinical trial of an HPV
therapeutic vaccine, PepCan, for treating biopsy-proven
cervical HSILs (Figure 1A) (15, 16). At study entry, she had
cervical intraepithelial neoplasia 3 (CIN 3), and was positive for
HPV types 16, 31, and 58. At study exit (12 weeks after
vaccination series completion), her LEEP biopsy was benign
but was noted to have marked lymphocytic infiltration.
Furthermore, she was noted to have leukocytosis and
lymphocytosis (Table 1), and was positive for HPV 40 at exit.
ELISPOT assay showed CD3+ IFN-g+ T cell responses specific to
multiple regions of HPV 16 E6 and E7 protein before and after
the vaccinations. The response to one region, HPV 16 E6 91-115,
was significantly increased after 4 vaccinations (Figure 1B,
p=0.023). Peripheral immune cell profiling showed an
increased percentage of Th1 cells, but unchanged levels of
Tregs and Th2 cells (Figure 1C). Her HLA types were HLA-
A*24/A*30, B*15/B*51, C*01/C*03, DPB1*02/DPB1*02,
DQB1*03/DQB1*06, and DRB1*11/DRB1*13.

Multiplexed PCR-Based TCR b Chain
Deep Sequencing
All samples examined (n=10: PBMCs and stimulated CD3+ T
cell samples at pre-, post-2, and post-4 vaccinations; and FFPE
and LBC samples at pre- and post-4 vaccinations) yielded
sufficient quantities of DNA for bulk TCR sequencing. In total,
749,417 clonotypes, and 1,256,277 T cells were identified in these
10 samples (Table 2). The numbers of total T cells and
clonotypes were higher in PBMCs than in stimulated CD3+
September 2021 | Volume 12 | Article 645299
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FIGURE 1 | The Phase I clinical trial design and routine immune monitoring assays. (A) Clinical trial design of the Phase I study. Vaccination (PepCan) visits were
scheduled 3 weeks apart for patients who had biopsy-confirmed cervical high-grade squamous intraepithelial lesions (HSILs, i.e. CIN grade 2 or 3). Blood draws
were performed pre-vaccination, and post-2 and post-4 vaccinations. Cervical local samples (LBC and FFPE) were collected pre-vaccination and post-4
vaccinations. FFPE samples were prepared from a pre-vaccination cervical biopsy and from loop electrical excision procedure (LEEP) biopsy post-4 vaccinations.
(B) Immunogenic HPV16 E6 and E7 regions were determined for each vaccine phase using IFN-g ELISPOT assay. In pre-vaccine phase, positive responses (i.e., at
least twice the media control) were detected in the E6 16-40, E6 31-55, and E6 106-130 regions. Positive responses were seen in the E6 1-25, E6 106-130, E6
136-158, and E7 1-25 regions in the post-2 vaccination sample, and in the E6 31-55, E6 91-115, and E7 46-70 regions in the post-4 vaccination sample. The
increase in the response to the HPV16 E6 91-115 regions was statistically significant (paired t-test, p=0.023) after 4 vaccinations. Phytohemagglutinin was used as a
positive control (not shown). The y-axis represents mean spot forming units of triplicates per 1 x 106 CD3+ T cells, and error bars represent standard error of means.
(C) The fluorescent cell sorter analysis of PBMCs revealed that the Th1 (CD4+Tbet+) level expressed as the percentage of CD4+ T cells increased after 4
vaccinations, but Treg (CD4+CD25+FoxP3+) and Th2 (CD4+GATA3) levels were minimally changed.
Frontiers in Immunology | www.frontiersin.org September 2021 | Volume 12 | Article 6452993
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T cell samples (Figure 2). In cervical samples, the clonotypes and
total T cells were detected in FFPE (pre- and post-4) and LBC
(pre- and post-4). The productive clonality was increased after 4
vaccinations in PBMC, stimulated CD3+ T cell, and LBC
samples, and the maximum productive frequencies at least
doubled in all sample types (Figure 2). The T cell fraction was
highest in stimulated CD3+ T cells, and lowest in LBCs. DNA per
cell was similar among PBMCs, stimulated CD3+ T cells, and
LBC (ranging from 0.0061 ng/cell to 0.011 ng/cell), but much
higher in FFPE samples (0.714 ng/cell for pre-vaccination and
1.27 ng/cell for post-4 vaccinations).

The percentages of the top 15 most frequent clonotypes were
significantly increased after 4 vaccinations in all sample types
except for FFPE (Figure 3A). Venn diagrams of clonotypes
detected in PBMCs, LBC, and FFPE at pre-vaccination and
post-4 vaccinations revealed that some clonotypes can be
detected in all sample types, reflecting the capacity of at least a
subset of T cells to traffic to the cervix (Figure 3B). The presence
of T cells in peripheral blood and cervix was shown. Both LBC
and FFPE samples from the cervix were analyzed. However, the
quality of DNA from FFPE may have been low as approximately
one hundred fold larger quantity of DNA per nucleated cell was
reported (Table 2). This may possibly have led to incomplete
identification of TCRs because TCR DNA split in multiple
fragments cannot be identified. So, the overlap between FFPE
Frontiers in Immunology | www.frontiersin.org 4
and peripheral blood may not be as reliable as an overlap
between LBC and peripheral blood. A beta-binomial model,
which accounts for variance due to random sampling from a
highly diverse repertoire and time-dependent variance for
identifying clinically relevant expansion of T cells (26), was
used to identify putatively vaccine-specific TCRs using pre-
and post-4 vaccination PBMC samples. Seventy putatively
vaccine-specific TCRs were identified using the CDR3
nucleotide sequences (Supplementary Table 1). The numbers
of such clonotypes and total T cells in pre- and post-4
vaccination FFPE (1 and 9 clonotypes, and 1 and 13 total T
cells, respectively) and pre- and post-4 vaccination LBC [14 and
47 clonotypes (Figure 3C), and 33 and 1,523 total T cells
respectively] showed that LBC may be more an informative
sample type compared to FFPE because of a greater T cell
abundance and better DNA quality.

Single-Cell RNA-Seq and TCR Sequencing
Of 8.5 x 106 peptide (three 15-mer peptides covering the HPV 16
E6 91-115 region)-stimulated and IFN-g labeled cells from
monocyte depleted post-4 vaccination PBMCs, 1.3 x 106

(15.3%) were positively sorted. For the TCR sequencing, the
estimated number of cells was 12,240 with mean read pairs of
13,678 per cell. Most (10,246 of 12,240 or 83.7%) cells contained
productive V-J spanning pairs. The TCR b amino acid sequences
of the 4 clonotypes with a frequency of ≥5% among the IFN-g
positive cells are shown in Table 3.

The single-cell RNA-seq analysis revealed an estimated
15,114 total number of cells, 32,659 mean reads per cell, and
2,047 median number of genes per cell. After filtering and
normalization, cells were clustered into 9 separated
populations (Figure 4A). Notably, abundant expression of
IFN-g and tumor necrosis factor (TNF), but not interleukin-4
(IL-4), was detected in cluster #1, #2 and #3 within the CD8+ T-
cell populations, as shown in violin and feature plots
(Figures 4B, C). These results corroborate the importance of
the role of the Th1 cells play as previously demonstrated using
the fluorescent-activated cell sorter analysis (Figure 1C).
TABLE 1 | Complete blood count with differentials.

Test Reference range Pre Post-2 Post-4

WBC (K/µL) 3-12 7.92 8.14 13.94
Hemoglobin (g/dL) 11.5-16 12.9 13.4 13.9
Hematocrit (%) 34-47 39.1 41.2 42.7
Platelet (K/µL) 150-500 225 225 237
Neutrophils (K/µL) 2.5-8.2 4.5 5 7
Lymphocyte (K/µL) 1-4.8 2.5 2.3 5.5
Monocytes (K/µL) 0.1-1 0.6 0.6 0.9
Eosinophils (K/µL) 0-0.4 0.3 0.2 0.4
Basophils (K/µL) 0-0.22 0.02 0.02 0.03
Bold texts indicate values outside of the reference range.
TABLE 2 | Sample characteristics.

Sample types Vaccine time
point

Used sample
amount

Input DNA
(ng)

T cells by nucleotide
sequence

Clonotypes by
nucleotide
sequence

T cells by amino acid
sequence

Clonotypes by amino acid
sequence

PBMC Pre 8 × 106 cells 2,852 252,926 195,744 252,926 187,972
Post-2 8 × 106 cells 2,861 253,155 199,650 253,155 191,481
Post-4 8 × 106 cells 3,428 313,245 149,604 313,245 144,519

Stimulated CD3+
T cells

Pre 6.8 × 106 cells 1,204 166,173 88,391 166,173 85,767
Post-2 6.5 × 106 cells 1,202 158,747 78,715 158,747 76,644
Post-4 2 × 106 cells 1,202 99,701 29,150 99,701 28,643

LBC Pre 1,200 mL 318 814 699 814 694
Post-4 800 mL 930 10,731 6748 10,731 6,693

FFPE Pre Five 5mm scrolls 392 403 372 403 359
Post-4 Five 5mm scrolls 934 382 344 382 331
September 2021 |
T cell clone abundances were counted using complementarity determining region 3 (CDR3) nucleotide or amino acid sequences. PBMC, peripheral blood mononuclear cells; CD3+ T cells,
CD3+ T cells stimulated with HPV16 E6 and E7 antigens expressed by recombinant vaccinia viruses and in GST-fusion proteins; LBC, liquid-based cytology; FFPE, formalin-fixed paraffin-
embedded.
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Tracking of the HPV 16 E6 91-115 Specific
T Cells
Using the TCR b CDR3 sequences of the 4 clonotypes specific for
HPV 16 E6 91-115, their frequencies in PBMCs, LBC, and FFPE
samples were determined using TCR b chain sequencing
(Figure 5). All 4 clonotypes were detectable in PBMCs and
Frontiers in Immunology | www.frontiersin.org 5
LBC prior to vaccination, and their expansion after 4
vaccinations is shown. Only one T cell of clonotype 2 is
detectable prior to vaccination in FFPE. All 4 clonotypes were
detectable after 4 vaccinations, but only at 2 T cells for clonotypes
1, 3, and 4, and 1 T cell for clonotype 2. As much fewer cells were
detected in FFPE, LBC was a better source for assessing T cell
FIGURE 2 | T cell structures of PBMCs stimulated CD3+ T cells, LBC, and FFPE samples described with multiplexed PCR-based TCR sequencing using genomic
DNA. The T cell structures of the 4 sample types (PBMCs, stimulated CD3+ T cells, LBC, and FFPE) are shown as the total number of T cells defined by nucleotide
sequence, productive clonality (one minus normalized Shannon’s entropy for all productive rearrangements), fraction of T cells (the number of productive templates
divided by the number of nucleated cells), number of clonotypes defined by nucleotide sequence, maximum productive frequency (the most frequent specific
productive rearrangement among all productive rearrangements within a sample), and the quantity of DNA (ng) per nucleated cell. The number of nucleated cells
were determined using amplification of reference gene primers.
September 2021 | Volume 12 | Article 645299

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Shibata et al. Expansion of Human Papillomavirus-Specific T Cells

F

A

B

C

FIGURE 3 | Continued
rontiers in Immunology | www.frontiersin.org September 2021 | Volume 12 | Article 6452996

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


FIGURE 3 | Tracking of clonotypes in the peripheral blood and cervix. (A) Tracking of the top 15 clonotypes defined by nucleotide sequence are shown in
productive frequency. The top 15 highest frequency clonotypes were significantly decreased after 2 vaccinations (Wilcoxon matched-pairs signed-ranks test,
p=0.0012), but significantly increased after 4 vaccinations (p<0.0001) in PBMC samples calculated using the numbers of T cells. For stimulated CD3+ T cell
samples, significant increases were seen between pre-vaccination and post-4 vaccinations (p=0.034) and between post-2 and post-4 vaccinations samples
(p=0.0034). A significant increase was seen in LBC samples (p<0.0001) but not in FFPE samples. (B) Venn diagrams of clonotypes defined by nucleotides in PBMC,
LBC, and FFPE samples pre-vaccination and post-4 vaccinations. Most clonotypes appear only in one sample type, but there are 17 TCRs present in PBMCs, LBC,
and FFPE at the pre-vaccination visit and 72 TCRs at the post-4 vaccination visit. (C) Putatively vaccine-specific clonotypes in LBC samples before and after 4
vaccinations. Seventy putatively vaccine-specific clonotypes were identified through a comparison of post-4 PBMC and pre PBMC samples using the beta-binomial
model (shown as red dots with and without black circular borders). Red dots with black circular borders represent these putatively vaccine-specific TCRs present in
pre-vaccination LBC sample (n=15) and in post-4 vaccination LBC sample (n=57). Dark grey dots are not significantly different between pre-vaccination and post-4
vaccinations PBMC samples. Dark grey dots with black circular borders are not significantly increased but are present in the respective LBC sample. Light grey dots
without black circular borders are not present in the respective LBC sample.

Shibata et al. Expansion of Human Papillomavirus-Specific T Cells
populations, at least in this subject. All 4 clonotypes were
represented in the top 15 most frequent clonotypes for
PBMCs, LBC, and stimulated CD3+ T cells, but only clonotype
1 was present in FFPE (Figure 3A). Of the 70 clonotypes
identified to be putatively vaccine-specific using the beta-
biomial model, 60 clonotypes were shown to be HPV 16 E6
91-115 specific (Supplementary Table 1). Clonotype 1 was the
most abundant clonotype in PBMCs and LBC, and the second
most abundant clonotype in stimulated CD3+ T cells.
DISCUSSION

This was a proof-of-concept study to demonstrate the utility of
TCR analyses using high-throughput sequencing technology in
the context of HPV therapeutic vaccine trials. The earliest
evidence of the link between HPV and cervical cancer was
discovered in 1983 by Harald zur Hausen and his colleagues
(27) to whom a Nobel Prize was later awarded. To date, over 200
HPV types have been described (28). HPV antigens are ideal
targets for cancer immunotherapy because they are foreign.
Various versions of investigational HPV therapeutic vaccines
have been in clinical trials for about the last 30 years, but none
has been approved by the United States Food and Drug
Administration. Investigational HPV therapeutic vaccines have
been tested for many indications including clearance of HPV 16
and/or 18 infection (29), HSIL regression (11, 15, 16), prevention
of recurrence of squamous cell carcinoma of head and neck
(HNC)(NCT03821272), treatment of advanced stage cervical
cancer (13, 14), and treatment of advanced stage HNC (30).
The assessment of vaccine efficacy depends on the indication
being tested. For HPV 16 infection clearance, HPV-DNA typing
was used (29), and biopsies were utilized to evaluate HSIL
regression (11, 15, 16). Lack of recurrence within a 2 year
Frontiers in Immunology | www.frontiersin.org 7
period is being used for assessing prevention of recurrence
(NCT03821272). Antitumor efficacy was examined using the
numbers of patients with complete and partial response, tumor
shrinkage, duration of response (13).

Unlike the HPV prophylactic vaccines which work by
inducing production of neutralizing antibodies (31, 32), the
HPV therapeutic vaccines are believed to cast their effects
through stimulation of cell-mediated immunity, mainly T cells.
Therefore, assessments of T cell immune response should be
included in the endpoints of clinical trials. Such implementation
varies widely among the clinical trials because T cell assays are
technically challenging. In a Phase I clinical trial, Maciag et al.
(14) examined the safety of Lm-LLO-E7 vaccine which is a live-
attenuated Listeria monocytogenes engineered to secrete HPV 16
E7 protein fused with a Listeria monocytogenes protein
listeriolysin. Fifteen patients with invasive carcinoma of the
cervix were enrolled. In order to demonstrate immune
responses, the investigators attempted to perform IFN-g
ELISPOT assay using pooled peptides, but most samples were
not suitable due to low yield and viability after thawing. Of the 3
patients having a sufficient number of cells available to perform
the assay, only one demonstrated an HPV-specific T cell
response after vaccination. HPV 16 E7 short and long peptides
were pooled before testing, so no information as to which
portion of the protein contained immunogenic epitopes was
obtained (14). In the GTL001 trial, van Damme et al. performed
ex vivo IFN-g ELISPOT assay with pooled HPV 16 E7 peptides or
HPV 18 E7 peptides. GTL001 was made of recombinant HPV 16
and HPV 18 E7 proteins which were fused with catalytically
inactive CyaA protein of Bordetella pertussis. A total of 47
women with HPV 16 or HPV 18 infection were studied in 4
cohorts. Overall, 18 of 31 patients (58.1%) who received any dose
of GTL001 with imiquimod demonstrated positive ELISPOT
results to either protein (29). Trimble et al. also tested immune
responses using IFN-g ELISPOT assay and intracellular cytokine
staining for assessment of T cell immunity. Significantly higher
responses were reported for patients with HSIL who received the
VGX-3100 vaccine (synthetic DNA designed to express HPV 16
and 18 E6 and E7 proteins) compared to those who received
placebo. As peptides were pooled for each protein tested (HPV
16 E6, HPV 16 E7, HPV 18 E6, and HPV 18 E7), information on
which portion of the protein contained the immunogenic
epitopes was not determined (11). In the clinical trial which
treated advanced-stage HNC patients with ISA101 (a synthetic
TABLE 3 | TCR b CDR3 sequences of clonotypes with specificity to HPV 16 E6
91-115 and ≥5% frequency.

Clonotype Number Frequency (%) Amino acid sequence

1 2,615 33.3 CASSPTSGGLTWDEQYF
2 1,340 17.0 CASSHNSGREGNEQFF
3 772 9.8 CASSFPGENEQFF
4 678 8.6 CASSWEAGQETQYF
September 2021 | Volume 12 | Article 645299
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long-peptide HPV 16 vaccine) and nivolumab (an anti-PD-1
checkpoint inhibitor), the investigators performed IFN-g
ELISPOT assay for HPV 16 E6 and E7 again using peptide
pools. Variable increases in the number of HPV-specific T cells
were observed after vaccination in both responders and
nonresponders, making the role of vaccine-induced T cells
uncertain. Furthermore, the immune response did not
correlate with efficacy endpoints (30). In addition to IFN-g
ELISPOT assay, Melief et al. performed lymphocyte
stimulation test, intracellular cytokine staining, and cytometric
bead arrays to assess immune responses for a clinical
Frontiers in Immunology | www.frontiersin.org 8
trial studying the effects of ISA101 vaccination during
chemotherapy in patients with advanced, recurrent, or
metastatic cervical cancer (13). In all 64 patients who received
ISA101 vaccination, HPV 16 E6 and/or E7-specific T cell
responses to one or more of 6 peptide pools (4 pools for HPV
16 E6 and 2 pools for HPV 16 7 protein) were demonstrated.

Our IFN-g ELISPOT protocol distinguishes itself among
others in that we tested for 10 HPV 16 E6 peptides pools and
6 HPV 16 E7 peptide pools (Figure 1B) (15, 16). Therefore, the
locations of the antigenic epitopes can be narrowed down to 25
amino acid regions. This characteristic of our ELISPOT assay
A

B

C

FIGURE 4 | Single-cell gene expression profile of HPV 16 E6 91-115 specific T cells. (A) A UMAP plot showing 9 clusters based on gene expression profiles.
(B) Violin plots showing CD3D, CD4, CD8A, IFN-g, TNF, and IL-4 gene expression. (C) Feature plots showing CD3D, CD4, CD8A, IFN-g, TNF, and IL-4 gene expression.
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was key to identifying a significant response to the HPV 16 E6
91-115 region, and subsequent isolation of antigen-specific T
cells based on IFN-g secretion. In this clinical trial, 61% (19 of 31)
of vaccine recipients demonstrated a new CD3+ T cell response
in ELISPOT assay using peripheral blood sample to at least one
region of the HPV 16 E6 protein which was not present prior to
vaccination (15, 16). Furthermore, these increased responses
were statistically significant in 42% (13 of 31) of the subjects
when ELISPOT results after vaccination were compared to those
prior to vaccination (15, 16). However, the presence of such
peripheral T cell responses to HPV after vaccination did not
correlate with cervical HSIL regression. Therefore, ELISPOT
data alone may not be a good correlate of clinical response,
and that they should be combined with advanced technologies
such as TCR sequencing for more critical evaluation of local
protection at the site of lesion.

It is intriguing that our prior work demonstrated the HPV 16
E6 91-115 region as one of areas in which significantly increased
CD4+ T cell responses were demonstrated among regressors of
cervical lesions compared to persistors (33). The single-cell
RNA-seq data in the current work suggest that the HPV-
specific T cells are CD8+ T cells. These data combined raises a
possibility that the HPV 16 E6 91-115 region may be an epitope
hotspot just like the HPV 16 E6 52-62 regions which we
described to be a T cell eptiope hotspot containing both CD4
and CD8 epitopes (34).

TCRs are highly diverse heterodimers consisting of a and
b chains in the majority of T cells. However, 1-5% of T cells
express gd chains (35). Similar to B cell receptors, the TCR chains
contains a variable region responsible for antigen recognition,
and a constant region. The variable region of the a and d chains
is encoded by recombined variable (V) and joining (J) genes.
Additionally for the b and g chains, diversity (D) genes are also
recombined (i.e., VDJ recombination). Therefore, the b and g
chains are more diverse than the a and d chains. The advent of
high-throughput sequencing made it possible to probe into the
complexity of such TCRs. In the current study, we employed
TCR b chain deep sequencing using bulk DNA and single-cell
RNA-based TCR analysis using mRNA. The former has the
Frontiers in Immunology | www.frontiersin.org 9
advantage of using DNA, which can be extracted from LBC and
FFPE samples; therefore, live cells are not necessary. The latter
was utilized to analyze IFN-g secreting HPV 16 E6 91-115
specific T cells from monocyte-deprived PBMCs after 4
vaccinations. Information on TCR a and b sequences and
their pairings was obtained, and the gene expression profiles of
individual cells was examined. We demonstrated that using the
information from a traditional IFN-g ELISPOT assay in
combination with TCR sequencing enables us to demonstrate
the expansion of HPV-specific CD3+ T cells and their presence
in the cervix. In addition to demonstrating the information on
TCR a and b chain pairings, the single-cell RNA-based method
has the advantage of yielding the entire sequences of the a and b
chains. This would enable construction of the TCRs in viral
vectors with which their specificities can be verified (36, 37).
Furthermore, such engineered T cells can be used for
immunotherapy as demonstrated by Draper and colleagues
(38). They used T cells genetically engineered to express the
TCR of HPV 16 E6 29-38 (TIHDIILECV) epitope restricted by
HLA-A*02:01. These engineered T cells were shown to be
cytotoxic to HPV 16-positive cervical and HNC cell lines (38).
The limitation of our current study was that we only examined
one subject in this proof-of-concept study. As the Phase II
clinical trial of PepCan is ongoing (NCT02481414), additional
analyses of Phase II participants would aid in determining the
generalizability of the findings of this study. As the participants
are being randomized in a blinded fashion to PepCan arm and
adjuvant only arm, making comparisons between these two arms
as well as between responders and non-responders would
be possible.
METHODS

Subject, Clinical Trial Design, and
Laboratory Analyses
This open-label single center dose-escalation Phase I clinical trial of
PepCan was reported previously (15, 16). Subject 6 was selected for
FIGURE 5 | Tracking HPV 16 E6 91-115 specific T cells in PBMC, LBC, and FFPE. The TCR Va and Vb sequences of HPV 16 E6 91-115 specific T cells were
determined by sorting and sequencing such cells based on IFN-g secretion upon peptide stimulation. The TCR Vb CDR3 sequences of top 4 clonotypes (≥ 5% of
IFN-g secreting cells) are shown in Table 3. The frequencies of these clonotypes in PBMC, LBC, and FFPE at pre-vaccination (yellow), post-2 vaccinations (blue),
and post-4 vaccinations (red) time points are shown. All 4 vaccine-specific clonotypes in PBMC and LBC increased in frequency after 4 vaccinations. On the other
hand, data from FFPE were not as informative.
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the current study because she was a vaccine responder, and
sufficient amounts of her samples were available for further
analyses. Briefly, subjects qualified for vaccination if they had
biopsy-proven CIN 2 and/or CIN 3 (Figure 1). PepCan (subject 6
received 50 mg/peptide dose) was given 4 times 3 weeks apart, and
LEEP was performed 12 weeks after the last vaccination. Cervical
LBC samples (ThinPrep, Hologic, Marborough, MA) were collected
for HPV typing before vaccination at the time of qualifying biopsy,
and after 4 vaccinations at the time of LEEP. Blood was drawn
before vaccination, after 2 vaccinations, and after 4 vaccinations to
isolate PBMCs. Routine clinical laboratory tests (complete blood
count, sodium, potassium, chloride, carbon dioxide, blood urea
nitrogen, creatinine, aspartate transaminase, alanine transaminase,
lactate dehydrogenase, g-glutamyl transpeptidase, total bilirubin,
and direct bilirubin) were performed. PBMCs were isolated using
the ficoll density gradient method. Cells were stored in liquid
nitrogen tanks while LBC samples were kept in - 80°C freezers.
Cervical FFPE samples were stored at room temperature.

Research laboratory analyses performed (15, 16) as a part of
the clinical trial included HPV typing (Linear Array HPV
Genotyping Test, Roche Molecular Diagnostics, Pleasanton,
CA), IFN-g ELISPOT assay, fluorescent-activated cell sorter
analysis of peripheral Th1, Th2, and Treg cells, and HLA class
I and class II low-resolution typing (One Lambda, West Hills,
CA). The Linear Array HPV Genotyping Test detects 37
individual HPV types (6, 11, 16, 18, 26, 31, 33, 35, 39, 40, 42,
45, 51, 52, 53, 54, 55, 56, 58, 59, 61, 62, 64, 66, 67, 68, 69, 70, 71,
72, 73, 81, 82, 83, 84, IS 39, and CP6108). For the ELISPOT assay,
magnetically selected CD3+ T cells (Pan T Cell Isolation Kit,
Miltenyi Biotec, Auburn CA) were stimulated with autologous
monocyte-derived dendritic cells pulsed with HPV 16 E6 or E7
using recombinant vaccinia viruses (39) and recombinant GST
fusion proteins (39) twice with a one-week duration for each
stimulation (15, 16). The assay was performed in triplicates using
overlapping HPV 16 E6 and E7 peptide pools covering HPV 16
E6 1-25, 16-40, 31-55, 45-70, 61-85, 76-100, 91-115, 106-130,
121-145, 136-158 and HPV 16 E7 16-40, 31-55, 46-70, 61-85, and
76-98 regions. Each peptide pool contained three peptides which
were 15 amino acids in length with 10 amino acid overlap.
PBMCs were stained for CD4+, CD25+, T-bet, GATA3, and
Foxp3 (15, 16). The percentage of CD4+ cells positive for T-bet
represented Th1 cells, those positive for GATA3 represented Th2
cells, and those positive for CD25+ and FoxP3 represented Tregs.
Multiplexed PCR-Based TCR Sequencing
The TCR b CDR3 regions were PCR-amplified and sequenced
(immunoSEQ, Adaptive Biotechnologies, Seattle, WA) (40)
using genomic DNA from PBMCs (pre-, post-2, and post-4),
CD3+ T cells stimulated with HPV 16 E6 and E7 expressed by
recombinant vaccinia viruses and in a form of GST-proteins
(pre-, post-2, and post-4), LBC (pre- and post-4), and FFPE
(pre- and post-4). Using bias-controlled V and J gene primers,
the rearranged V(D)J segments were amplified and sequenced. A
clustering algorithm was used to correct for sequencing errors,
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and the CDR3 segments were annotated according to the
International ImMunoGeneTicsCollaboration (41, 42) to
identify the V, D, and J genes that contributed to each
rearrangement. A mixture of synthetic TCR analogs was used
in PCR to estimate the number of cells bearing each unique
TCR sequence (43). “Detailed rearrangements”, “Track
Rearrangements”, “Venn Diagram”, “Differential Abundance”,
and “Scatterplot with Annotation” features of the immunoSeq
analyzer (44) were used to analyze data.
Single-Cell RNA-Seq of HPV-Specific
T Cells
In order to obtain TCR Va and Vb sequences of T cells specific for
HPV 16 E6 91-115 (Figure 1B), such T cells were selected using a
human IFN-g SecretionAssay –Cell Enrichment andDetectionKit
(Miltenyi Biotec) following the manufacturer’s instructions as
previously described (34, 45–48). Post-4 vaccination PBMC
sample cryopreserved after monocyte depletion (CD14
MicroBeads, Miltenyi Biotec) was thawed and cultured overnight
inYssel’smedia (Gemini Bio Products,West Sacramento,CA)with
1% human serum and 1,200 IU/mL of recombinant human
interleukin-2 (R&D Systems, Inc., Minneapolis, MN). As a
positive control, healthy donor PBMCs mixed with 1% HPV 16
E652-61 (FAFRDLCIVY)-specificCD8+Tcell clone cells (46)were
processed in the same manner. The cells were stimulated for 3 h
with 10 mM each of peptides in RPMI1640 media plus 5% human
serum:FAFRDLCIVYfor thepositive control, and the three 15-mer
overlapping peptides covering the HPV 16 E6 91-115 region (91-
105, YGTTLEQQYNKPLCD; 96-110, EQQYNKPLCDLLIRC;
101-115, KPLCDLLIRCINCQK; RS Synthesis, Louiville, KY;
≥ 70% purity) (49). IFN-g secreting cells were labeled using the
IFN-g catch reagent and phycoerythrin (PE)-labeled IFN-g
detection antibody. The positive control sample and healthy
donor PBMCs stained with mouse IgG1K isotype labeled with PE
(eBiosciences) were used as a negative control to set the gate. The
cells were sorted for IFN-g positivity only using FACS Aria (BD
Biosciences, Franklin Lakes, New Jersey).

ANextGEMChipGwas loadedwith approximately 10,000 cells
and ChromiumNext GEM Single Cell 5’ Library Gel Bead Kit v1.1
reagent (10X Genomics, Pleasanton, CA). An emulsion was
generated with the Chromium Controller (10X Genomics). Gene
expression (GEX) libraries were prepared with the Chromium
Single Cell 5’ Library Construction Kit and TCR libraries were
prepared with the Chromium Single Cell V(D)J Enrichment Kit,
HumanTCell (10XGenomics).A low-pass surveillance sequencing
run of both libraries were performed on separate Illumina mid-
output MiniSeq flow cells (GEX library Read1:26bp, Read2:91bp,
TCR libraryRead1:150bp, Read2:150bp). Sequencingwas scaled up
on an Illumina NextSeq 500 with a high-output 150-cycle v2.5 kit
for theGEX library and amid-output 300-cycle v2.5 kit for theTCR
library; both runs used identical read lengths as on the MiniSeq.
Data was aggregated from both runs.

Sequencing data were first processed by a Cell Ranger pipeline
(v3.1.0; 10X Genomics). Gene expression sequencing data were
September 2021 | Volume 12 | Article 645299

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Shibata et al. Expansion of Human Papillomavirus-Specific T Cells
mapped to human reference (GRCh38-3.0.0) dataset. The raw
single-cell data were processed by R package Seurat v. 3.2.2, by
following the recommended steps and settings. The low-quality
cells and doublets were filtered out by the following
recommended setting: percentage of mitochondrial genes >
5%, number of detected genes < 200 and number of detected
genes > 2500. The clustering was performed with the resolution
setting at 0.4. The UMAP (Uniform Manifold Approximation
and Projection) plot, violin plots and feature plots were also
generated by Seurat (Figure 4).

TCR sequencing data were mapped to human TCR reference
(GRCh38-alts-ensembl-3.1.0) dataset, and they were further
analyzed by Loupe V(D)J Browser (v3.0.0; 10X Genomics). T cell
clonotypes were defined based on TCR Vb CDR3 nucleotide
sequences after removing single cells containing only a chains
and those containing two different TCR Vb CDR3 nucleotide
sequences (likely doublets). For calculating the frequencies of
≥ 5% clonotypes (Table 3), clonotypes with two or more single
cells were included. Full-length TCRa b amino acid sequences
were obtained by the Loupe V(D)J Browser.
Statistical Analysis
A paired t-test was performed to assess the significant changing
of spot forming units (i.e., IFN-g secreting cells) before and after
vaccination in ELISPOT assay. The number of T cells between
study visits in PBMC, stimulated CD3+ T cells, LBC, and FFPE
were compared using Wilcoxon matched-pairs signed-ranks test
(GraphPad Instat 3, GraphPad Software, San Diego, CA). A p
value < 0.05 was considered statistically significant.
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