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Acute myeloid leukaemia (AML) is a heterogeneous disease associated with

poor outcomes. To identify AML-specific genes with prognostic value, we

analysed transcriptome and clinical information from The Cancer Genome

Atlas (TCGA) database, Gene Expression Omnibus (GEO) datasets, and

Genotype-Tissue Expression (GTEx) project. The metabolism-related gene,

SLC25A21 was found to be significantly downregulated in AML, and was

associated with high white blood cell (WBC) counts, high pretrial blood (PB)

and bone marrow (BM) blast abundance, FLT3 mutation, NPM1 mutation, and

death events (all p value <0.05). We validated the expression of SLC25A21 in our

clinical cohort, and found that SLC25A21was downregulated in AML. Moreover,

we identified low expression of SLC25A21 as an independent prognostic factor

by univariate Cox regression (hazard ratio [HR]: 0.550; 95% Confidence interval

[CI]: 0.358–0.845; p value = 0.006) and multivariate Cox regression analysis

(HR: 0.341; 95% CI: 0.209–0.557; p value <0.05). A survival prediction

nomogram was established with a C-index of 0.735, which indicated reliable

prognostic prediction. Subsequently, based on the median SLC25A21

expression level, patients in the TCGA-LAML cohort were divided into low-

and high-expression groups. Gene ontology (GO) function and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses

of DEGs highlighted growth factor binding, extracellular structure organization,

cytokine‒cytokine receptor interaction, etc. The results of gene set enrichment

analysis (GSEA) indicated that the epithelial-mesenchymal transition, KRAS

signalling, oxidative phosphorylation, and reactive oxygen species pathways

were enriched. Through gene coexpression and protein‒protein interaction

(PPI) network analysis, we identified two hub genes, EGFR and COL1A2, which

were linked to worse clinical outcomes. Furthermore, we found that lower

SLC25A21 expression was closely associated with a significant reduction in the

levels of infiltrating immune cells, which might be associated with immune

escape of AML cells. A similar trend was observed for the expression of

checkpoint genes (CTLA4, LAG3, TIGIT, and HAVCR2). Finally, drug sensitivity

testing suggested that the low-expression SLC25A21 group is sensitive to
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doxorubicin, mitomycin C, linifanib but resistant to JQ1, belinostat, and

dasatinib. Hence, our study demonstrated that a low expression level of

SLC25A21 predicts an unfavourable prognosis in patients with AML.

KEYWORDS

SLC25A21, prognosis, bioinformatics, GEO, TCGA, immune checkpoint, drug
sensitivity, acute myeloid leukaemia (AML)

Introduction

Acute myeloid leukaemia (AML) is a genetically and

clinically heterogeneous disease characterized by clonal

expansion, differentiation arrest, and evasion of apoptosis.

Despite recent advances in chemotherapy, immunotherapy,

and bone marrow transplantation, large numbers of AML

patients still have a dismal prognosis, with a 5-years survival

rate of only approximately 20% (Chen et al., 2019). The

development of personalized biomarker-targeted therapies in

AML has improved the efficacy of systemic therapies and

prolonged patient survival to some extent. However, the lack

of biomarkers hinders further improvements in accurate

diagnosis and prediction of efficacy. Thus, it is extremely

important to discover novel diagnostic and prognostic

biomarkers for targeted therapy in AML.

In this research, various comprehensive bioinformatics

and statistical methods were used to explore independent

prognostic factors in AML. Differentially expressed gene

(DEG) analysis, Kaplan-Meier analysis and Cox regression

analysis helped us screen out Solute Carrier Family

25 Member 21 (SLC25A21) as an AML-specific prognostic

marker. SLC25A21, also called ODC, is a metabolism-related

gene located on chromosome 14q13.3, and it encodes a

protein known as mitochondrial 2-oxodicarboxylate carrier

(Fiermonte et al., 2001). The SLC25A21 protein not only

facilitates the counterexchange of the oxodicarboxylates 2-

oxoadipate and 2-oxoglutarate but also plays an essential role

in the metabolism of several amino acids (Fiermonte et al.,

1998; Kunji et al., 2020). Germline SLC25A21 deficiency in

humans causes the depletion of mitochondrial DNA and

spinal muscular atrophy-like disease (Fiermonte et al.,

1998; Boczonadi et al., 2018). Metabolic reprogramming is

a hallmark of cancer, and targeting metabolic factors is an

emerging therapeutic modality (Chen et al., 2020a; Bosc et al.,

2020; Forte et al., 2020; Pei et al., 2020). Interestingly, a recent

study showed that SLC25A21 is a key tumor suppressor gene

in bladder cancer (Wang et al., 2021). However, the potential

role of SLC25A21 in AML and whether it could serve as a novel

target for metabolic therapy remain completely unknown.

Hence, we used GO and KEGG analyses, GSEA, PPI network

construction, immune infiltration and immune checkpoint

correlations, and drug sensitivity analysis to explore the

underlying molecular pathological mechanisms of SLC25A21

in AML. Based on the above results, we confirmed the

prognostic value of SLC25A21 and identified it as a potential

therapeutic target for AML.

Material and methods

Data source

We included 804 samples from three independent cohorts in

this study: the TCGA LAML cohort (RNA-seq, n = 132) (Cancer

Genome Atlas Research et al., 2013), the GSE13159 microarray

dataset (n = 573) (Haferlach et al., 2010) and the

GSE12417 dataset (RNA-seq, n = 163) (Metzeler et al., 2008).

The matrix of mRNA expression in normal samples (n = 70) was

extracted from the GTEx project (Consortium, 2020). The RNA-

seq and clinical information from the TCGA LAML and GTEx

datasets were acquired using the UCSC XENA browser (https://

xenabrowser.net/datapages/) (Vivian et al., 2017; Consortium,

2020; Goldman et al., 2020). The microarray dataset

GSE13159 and RNA-seq dataset GSE12417 were downloaded

from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). To

maintain the comparability of data from different databases,

TPM values from RNA-Seq were determined for intrasample

comparison after log2 transformation. In our study, specimens

with no survival data were excluded.

Gene expression profiling

To analyse the gene expression profiles of AML, 705 bone

samples from the GSE13159 and LAML datasets were used. The

GSE13159 dataset was collected from the Microarray

Innovations in Leukaemia Study. The DEGs were predicted

using the limma package in R, with an adjusted p

value <0.05 and |log2FC| ≥ 0.15 (Ritchie et al., 2015). A list of

14 common differentially expressed AML-specific genes was

obtained from the above databases by using the Venn online

tool (https://bioinfogp.cnb.csic.es/tools/venny/).

Identification of overall survival-related
genes

The LAML cohort was used to investigate the potential

prognostic significance of the selected genes in AML patients.
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OS-related genes with a p value <0.05 were selected using

univariate Cox hazard regression analysis for further research.

The external cohort GSE12417 (n = 163) was used to validate our

results (Metzeler et al., 2008).

Human subjects and quantitative real-
time PCR

Bone marrow samples were collected from 20 patients

with AML diagnosis according to the 2016 WHO criteria. We

also collected 10 bone marrow samples from healthy donors.

The individuals in both cohorts were aged 18–70 years. All

patients signed the informed consent form, and the study

protocol was approved by the Ethics Committee of our

hospital. The patient information collected is listed in

Supplementary Table S3. Isolation of mononuclear cells

was performed using standard Ficoll standard procedure.

Total RNA was isolated with TRIzol reagent (Life

Technologies) and then reverse transcribed to cDNA using

the ImProm-II™ Reverse Transcription Kit (Promega,

Madison, United States). For gene expression analysis,

cDNA samples were mixed with SYBR reagent using a

7900 real-time PCR system (Applied Biosystems), and the

data were normalized to GAPDH. The primer sequences are

available in Supplementary Table S4.

Differentially expressed genes analysis

Based on the median SLC25A21 expression level, patients in

the LAML cohort were divided into two groups of low and high

expression. A list of DEGs was obtained using DESeq2 with an

adjusted p value < 0.05 and |log2FC| ≥ 1 (Love et al., 2014).

Gene ontology and kyoto encyclopedia of
genes and genomes enrichment analysis
of differentially expressed genes

By using the R package clusterProfiler, we carried out

functional annotation analysis to investigate the underlying

functions of DEGs in AML (Yu et al., 2012; Gene Ontology,

2021; Kanehisa et al., 2021). A Benjamin–Hochberg adjusted p

value <0.05 was interpreted as statistically significant. Heatmap

of clustered DEGs was generated using ClustVis software

(Metsalu and Vilo, 2015).

Gene set enrichment analysis

GSEA was conducted by using the clusterProfiler package in

R and hallmark signatures (h.all.v7.2. symbols.gmt) from

MsigDB (Subramanian et al., 2005; Yu et al., 2012). Results

were considered significant when |NES | >1, normalized p

value <0.0523.

Comprehensive protein‒protein
interaction analysis

Associations between SLC25A21 and the expression of other

genes were assessed using the LinkedOmics database (http://

www.linkedomics.org/login.php). We derived the PPI network

from the STRING database (https://string-db.org/) to estimate

the interactional correlations of the DEGs (Szklarczyk et al.,

2019). A confidence score >0.4 was considered significant. Hub

proteins and key nodes in the constructed PPI network were

identified using the Cytoscape plugin CytoHubba (Shannon et al.

, 2003). We investigated the association of SLC25A21 expression

with hub genes through correlation heatmaps by using the R

package ggplot2.

Immune infiltrate analysis

By using Single Sample GSEA (ssGSEA) in the R package

gsva, Spearman correlation coefficients were computed

between the expression level of SLC25A21 and ssGSEA-

based immune cell infiltration levels (Bindea et al., 2013;

Hanzelmann et al., 2013). The involved immune cells were

of 22 immune cell subtypes, including B cells, monocytes,

macrophages, neutrophils, NK cells, DC cells and all subtypes

of T-cells. The relationships between SLC25A21 expression

and the expression of immune checkpoint molecules,

including PDCD1, CD274, CTLA-4, LAG-3, TIGIT, and

HAVCR2, were identified through correlation heatmaps by

using the R package ggplot2.

Drug sensitivity prediction

The half-maximal inhibitory concentration (IC50),

calculated using the pRRophetic package in R (Geeleher

et al., 2014; Ding et al., 2021), was used for drug sensitivity

prediction.

Survival and statistical analysis

All statistical analyses were performed with R, version

4.1.3 (https://www.r-project.org/). The Wilcoxon rank-sum

test and Kruskal–Wallis test were used to detect differences

among continuous variables. The correlation of clinical

features with low and high SLC25A21 expression were

analysed with Pearson’s correlation χ2 test. For survival
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analysis, Cox proportional hazards analysis was conducted by

using “survival” and “survminer” in R. Variables significant in

Cox univariate analysis were selected for multivariate analysis.

The Kaplan-Meier method was used for univariate analyses of

OS. Receiver operating characteristic (ROC) curves and AUC

values were generated by pROC in R to assess the diagnostic

efficacy of SLC25A21 for AML. All tests were two-sided, and a

p value < 0.05 was considered to indicate statistical

significance. A flow chart of the analyses is presented in

Figure 1.

FIGURE 1
Flow chart of the study.
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FIGURE 2
Identifying AML-specific genes and the association of SLC25A21 expression with clinical characteristics. (A) Volcano plot displaying DEGs
between AML and control bonemarrow samples in the GSE13159 dataset. Each point represents the average value of one transcript. (B) Volcano plot
of DEGs between AML and normal samples in the TCGA-LAML and GTEx datasets. (C) Venn diagram of differential gene expression. Selected genes
for further analysis based on the intersections of DEGs. (D) The level of SLC25A21 expression in different tumor from TCGA and GTEx database.
(E) Receiver operating characteristic (ROC) analysis of SLC25A21 in AML. The analysis was performed with the TCGA-LAML and GTEx dataset. (F)

(Continued )
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Results

Acute myeloid leukaemia-specific genes
identified with screening datasets

We analysed the TCGA LAML database and the GEO dataset

GSE13159 to understand the potential molecular changes in

AML. For GSE13159, gene expression analysis was performed

on bone marrow samples from 501 AML to 72 control samples

(nonleukaemia and healthy donors). We identified

61 upregulated and 365 downregulated DEGs in the AML

group (|log2FC| ≥ 0.15, adjusted p value < 0.05) by using the

limma package in R. The volcano plots are shown in Figure 2A.

By screening the TCGA LAML datasets (|log2FC| ≥ 1, adjusted p

value < 0.05) with DESeq2, a total of 683 differentially expressed

genes were obtained, which are shown in Figure 2B. Venn

diagram software was used to obtain a common DEG list. A

list of 14 intersectional genes was extracted, of which 11 were

upregulated and 3 were downregulated in GSE13159 and TCGA

LAML (Figure 2C), including IL1R2, MMP8, FGF13, SLC25A21,

etc. In pan-cancer analysis, we determined the expression profiles

of these genes in normal and malignant samples. Remarkably,

SLC25A21 was downregulated in multiple malignancies,

especially in AML (Figure 2D). Furthermore, we performed

receiver operating characteristic (ROC) curve analyses, and

the area under the curve (AUC) was used to evaluate the

discriminatory capacity. The calculated AUC value was 0.996

(95% confidence interval, CI = 0.988–1.0, Figure 2E), which

means that SLC25A21 has excellent discrimination power to

distinguish AML patients from normal controls. Finally, we

validated the expression of SLC25A21 in AML patient bone

marrow samples collected in our centre. We compared the

mRNA expression level of SLC25A21 between AML patients

(n = 20) and healthy donors (n = 10) by qPCR. SLC25A21 was

significantly downregulated in AML samples, with a p value of

0.0007 (Figure 2F). Therefore, SLC25A21 could be a specific

factor to distinguish AML from normal samples.

Low levels of SLC25A21 are associated
with adverse clinical features in acute
myeloid leukaemia

To investigate the clinical significance of SLC25A21, we

analysed the TCGA LAML cohort, which includes 132 AML

patients with clinical information. As shown in Figures 2F–K,

low SLC25A21 expression was associated with higher WBC

counts (p value ＜0.001, Figure 2G), higher PB blast

abundance (p value ＜0.05, Figure 2H), higher BM blast

abundance (p value ＜ 0.001, Figure 2I), FLT3 mutation (p

value ＜ 0.001, Figure 2J), NPM1 mutation (p value ＜ 0.01,

Figure 2K), and death evens (p value ＜ 0.001, Figure 2L);

however, no association was found with cytogenetic risk or

French–American–British (FAB) classifications

(Supplementary Figures 1A–B). In addition, similar trends

were observed when patients were grouped by low or high

SLC25A21 expression; more details are shown in Table 1.

Low expression of SLC25A21 predicts
unfavourable prognosis in patients with
acute myeloid leukaemia

We further investigated the prognostic value of SLC25A21

in AML. First, patients in the low SLC25A21 expression group

had shorter OS than those in the high SLC25A21 expression

group (p value = 0.006, Figure 3A), which indicated that a low

SLC25A21 expression level was associated with an

unfavourable prognosis in patients with AML. Furthermore,

we validated our results in an independent external validation

cohort GSE12417 (p value = 0.027, Figure 3B).

In addition, univariate and multivariate logistic regression

analyses were performed to determine whether low expression

of SLC25A21 was an independent prognostic factor for AML.

Univariate Cox regression analysis showed that low levels of

SLC25A21 expression were associated with poor OS (hazard

ratio, [HR]: 0.55; 95% confidence interval [CI]: 0.358–0.845; p

value = 0.006). Meanwhile, increasing age and unfavourable

cytogenetics were also risk factors associated with poor

outcomes. Then, all variables significant in univariate Cox

regression analysis (p value <0.05) were included in

multivariate Cox regression analysis. Subsequently, age,

unfavourable cytogenetics and low levels of SLC25A21

expression (HR: 1.733; 95% CI: 1.079–2.781; p value =

0.023) were identified as independent prognostic factors for

OS. The forest plots present the Cox regression results in

Figures 3C,D (more details are provided in Supplementary

Table S1).

Moreover, a nomogram including the prediction model

was established based on multivariable logistic regression

FIGURE 2 (Continued)
Differential expression of SLC25A21 between AML patients and healthy donors by qPCR analyses. The results were expressed as the fold change
of AML patients relative to healthy donors. Clinical characteristics included (G) WBC count, (H) PB blasts abundance, (I) BM blasts abundance, (J)
FLT3 mutation, (K) NPM1 mutation, (L) OS evens. Data are presented as the mean ± SD, and represent triplicate wells from one of two independent
experiments. *p < 0.05, **p < 0.01, ***p < 0.001. Analysis between two groups of unpaired samples: Wilcoxon rank-sum test, analysis among
multiple groups: Kruskal‒Wallis test (ns p ≥ 0.05, *p < 0.05, **p < 0.01, ***p < 0.001).
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analysis. The established nomogram was well calibrated and

had good discriminative power, with a concordance index

(C-index) of 0.735 for OS prediction (Figure 3E).

Furthermore, we utilized calibration curves and decision

curve analysis (DCA) to report the clinical net benefit of

our model. The calibration curve at 1, 3, or 5 years still

showed high consistency between the predicted survival

probability and actual OS proportions (Figure 3F). In

addition, the decision curve analysis for the individualized

prediction nomogram is presented in Figures 3G–I. In

TABLE 1 Clinical characteristics of AML patients with differential SLC25A21 expression levels.

Characteristics Total(N) HR
(95%CI) univariate
analysis

p value
univariate analysis

HR
(95%CI) multivariate
analysis

p value
multivariate analysis

Gender 140

Female 63 References

Male 77 1.030 (0.674–1.572) 0.892

Age 140

≤60 79 References

>60 61 3.333 (2.164–5.134) <0.001 3.903 (2.425–6.281) <0.001
WBC count (x10̂9/L) 139

≤20 75 References

>20 64 1.161 (0.760–1.772) 0.490

PB blasts (%) 140

≤70 66 References

>70 74 1.230 (0.806–1.878) 0.338

BM blasts (%) 140

≤20 59 References

>20 81 1.165 (0.758–1.790) 0.486

Cytogenetic risk 138

Favorable 31 References

Intermediate 76 2.957 (1.498–5.836) 0.002 2.268 (1.135–4.533) 0.020

Poor 31 4.157 (1.944–8.893) <0.001 3.540 (1.607–7.800) 0.002

FLT3 mutation 136

Negative 97 References

Positive 39 1.271 (0.801–2.016) 0.309

NPM1 mutation 139

Negative 106 References

Positive 33 1.137 (0.706–1.832) 0.596

RAS mutation 139

Negative 131 References

Positive 8 0.643 (0.235–1.760) 0.390

IDH1 R132 mutation 138

Negative 126 References

Positive 12 0.588 (0.238–1.452) 0.249

IDH1 R140 mutation 138

Negative 127 References

Positive 11 1.131 (0.565–2.264) 0.727

IDH1 R172 mutation 138

Negative 136 References

Positive 2 0.610 (0.085–4.385) 0.623

SLC25A21 140

Low 66 References

High 74 0.550 (0.358–0.845) 0.006 0.341 (0.209–0.557) <0.001
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FIGURE 3
The prognostic value of SLC25A21 in AML. (A) Kaplan-Meier curve analysis of overall survival (OS) between the high- and low-
SLC25A21 expression groups in the TCGA-LAML dataset. (B)OS analysis of SLC25A21 in the independent validation cohort GSE12417. (C) Univariate
analyses of OS shown as a by forest plot. (D) Multivariate analyses of OS shown as a forest plot. (E) A nomogram integrating SLC25A21 and other
prognostic factors for AML (mut: mutation, wt, wild type; Int, Intermediate; Fav, Favourable). (F) The calibration curve of the nomogram. The
DCA curves of the nomogram at 1 year (G), 3 years (H), and 5 years (I).
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FIGURE 4
DEGs and functional enrichment of the high- and low- SLC25A21 expression groups in AML. (A) Heatmap of SLC25A21-related DEGs. (B)
Volcano plot of SLC25A21-related DEGs. (B,C) Interactive analyses of GO and KEGG, including biological processes (D), cellular components (E), and
molecular functions (F), and KEGG pathways of SLC25A21-related DEGs. (G) Each red plot in the graph represents a specific gene included in the
gene-set. Each blue plot represents the enriched gene-sets. The size of the blue plot represents the number of gene read counts in the gene-
sets. (H) GSEA of SLC25A21-related DEGs.
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summary, the nomogram model we established had good

predictive accuracy for AML patient survival.

Biological function enrichment of the
SLC25A21 gene in acute myeloid
leukaemia

Next, we aimed to further investigate the underlying

mechanisms and functional pathways of SLC25A21 in AML.

We identified DEGs between the low- and high- SLC25A21

expression groups. The final list of DEGs included

1,270 genes, with 128 genes upregulated and 1,142 genes

downregulated (|log2FC| ≥ 1, adjusted p value <0.05). The

heatmap and the volcano map are shown in Figures 4A,B.

To elucidate the potential biological function of SLC25A21 in

AML,we performed enrichment analyses. The top 15GOenrichment

items (Figures 4D–F) and top 5 KEGG pathways are shown in

Figure 4G. The main enriched GO terms of the DEGs were

extracellular structure organization, synapse organization,

extracellular matrix organization, collagen-containing extracellular

matrix, integral component of synaptic membrane, receptor ligand

activity, extracellular matrix structural constituent, glycosaminoglycan

binding, growth factor binding, etc.

We found that the enriched pathways included cytokine‒

cytokine receptor interaction, PI3K-Akt signalling pathway, focal

adhesion, proteoglycans in cancer, transcriptional misregulation

in cancer, Wnt signalling pathway, and TGF-beta signalling

pathway (Supplementary Table S2). Furthermore, interaction

analysis was carried out with the results of GO and KEGG

TABLE 2 Seventeen items from gene set enrichment analysis. (A) Gene sets enriched in phenotype SLC25A21 low. (B) Gene sets enriched in
phenotypeSLC25A21 high.

GS SIZE ES NES NOM p-
value

FDR q-
value

FWER p-
value

RANK
AT MAX

LEADING EDGE

1 HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 200 0.64 1.69 0 0 0 2921 tags = 45%, list = 15%,
signal = 52%

2 HALLMARK_HEME_METABOLISM 197 0.64 1.67 0 0 0 3583 tags = 38%, list = 18%,
signal = 46%

3 HALLMARK_ANGIOGENESIS 36 0.64 1.52 0.007 0.01 0.037 2740 tags = 53%, list = 14%,
signal = 61%

4 HALLMARK_HEDGEHOG_SIGNALING 36 0.62 1.46 0.02 0.026 0.13 3664 tags = 50%, list = 19%,
signal = 62%

5 HALLMARK_ESTROGEN_RESPONSE_EARLY 199 0.55 1.45 0 0.025 0.148 3940 tags = 38%, list = 20%,
signal = 47%

6 HALLMARK_APICAL_SURFACE 44 0.6 1.44 0.009 0.023 0.172 3050 tags = 34%, list = 16%,
signal = 40%

7 HALLMARK_MYOGENESIS 199 0.52 1.37 0.002 0.056 0.404 2994 tags = 30%, list = 15%,
signal = 35%

8 HALLMARK_UV_RESPONSE_DN 144 0.51 1.32 0.012 0.099 0.651 4417 tags = 35%, list = 23%,
signal = 45%

9 HALLMARK_KRAS_SIGNALING_UP 199 0.5 1.31 0.007 0.108 0.716 3932 tags = 36%, list = 20%,
signal = 45%

11 HALLMARK_SPERMATOGENESIS 134 0.49 1.27 0.037 0.145 0.874 4396 tags = 34%, list = 23%,
signal = 43%

12 HALLMARK_ESTROGEN_RESPONSE_LATE 198 0.48 1.26 0.025 0.16 0.917 4280 tags = 36%, list = 22%,
signal = 46%

13 HALLMARK_KRAS_SIGNALING_DN 199 0.48 1.25 0.026 0.161 0.934 3498 tags = 33%, list = 18%,
signal = 39%

GS SIZE ES NES NOM p-
value

FDR q-
value

FWER
p-value

RANK
AT MAX

LEADING
EDGE

1 HALLMARK_DNA_REPAIR 148 −0.4018086 −1.818951 0 0 0 7204 tags = 64%, list =
37%, signal = 101%

2 HALLMARK_REACTIVE_OXYGEN_SPECIES_PATHWAY 49 −0.3934737 −1.4372096 0.030303031 0.07993332 0.025 4629 tags = 49%, list =
24%, signal = 64%

3 HALLMARK_CHOLESTEROL_HOMEOSTASIS 74 −0.35663486 −1.3603169 0.03846154 0.11938669 0.047 3913 tags = 43%, list =
20%, signal = 54%

4 HALLMARK_INTERFERON_GAMMA_RESPONSE 200 −0.25014699 −1.24814 0 0.19125329 0.092 3746 tags = 37%, list =
19%, signal = 45%

5 HALLMARK_FATTY_ACID_METABOLISM 156 −0.2812873 −1.2210402 0 0.19619812 0.109 2894 tags = 26%, list =
15%, signal = 30%
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FIGURE 5
PPI network construction and clinical significance of hub genes. (A) Coexpression analysis of SLC25A21 in the TCGA-LAML dataset. The top
10 positively/negatively correlated genes are displayed. (B–C) The top 15 hub genes were selected on the basis of (B) MNC and (C) degree. (D) The
association of SLC25A21 with eight hub genes (EGFR, CDH1, BMP4, CXCL12, COL1A2, SOX9, MMP9, and CD8A). (E) Expression levels of COL1A2 in
AML patients (n = 132) and normal participants (n = 70). (F) Expression levels of EGFR in AML patients (n = 132) and normal participants (n = 70).
(G) The difference in OS between patients with high and low COL1A2 expression levels shown by Kaplan-Meier curves. (H) The difference in OS
between patients with high and low EGFR expression levels shown by Kaplan-Meier curves. (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
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analysis to explore interrelationships. The number of enriched

genes was ranked from most to least common: collagen-

containing extracellular matrix, extracellular structure

organization, extracellular matrix organization, cytokine‒

cytokine receptor interaction, extracellular matrix structural

constituent, growth factor binding, protein digestion and

absorption, malaria (Figure 4C).

Finally, we utilized GSEA to assess key regulatory pathways for

SLC25A21 expression. We found 17 significant pathways associated

with SLC25A21 (Table 2), of which the major affected pathways

FIGURE 6
Correlation analysis between the level of SLC25A21 expression and immune cell infiltration or immune checkpoint molecules. (A) The relative
contents of 24 kinds of immune cells in AML. (B) Spearman’s correlations were used to quantify the correlation of SLC25A21 expression with the
number of infiltrating level B cells and subtypes of T-cells. (C) The association of SLC25A21 with five immune checkpoint molecules (PDCD1, CD274,
CTLA-4, LAG-3, TIGIT, and HAVCR2). (D) Spearman’s correlation was used to quantify the correlation of SLC25A21 expression with immune
checkpoint molecules (r is Spearman’s correlation coefficient).
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included epithelial-mesenchymal transition, heme metabolism,

angiogenesis, KRAS signalling, oxidative phosphorylation, DNA

repair, MYC targets and reactive oxygen species (Figure 4H).

Identification of hub genes associated
with SLC25A21 expression

Next, we constructed and analysed the PPI network and

coexpression modules. As indicated in Figure 5A, most genes in

AML were positively correlated with the expression of

SLC25A21. A DEG-related PPI network was constructed to

determine hub genes. The top 10 hub genes were identified by

theMNC and Degree methods by using the cytoHubba plug-in of

Cytoscape (Figures 5B,C). Furthermore, we observed eight

shared hub genes (EGFR, CDH1, CXCL12, CD8A, MMP9,

SOX9, BMP4, and COL1A2) between the above two gene lists.

In addition, we detected the associations between SLC25A21 and

hub genes. The results showed that SLC25A21 had significant

correlations with EGFR (p value <0.001, correlation coefficient:

FIGURE 7
Drug sensitivity analysis based on SLC25A21. (A), Doxorubicin. (B), Mitomycin (C), 7-Oxozeaenol. (D), Linifanib. (E), JNJ-26854,165. (F), Niutlin-
3a. (G), 17-AAG. (H), CCT018159. (I), JQ1. (J), CAY10603. (K), Belinostat. (L), Dasatinib.
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0.569), CDH1 (p value <0.001, correlation coefficient: 0.709),

CXCL12 (p value <0.001, correlation coefficient: 0.590), CD8A (p

value <0.001, correlation coefficient: 0.441), MMP9 (p

value <0.001, correlation coefficient: 0.295), SOX9 (p

value <0.001, correlation coefficient: 0.438), BMP4 (p

value <0.001, correlation coefficient: 0.383), and COL1A2 (p

value <0.001, correlation coefficient: 0.538) (Figure 5D).

Finally, we examined the relationship between the levels of

hub genes and prognosis and found that only EGFR and

COL1A2 were positively correlated with SLC25A21 and linked

to poor clinical outcomes in patients with AML (Figures 5E–H).

Correlation analysis of SLC25A21 and
immune cells or immune checkpoint
molecules

Tumor infiltrating lymphocytes affect the survival of patients with

various cancers. Therefore, 24 kinds of infiltrating immune cells were

evaluated to describe the association between the levels of SLC25A21

expression and immune infiltration in AML. The results showed that

the expression level of SLC25A21 had an obvious positive correlation

with the numbers of infiltrating B cells, T-cells, Th1 cells, Th2 cells, T

helper cells, Tfh cells, CD8 T-cells, cytotoxic cells and Tcm cells

(Figure 6A). The details of the quantitative analysis with Spearman’s

correlation coefficient are shown in Figure 6B.

Furthermore, we clarified the relationship between SLC25A21 and

immune checkpoint (PDCD1, CD274, CTLA4, LAG-3, TIGIT, and

HAVCR2) expression. In our study, SLC25A21 was significantly

correlated with CTLA4, LAG3, TIGIT, CD274, and TIGIT. Details

of the correlation analysis are shown in Figures 6C,D.

Drug sensitivity analysis

The results of drug sensitivity analysis for the high- and low-

SLC25A21 groups showed that the SLC25A21 low expression

group may be more sensitive to cell cycle inhibitors (doxorubicin

and mitomycin C), vascular endothelial growth factor receptor

(VEGFR) tyrosine kinase inhibitors (linifanib and 7-oxozeaenol),

p53 activators (JNJ-26854165 and Nutlin-3a), and heat shock

protein 90 (HsP90) inhibitors (CCT018159 and 17-AAG) but

resistant to histone deacetylase (HDAC) inhibitors (JQ1,

CAY10603, and belinostat) and tyrosine kinase inhibitors

(dasatinib). These results indicated that SLC25A21 has a

significant correlation with chemotherapy and targeted

therapy regimens for AML (Figures 7A–L).

Discussion

AML is a highly heterogeneous disease with various

cytogenetic and genetic alterations. Genetic abnormalities are

not only the pathogenic basis of AML, but they have important

treatment and prognostic implications. In this study, we screened

transcriptome data for AML in public databases to discover novel

molecular biomarkers with a potential impact on prognosis and/

or therapeutic response. We identified DEGs between AML

patients and healthy donors in two independent cohorts.

Therefore, a list of 14 AML-specific genes was obtained,

including IL1R2, MMP8, FGF13, SLC25A21, etc.

(Le Sommer et al., 2018; Nobrega-Pereira et al., 2018)

SLC25A21 SLC25A21 is a 2-oxoglutarate transporter

embedded in the mitochondrial inner membrane and, in some

cases, organelle membranes. The expression of human SLC25A21

has a wide distribution with very little variation between tissues.

A recent study revealed that SLC25A21 suppresses cell growth

and plays a pathogenic role on bladder cancer (Wang et al.,

2021). Recent studies have shown that metabolic molecules are

dysregulated in AML cells and play key roles in leukaemogenesis,

contributing to chemoresistance and disease relapse (Le Sommer

et al., 2018; Nobrega-Pereira et al., 2018). Targeting cell

metabolism is now considered a viable therapeutic strategy for

AML. Therefore, we focused on the metabolism-related gene

SLC25A21 for further studies.

Given the above, we first explored the association of SLC25A21

gene expression levels with main clinical features in TCGA-LAML

cohorts of AML patients. SLC25A21We found that SLC25A21was

significantly downregulated in AML patients. As expected, a low

level of SLC25A21 was associated with higher WBC counts, higher

BM and PB blast abundance and poor prognosis. Thus, we

speculated that abnormally low expression of SLC25A21 plays

an unfavourable role in promoting AML cell proliferation and

survival while preventing leukaemic cell differentiation.

Hence, we explored the possible molecular mechanism

underlying this association by using a bioinformatics

approach. The enriched GO terms and KEGG pathways were

mainly involved in growth factor binding, collagen-containing

extracellular matrix, extracellular structure organization, the

PI3K-Akt signalling pathway and the Wnt signalling pathway.

Concurrently, GSEA showed enrichment of epithelial-to-

mesenchymal transition, the KRAS signalling pathway,

oxidative phosphorylation, DNA repair and the reactive

oxygen species (ROS) pathway.

Mitochondria are the primary intracellular source of ROS and

play important roles in aerobic metabolism and oxidative

phosphorylation. Thus, dysregulation of mitochondrial

metabolism is closely related to the development and progression

of haematopoietic malignancies (Basak and Banerjee, 2015;

Porporato et al., 2018). As a carrier embedded in mitochondria,

overexpression of SCL25A21 resulted in efflux of α-KG from

mitochondria, leading to upregulation of ROS accumulation,

which in turn induced mitochondrial apoptosis (Wang et al.,

2021). Moreover, increased ROS levels drive a cycle of genomic

instability. Leading to DNA double-strand breaks (DSBs) and

altered DNA repair. The accumulation of intracellular ROS can

Frontiers in Genetics frontiersin.org14

Wang et al. 10.3389/fgene.2022.970316

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.970316


promote tumour proliferation, but excessive accumulation of ROS

can lead to cell apoptosis (Trotta et al., 2017; Aggarwal et al., 2019).

Recent studies have revealed that the majority of functionally

defined leukaemia stem cells (LSCs) are functionally

characterized by relatively low levels of ROS. Meanwhile, several

EMT-related genes conferring properties of “stemness” were

strongly associated with shorter OS in AML patients

(Stavropoulou et al., 2016; Carmichael et al., 2020; Almotiri et al.,

2021). More importantly, the PI3K and KRAS signalling pathways

play important roles in the proliferation and differentiation of

haematopoietic cells (Crespo and Leon, 2000; Martelli et al.,

2009; Nepstad et al., 2018). Thus, we speculated that the

pathological mechanism of SLC25A21 may be related to these

signalling pathways.

Furthermore, throughaseriesofrigorousscreens, twohubgenes

(EGFR andCOL1A2) that could accurately predict the prognosis of

AML were found. It has been reported that dysregulation of EGFR

can lead tothedevelopmentofmalignancy(Chengetal., 2011;Singh

et al., 2016). EGFR repairs the DNA of HSCs by activating DNA-

dependent protein kinase catalytic subunit (DNA-PKcs), leading to

the regeneration of normal haematopoietic cells. Experimental

studies have shown that deletion of EGFR in progenitor cells

results in reduced DNA-PKcs activity, thus reducing the ability of

the cells to regenerate normal HSCs (Fang et al., 2020). In AML, we

speculate that EGFR may play the same role to inhibit normal

haematopoiesis, resulting in a shorter survival time forpatientswith

low EGFR expression. COL1A2 has also been implicated in gastric

cancer, colorectal cancer, prostate cancer, pancreatic cancer (Yu

etal., 2018;Wuetal., 2019;Nieetal.,2020;Liuetal., 2022), andsoon.

Moreover, COL1A2 has been identified as a hub gene in FLT3-

mutatedAML(Chenetal., 2020b).AlthoughSLC25A21,EGFR, and

COL1A2 are linked to tumour-associated signalling pathways, the

precise mechanisms of this synergy remain unclear. Further in-

depth studies are needed to address this issue in more detail.

Additionally, metabolic molecular abnormalities may facilitate

AML cell escape and immune detection and severely reduce the

efficacy of immunotherapy (Mougiakakos, 2019). Several studies

have shown that the level of immune infiltration and immune

evasion mechanisms of AML cells determine their immune

evasion ability (Rosenthal et al., 2019). Therefore, we investigated

the relationship between SLC25A21 expression and immune

infiltration levels in AML patients and found that with

downregulation of SLC25A21, the infiltration levels of various

T-cells and B cells were greatly decreased. Next, we also showed

that SLC25A21 expression had a positive correlation with some

immune checkpoint genes (CTLA-4, LAG3, TIGIT, and

HAVCR2), which serve as activation markers of T-cells and affect

antitumor immunity. We speculate that this may be because the

number of infiltrating immune cells is significantly reduced, resulting

in decreased expression of molecular markers of T-cell activation.

These results suggest that SLC25A21 may lead to immune escape in

AML. This observation may provide a framework to guide further

investigation of SLC25A21 in clinical and basic science research.

Last, the ultimate objective of our research is to provide

clinicians with guidelines to choose the appropriate therapeutic

regimens for each AML patient. With the development of next-

generation sequencing technology, several genetic aberrations

have been found to contribute to drug resistance in AML

(Gollner et al., 2017; Hou et al., 2017; Nechiporuk et al.,

2019). In this study, we analysed the correlation between

SLC25A21 and drug resistance in AML. Patients with low

SLC25A21 expression levels were sensitive to doxorubicin,

mitomycin, lapatinib, midostaurin, sorafenib, linifanib, Nutlin-

3a, 17-AAG, 5-fluorouracil, 7-oxozeaenol, JNJ-26854165,

CCT018159, bleomycin, and FH535 but resistant to JQ1,

CUDC-101, dasatinib, and GNF-2. These results indicate that

downregulation of SLC25A21 may promote sensitivity to

doxorubicin, the cornerstone regimen for AML. These results

suggest that while SLC25A21 affects prognosis in AML, patients

with low expression of SLC25A21 may still benefit from

traditional chemotherapy regimens.

However, our study has several limitations. First, we explored

the mutational frequency of SLC25A21 in 6 independent AML

studies (n= 2,177) and found a frequency of approximately 0.1%–

0.2% (Supplementary Figure S2). In addition, we observed

enrichment of transcriptional regulation pathways in GO

analysis. Therefore, the upstream transcriptional regulatory

mechanism of SLC25A21 remains to be uncovered. Second, we

evaluated thediagnostic value anddrug sensitivity of SLC25A21by

using public resources. However, we have not yet tested some new

clinically emerging targeted drugs, such as venetoclax, due to the

limitations of the training database. Last, all associations between

SCL25A21 and AML-associated immune molecules lack

functional validation and detection of the potential cellular and

molecular mechanisms. Future studies will build on these points

with a view toward providing new options for precision medicine

approaches and improving the treatment of AML patients.

Conclusion

Taken together, our preliminary findings showed that low

expression levels of the metabolism-related gene SLC25A21 had

an unfavourable effect on the overall survival of AML patients

and may be correlated with immune escape. A low level of

SLC25A21 could be an independent predictor of poor

prognostic for AML patients. This discovery could promote

the development of novel targeted drugs and provide

therapeutic options for personalized therapy.
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