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Abstract

Spatially resolved transcriptomics (SRT) technologies measure mRNA expression at thousands of
locations in a tissue slice. However, nearly all SRT technologies measure expression in two dimensional
slices extracted from a three-dimensional tissue, thus losing information that is shared across multiple
slices from the same tissue. Integrating SRT data across multiple slices can help recover this informa-
tion and improve downstream expression analyses, but multi-slice alignment and integration remains
a challenging task. Existing methods for integrating SRT data either do not use spatial information or
assume that the morphology of the tissue is largely preserved across slices, an assumption that is often
violated due to biological or technical reasons. We introduce PASTE2, a method for partial alignment
and 3D reconstruction of multi-slice SRT datasets, allowing only partial overlap between aligned slices
and/or slice-specific cell types. PASTE2 formulates a novel partial Fused Gromov-Wasserstein Optimal
Transport problem, which we solve using a conditional gradient algorithm. PASTE2 includes a model
selection procedure to estimate the fraction of overlap between slices, and optionally uses information
from histological images that accompany some SRT experiments. We show on both simulated and real
data that PASTE2 obtains more accurate alignments than existing methods. We further use PASTE2
to reconstruct a 3D map of gene expression in a Drosophila embryo from a 16 slice Stereo-seq dataset.
PASTE2 produces accurate alignments of multi-slice datasets from multiple SRT technologies, enabling
detailed studies of spatial gene expression across a wide range of biological applications.
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1 Introduction1

Spatially resolved transcriptomics (SRT) technologies measure mRNA expression simultaneously at thousands2

of locations within a tissue. These technologies include both sequencing based approaches, such as 10X3

Genomics Visium [1] and Slide-seq [37, 40], as well as hybridization and florescent approaches such as4

MERFISH [13] and seqFISH [30]. Nearly all of these technologies measure expression at 2D locations5

within a thin tissue slice (⇡ 10µm), and we will use the term spatial transcriptomics (ST) as a generic6

term to refer to any of these technologies. ST provides spatial context that is missing from single-cell7

RNA-sequencing (scRNA-seq) measurement of mRNAs from disassociated cells, and has been widely used8

to study both normal [2, 45] and diseased tissues, such as cancer [23, 39, 42] and Alzheimer’s disease [14].9

However, similar to scRNA-seq, ST data suffers from high rates of sparsity. Moreover, recording only the10

x, y coordinates on a 2D tissue slice loses information along the z (orthogonal) direction of the 3D tissue,11

hindering a comprehensive analysis of the whole tissue (Fig. 1).12

Spatial transcriptomics is often applied to multiple sequential 2D slices from the same tissue (Fig. 1), thus13

opening the possibility of performing integrative analysis of all slices. Such joint analysis of multiple slices14

not only helps with the data sparsity problem in individual slices, but also enables innovative downstream15

tasks such as 3D spatial expression analysis, 3D cell-cell communication, and 3D clustering [29, 48].16

However, aligning multiple slices from the same tissue along the orthogonal direction to recover spot-spot17

correspondence across slices is a challenging task due to morphological differences across slices as well as18

technical variability in mRNA capture between experiments.19

Several approaches have been used for alignment of multiple ST slices. One approach is to apply methods20

developed for scRNA-seq and multi-omics data integration, such as Seurat [41], SCOT [15, 16], or Pamona21

[10]. Another approach is to use methods that align an scRNA-seq dataset onto an ST dataset, such as22

Tangram [5] or RCTD [8]. However, these methods are designed for different alignment tasks and ignore23

the spatial information within or across slices. Another method, STUtility [4] is designed to align a pair24

of ST slices, but aligns only the histology images, ignoring both gene expression and spatial information.25

Morover, this method can only be applied to 10X Genomics Visium data. Another recent method, GPSA [24]26

integrates multiple ST slices into a common coordinate system, but does not output a mapping between spots27

that can be used for downstream analysis, and the common coordinate system it produces is different from28

the 3D coordinates of the tissue.29

Another possible solution is to use histological and medical image registration [31] toolkits such as30

ITK [33] and SimpleITK [3]. However, many image registration methods are supervised and often require31

manually selected landmarks, creating an extra burden on the user. The spatial alignment problem has also32

been studied in the context of functional magnetic resonance imaging (fMRI) data registration [7, 26, 27], but33

these methods are not easily extensible to the spatial genomics setting [24]. Finally, many ST technologies34

do not have matching histological images.35

Recently, PASTE, a method that performs probabilistic alignment of ST slices using both spatial and36

transcriptional similarities, was introduced [48]. However, PASTE assumes that the slices overlap over the37

full 2D assayed region, with similar field of view and similar number and proportion of cell types. Essentially,38

PASTE assumes the two slices are biological/technical replicates of a 2D tissue, an assumption that is often39

violated in real ST experiments due to technical difficulties in tissue dissection and array placement, or40

differences in tissue morphology between nearby slices. For example, two slices may only partially overlap41

along the z axis due to different placements of the array on the tissue, and hence only a part of both slices42

should be aligned (Fig. 1). Furthermore, two slices may have different compositions of cell types, leading to43

slice-specific cell types and spots that should not be aligned.44

Here, we introduce PASTE2, a method to align multiple adjacent ST slices from the same tissue with45

several substantial improvements over existing methods. First, PASTE2 performs partial pairwise alignment,46

selecting and aligning only a subset of spots. PASTE2 thus addresses the important case where adjacent47
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Figure 1: PASTE2 partial alignment of overlapping slices. Four thin slices (red, green, blue, purple) are dissected
from the same tissue and placed on an ST array. However, these slices only partially overlap in the z-coordinate
direction. The inputs to PASTE2 are the four ST slices, including gene expression, spot locations, and optionally,
histology images. PASTE2 computes a partial alignment of each pair of adjacent slices by selecting subsets of spots
from each slice that preserve transcriptional, spatial and image similarity. PASTE2 uses the partial alignment to create a
3D spatial reconstruction of the tissue.

slices do not fully overlap in space or have different cell type compositions. To solve the partial alignment48

problem, we introduce the partial Fused Gromov-Wasserstein (partial-FGW) optimal transport framework.49

Partial-FGW is the partial extension [11] of the Fused Gromov-Wasserstein optimal transport [43] and allows50

only a fraction of the total mass to be transported between the two distributions. To the best of our knowledge,51

PASTE2 is the first to formulate the partial-FGW problem and provide an optimization procedure to solve52

this problem. Second, PASTE2 includes a model selection procedure to estimate the fraction of overlap53

between two slices to align, which is in general a very difficult problem. Third, PASTE2 optionally uses the54

histological images. Some ST technologies, such as the 10X Genomics Visium platform, can also produce a55

Hematoxylin and Eosin (H&E) stained image of the same tissue slice where gene expression is measured.56

The information in this image can aid in alignment of slices by identifying spots with similar histology.57

Finally, we provide a generalized Procrustes analysis [46] method for 3D spatial reconstruction of the tissue58

from partially aligned 2D slices.59

We demonstrate PASTE2’s advantages on both simulated and real ST datasets. We show on simulated60

data that PASTE2 achieves accurate alignment and outperforms PASTE when slices do not fully overlap. On61

ST dataset from the human dorsolateral prefrontal cortex (DLPFC) [32], we show that PASTE2 computes62

more accurate alignments than competing methods, and the use of histological images can further improve the63

alignment. Finally, we demonstrate PASTE2’s applicability to larger datasets using different SRT technologies64

by aligning 16 Stereo-Seq slices from a Drosophila embryo [47].65

2 Methods66

A spatial transcriptomics (ST) experiment on a 2D tissue slice yields a pair (X,Z), where X 2 Nn⇥p is the67

gene expression matrix of the tissue slice, and Z 2 R2⇥n is the spatial location matrix of each spot on the68

slice, where the j-th column z·j is the x-y coordinate of spot j on the 2D array1 used by the ST experiment.69

Here, n is the number of spots on the slice and p is the number of genes measured. xij 2 N is the transcript70

1We refer here to array based technologies, but the formulation is the same for other technologies.
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count of gene j in spot i. Each row vector xi· of X is the expression profile of spot i. Following [48], we71

encode the spatial location of each spot in a pairwise distance matrix D = [dij ] 2 Rn⇥n
+ , where dij is the72

Euclidean distance between spot i and spot j on the slice, calculated from the 2D coordinates z·i and z·j .73

Thus, we represent an ST slice of n spots and p genes by a tuple (X,D).74

2.1 Partial pairwise slice alignment problem75

Given a pair, (X,D) and (X 0
, D

0) of ST slices, our goal is to compute a partial pairwise slice alignment, i.e.76

to find a probabilistic spot-spot correspondence between spots in the two slices while accounting for the fact77

that some spots should not be mapped (Fig. 1). The probabilistic mapping is a matrix ⇡ = [⇡ij ] 2 Rn⇥n0
78

between the n spots in one slice and n
0 spots in the other slice, where ⇡ij describes the probability (or relative79

fraction) that a spot i in the first slice is aligned to a spot j in the second slice.80

We begin by describing the solution given in [48] to the pairwise slice alignment problem, implemented81

in the PASTE algorithm. PASTE uses a formulation based on optimal transport to compute the mapping ⇡.82

Specifically, given probability distributions g and g
0 over the spots in slice X and X

0, respectively, PASTE83

finds the map ⇡ (also known as the transport matrix) that minimizes the following transport cost:84

F (⇡;X,D,X
0
, D

0
, c,↵) = (1� ↵)

X

i,j

c(xi·, x0j·)⇡ij + ↵

X

i,j,k,l

(dik � d
0
jl)

2
⇡ij⇡kl (1)

subject to the regularity constraint that ⇡ has to be a probabilistic coupling between g and g
0:85

⇡ 2 F(g, g0) = {⇡ 2 Rn⇥n0 |⇡ � 0,⇡1n0 = g,⇡
T1n = g

0}. (2)

Here, c : Rp ⇥ Rp ! R+ is an expression cost function that gives a non-negative dissimilarity score86

between the expression profiles of two spots over the same genes. 1n is an all-one vector of length n.87

Typically, g and g
0 are chosen to be uniform distributions over spots in each slice, although other distributions88

can be used [48].89

The PASTE objective function F is composed of an expression similarity term (first summand) and90

a spatial similarity term (second summand) weighted by a parameter ↵. The first term, also called the91

Wasserstein distance in the OT literature [35], represents the cost of moving one unit of probability mass92

from each spot i to each spot j, with the cost being the gene expression dissimilarity between spots. The93

second term, also called the Gromov-Wasserstein distance [34, 36], approximately preserves the intra-slice94

spatial distances between spots. Together, the convex combination of the two terms in F is known as the95

Fused Gromov-Wasserstein (FGW) optimal transport objective [43].96

The regularity condition (2) forces a rigid structure on ⇡ such that all spots from both slices must be97

aligned. However, such constraints may not be appropriate for ST slices with considerable differences in field98

of view or cell type composition due to both biological variation across tissue sections as well as differences99

caused by the manual nature of tissue dissection. Therefore, spots containing cell types or tissue regions that100

are unique to only one slice will be forced to be mapped to somehow arbitrary spots on the other slice.101

Thus, in PASTE2, we propose to solve the partial pairwise slice alignment problem by minimizing102

the same objective function as PASTE (Equation (1)), but with a different set of constraints that allow for103

unmapped spots. Specifically, given a parameter s 2 [0, 1] describing the fraction of mass to transport104

between g and g
0, we define a set P(g, g0, s) of s-partial couplings between distributions g and g

0 as105

P(g, g0, s) = {⇡ 2 Rn⇥n0 |⇡ � 0,⇡1n0  g,⇡
T1n  g

0
,1Tn⇡1n0 = s}. (3)

The parameter s 2 [0, 1] is interpreted as the overlap percentage between the two slices to align. The106

constraint 1Tn⇡1n0 = s ensures that only the fraction of s probability mass is transported. Equivalently, if107

gi =
1
n is a point mass for each spot, then roughly s fraction of the spots in each slice are aligned. The108

feasibility constraints ⇡ � 0,
P

j ⇡ij  gi for all spots i in the first slice, and
P

i ⇡ij  g
0
j for all spots j109
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in the second slice make sure that each spot only transport probability mass that it already has according110

to g and g
0, hence ensures ⇡ to be a valid transport plan. In PASTE2 we require that the map ⇡ belong to111

P(g, g0, s), thus replacing the set F (defined in (2)) by the set P(g, g0, s) (defined in (3)). In analogy to112

sequence alignment, PASTE calculates a global alignment, while PASTE2 calculates a local alignment.113

The general concept of partial optimal transport [9] extends optimal transport theory to allow the114

transportation of only a specified fraction of mass between distributions. Here, we adapt the idea of partial115

optimal transport to the Fused Gromov-Wasserstein objective, hence the PASTE2 optimization problem is a116

novel partial Fused Gromov-Wasserstein (partial-FGW) optimal transport problem. While there are existing117

solutions to the partial Wasserstein and partial Gromov-Wasserstein problem, to the best of our knowledge,118

PASTE2 is the first to state and formulate the partial-Fused Gromov-Wasserstein problem and provide an119

optimization procedure to sovle this problem.120

PASTE2 has two parameters: ↵, the balance between the gene expression dissimilarity and the spatial121

dissimilarity, and the overlap percentage parameter s indicating the fraction of mass to transport. Unless122

otherwise specified, we set ↵ = 0.1 following [48]. We choose the value of s using a model selection123

procedure described in Supplement §1. The choice of c, the expression dissimilarity function is described in124

Supplement §2.125

2.2 An iterative conditional gradient algorithm for optimization126

We derive an optimization algorithm to minimize the objective (1) subject to the constraint (3). This problem127

is a large scale (each slice contains thousands of spots) non-convex quadratic program with a convex and128

compact feasible region. Our algorithm is based on the Frank-Wolfe optimization algorithm [20], also known129

as the conditional gradient [28] algorithm. This algorithm has been widely adopted in the optimal transport130

community [11, 17, 19, 43] to compute transport plans because of its ability to handle large-scale quadratic131

programs [22]. The optimization problem in PASTE2 is thus particularly suitable for the conditional gradient132

algorithm.133

The conditional gradient algorithm is an iterative first-order algorithm for constrained optimization. To fit134

in the conditional gradient scheme, we first write (1) in matrix form, following [36]135

F (⇡) = (1� ↵)hC,⇡iF + ↵hL(D,D
0)⌦ ⇡,⇡iF , (4)

where C 2 Rn⇥n0 encodes the gene expression dissimilarity cij = c(xi·, x0j·) between each spot i in the first136

slice and each spot j in the second slice, and L(D,D
0) 2 Rn⇥n0⇥n⇥n0 is a 4-dimensional tensor defined by137

Li,j,k,l(D,D
0) = (Dik �D

0
jl)

2. ⌦ is the tensor-matrix multiplication operator, i.e. L⌦ ⇡ is an n⇥n
0 matrix138

whose (i, j)-th element is (
P

k,l Li,j,k,l · ⇡k,l). h·, ·i denotes the Frobenius dot product of matrices.139

In each iteration, the algorithm moves in the direction that minimizes a linear approximation of the140

objective function while remaining in the feasible region. The mathematical details of the derivation of each141

step, as well as the pseudocode, is provided in Supplement §3.142

2.3 Using histological image data in alignment143

We further extend the PASTE2 partial-FGW framework to incorporate image information. Specifically,144

we replace the gene expression dissimilarity matrix C 2 Rn⇥n0 in Equation (4) by a sum of two n ⇥ n
0

145

dissimilarity matrices 1
2Cgene+

1
2Cimage, where Cgene is the gene expression dissimilarity matrix as defined146

above and Cimage encodes the dissimilarity between the image information at each spot. Thus, we seek a147

map ⇡ that minimizes the following objective function148

F (⇡) = (1� ↵)h1
2
Cgene +

1

2
Cimage,⇡iF + ↵hL(D,D

0)⌦ ⇡,⇡iF (5)

Note that to avoid an extra parameter we give equal weight 1
2 to both gene expression and image information,149

although substituting other weights is straightforward. Also, since Cgene and Cimage may not be on the same150
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scale, we scale Cimage such that the maximum entry of Cimage equals the maximum entry of Cgene. In our151

implementation, we define [Cimage]ij to be the Euclidean distance between the mean RGB values of the152

spots. See Supplement §4 for further details.153

2.4 3D reconstruction based on the partial alignment matrix154

Given a series of consecutive, (partially) overlapping slices from the same tissue, we aim to reconstruct the155

spatial expression of the tissue in 3D by transforming PASTE2 partial pairwise alignments into a common156

coordinate system. Specifically, given a series of consecutive slices we first find partial alignments between157

adjacent slices by solving the partial pairwise slice alignment problem as above. To project all slices onto a158

common coordinate system, we extend the generalized weighted Procrustes analysis [25, 46] approach in159

[48] to sequentially project each pair of adjacent slices. While [48] projects a pair of slices onto the same160

coordinate system by centering both slices followed by calculating a rotation matrix, we derive the centering161

step for each slice separately to address the case where the alignment matrix ⇡ is partial and the aligned162

regions of the two slices have unique barycenters. The details of the projection are in Supplement §5.163

3 Results164

3.1 Evaluation on simulated ST data165

We first compared PASTE2 and PASTE on a simulated ST dataset based on a human dorsolateral prefrontal166

cortex (DLPFC) tissue slice from [32]. Specifically, we extracted two partially overlapping subslices from a167

single DLPFC slice (sample 151674, corresponding to Slice 3B in §3.2) with varying overlap percentages168

90%, 70%, 50%, 30% (Fig. 2a). To perturb the gene expression, we resample the gene expression profile of169

each spot in one of the subslices by sampling from a multinomial distribution with added pseudocount �,170

which controls the noise level (Supplement §6). We vary the pseudocount � in the range2 from 0.1 to 2 with171

an increment of 0.1. In total, we generated 4⇥ 30 = 120 pairs of subslices with different overlap percentages172

and noise levels �. For each pair of subslices, we ran PASTE2 with ↵ = 0, 0.1, 1 and using the ground truth173

value for the overlap fraction s (we evaluated model selection separately in Supplement §9), as well as full174

PASTE with default parameters (↵ = 0.1). We evaluated the alignment using Label Transfer Adjusted Rand175

Index (LTARI). Given a labeling of cell type/spatial region of spots, LTARI measures how well the alignment176

preserves the label between the aligned spots. LTARI first defines a new spot labeling for the second slice by177

assigning to each aligned spot the label of the most likely corresponding spot in the first slice, then calculates178

the ARI between the induced spot labeling of the second slice and the ground truth labeling (Supplement §7).179

We used the manual cortical layer annotation from [32] as ground truth spot labeling (Fig. 2a).180

We found that PASTE2 with the default parameter setting of ↵ = 0.1, which uses both gene expression181

information and spatial information, outperforms PASTE across most values of the added noise � for every182

overlap percentage (Fig. 2b, Fig. S6). Specifically, for all four overlap percentages, PASTE2 (↵ = 0.1)183

achieves the highest LTARI when � < 2.0, and achieves almost perfect LTARI when � is small. Note that184

PASTE obtains constant accuracy because it aligns overlapping regions well but non-overlapping regions185

arbitrarily. The gap in accuracy between PASTE2 and PASTE is larger when the overlap is smaller. This186

indicates that PASTE, which finds an alignment between all pairs of spots, is not suitable for the partial187

alignment task. In contrast, PASTE2 has high accuracy in partial alignment across a wide range of overlap188

percentages and gene expression noises. Moreover, PASTE2 achieves near perfect LTARI when the added189

pseudocount is in the range of variability in read counts (⇡ 0.1� 0.2) observed in real data [48].190

To investigate the effect of the misspecification of the value of the overlap percentage parameter s on the191

result of PASTE2, we ran PASTE2 with s ranging from 0.1 to 1, with a step size of 0.1, on a simulated pair192

where the ground truth overlap percentage is 50% and the added pseudocount is 0.1. We found that PASTE2193

2With the typical sequence coverage and data sparsity in ST data, � > 2.0 (adding > 2 counts to each transcript) is a strong
perturbation of the data that essentially destroys the signal present in the original data.
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a b c

Figure 2: Comparison of PASTE2 and PASTE on simulated partially overlapping subslices. a, DLPFC slice
151674 with spots colored according to the manual annotations of cortical layers from [32]. Red box and blue box
indicate two partially overlapping subslices, with central overlapping region containing some fraction of spots from
each slice. b, Label Transfer ARI of the alignments produced by PASTE2 with ↵ = 0 (gene expression information
only), PASTE2 ↵ = 1 (spatial information only), PASTE2 ↵ = 0.1 (both), and PASTE (full alignment, ↵ = 0.1) as a
function of the pseudocount (�) for overlap percentage70%. c, Label Transfer ARI for overlap percentage 50%.

aligns correctly when s is lower than the ground truth, while the performance degrades for larger values of s194

(Fig. S7). This is expected because with an overestimation of the overlap percentage, the PASTE2 alignment195

becomes more similar to the PASTE alignment which includes all the spots. Thus, in selecting a value for s,196

it is preferable to use a model selection procedure that slightly underestimates s rather than overestimate s.197

We propose a heuristic for selecting s in Supplement §1.198

Finally, we emphasize the importance of using both gene expression and spatial information in computing199

accurate partial alignments. PASTE2 (↵ = 1.0) has consistently low LTARI, indicating that using spatial200

coordinates alone cannot recover alignment across slices. The performance of PASTE2 (↵ = 0), which only201

uses gene expression information of each spot for alignment, drops more quickly than PASTE2 (↵ = 0.1)202

with increasing pseudocount � indicating more noise in gene expression. Using both gene expression and203

spatial information, PASTE2 is able to accurately align two partially overlapping ST slices. The effect of204

different intermediate values of ↵ on the alignment performance is thoroughly discussed in [48].205

3.2 Human dorsolateral prefrontal cortex (DLPFC) slices206

We next compared PASTE2 to PASTE [48] and two other transcriptomics alignment methods – Pamona207

[10] and Tangram [5] – on the full human dorsolateral prefrontal cortex (DLPFC) dataset containing 10X208

Genomics Visium ST data from three individuals (labeled sample 1, 2, 3) with four slices (labeled slice A, B,209

C, D) per individual [32]. For each individual, slices A and B and slices C and D are 10 µm apart. However,210

slices B and C are further apart at a distance of 300 µm. Hence, slice pairs AB and CD are more similar211

to each other than slice pair BC. Note that Pamona [10], a manifold alignment algorithm for multi-omics212

datasets, is also based on partial optimal transport, while Tangram [5] is a deep-learning based method that213

aligns scRNA-seq data onto ST data. We create partial ST alignment problems by generating two partially214

overlapping DLPFC datasets as follows. For each individual, we extracted the left portions of slice A and C,215

and the right portions of slice B and D such that the extracted pairs AB, BC, and CD have ⇡ 70% overlap in216

area (Fig. 3a). We also created another set of partially overlapping dataset using horizontal slices (Fig. S8a).217

We ran each of the methods as described in Supplement §8. We evaluate the accuracy of each method by218

computing the Label Transfer ARI (LTARI) as previously described (Section 3.1).219

We find that PASTE2 achieves the highest LTARI on all adjacent subslices of all individuals, for both220

vertical partial slices and horizontal partial slices, with the exception of one pair (Fig. 3b, Fig. S8b). About221
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a

b c

Figure 3: Comparison of alignment methods on partially overlapping DLPFC slices. a, Vertical subslices were
obtained by cropping subslices (blue dotted boxes) from four adjacent slices from DLPFC sample 3, with indicated
distances between adjacent slices. Each pair of adjacent subslices overlaps in 70% of their areas. b, LTARI of pairwise
alignments computed by PASTE2, PASTE, Pamona, and Tangram for each pair of adjacent vertical subslices from three
samples. c, Optimal projection of vertical subslices from slice AB of sample 3 onto the same 2D coordinate system
using the PASTE2 partial alignment.

70% - 75% spots from each subslice is aligned in each pair indicating the parameter s corresponds well with222

slice overlap. For most pairs, PASTE2 has more than twice the LTARI than all other methods, demonstrating223

PASTE2’s ability to identify the overlap region of the two ST slices and align the overlap region reliably.224

On one pair Pamona has slightly higher LTARI than PASTE2 (Fig. S8b), but all methods have very low225

LTARI (< 0.1), suggesting that this pair has low spatial coherence. PASTE is the second-highest performing226

method on most pairs, indicating that even though PASTE does not model partially overlapping slices, it is227

still more suitable for aligning spatial transcriptomics data than methods designed for different purposes.228

While Pamona is designed to align datasets with both shared and dataset-specific cells [10] – the analog of the229

partial pairwise slice alignment problem for single cell datasets – Pamona does not model spatial constraints,230

perhaps explaining its lower performance. Tangram assumes the single-cell gene expression dataset and the231

spatial dataset come from the same anatomical region [5], hence the partial slice alignment task violates the232

Tangram assumption, leading to a low alignment accuracy.233

For a more intuitive demonstration of PASTE2’s advantage and accuracy, we projected the vertical234

subslices of sample 3 pair AB onto the same coordinate system, computed as described in §2.4 based on the235

alignment matrix computed by PASTE2 (Fig. 3c), as well as the optimal projection of the same pair based on236

the alignment computed by PASTE (Fig. S9a). Qualitatively, the projection of PASTE2 correctly stacks the237

overlap area of the two slices, with spots from the same cortical layer stacking on top of each other, while238

PASTE fails to find the corresponding layers in the two slices. Additionally, PASTE2 correctly identifies and239

aligns the overlap area of all four partial slices of an individual while leaving the rest unaligned, leading to a240

visually correct 3D reconstruction of the tissue from partial slices (Fig. S9b).241

We also ran STUtility [4], a method to align H&E stained images that are generated as part of the 10X242

Genomics Visium ST workflow. STUtility outputs new coordinates of the aligned slices and does not produce243

a mapping between pairs of spots; thus, we visualized the alignment results by plotting each pair of partial244

subslices according to the new coordinates output by STUtility (Fig. S10). The image masking function245

utilized by STUtility failed for the partial slices of sample 3, so we only visualized the results for sample 1246
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and 2. STUtility correctly identifies that each pair of input slices are partially overlapping, but it does not247

align the correct overlapping region, and the output alignment seems quite arbitrary. These results might248

be because STUtlitiy aligns images by identifying and finding correspondences between edges of the two249

input tissues, but when two tissues are partially overlapping, the edges do not provide information about250

spot correspondences. On the other hand, PASTE2 correctly aligns the overlapping region (Fig. 3c). This251

demonstrates that using transcriptomic similarity, spatial similarity, and image information yields better252

partial alignments than H&E images alone.253

Finally, we compared PASTE2’s running time with other methods on the vertical subslices of sample254

3. PASTE2 finished in under 10 minutes for all subslice pairs on a Macbook Pro with 2.4GHz Intel Core255

i5 CPU, with most of the running time spent on the GLM-PCA subroutine (Fig. S11). The conditional256

gradient optimizer in PASTE2 runs in less than half of the time of Pamona and Tangram, and only runs257

slightly slower than PASTE. We also used the DLPFC datasets to evaluate the accuracy of PASTE2’s model258

selection procedure for estimating the overlap percentage s, and found that PASTE2 correctly estimates the259

overlap percentage in many scenarios (Supplement §9).260

3.3 Incorporating histology information improves alignment261

We compared PASTE2’s alignment performance when using both gene expression and histological image262

(Equation 5) versus using only gene expression data (Equation 4). Note that spatial information is included in263

both analyses. We ran the two modes of PASTE2 on pairs of horizontal and vertical subslices from DLPFC264

sample 3. We found that using the histological image substantially improved the alignment performance for265

pair CD (Fig. 4ab), increasing the LTARI from 0.34 to 0.46. Examining the alignment obtained on this pair266

using only gene expression information (Fig. 4c) to the alignment obtained with both gene expression and267

the histology image (Fig. 4d), we observe that the alignment obtained using the images is more spatially268

contiguous. In particular, there is a curve of unaligned spots (blue spots in Figure 4c) in subslice D inside the269

yellow region. This curve corresponds to spots that are manually annotated as Layer 6 of the DLPFC [32].270

Interestingly, the spots in this layer have lower total UMI counts than other layers: the mean total UMI counts271

for spots from Layer 6 is 2915 compared to total UMI counts ⇡ 4500 in the other layers. This suggests272

that the gene expression signal is weaker in these spots. In contrast, the PASTE2 alignment obtained using273

both gene expression and image information (Figure 4d) does not have the same curve of unaligned spots,274

demonstrating the advantages of using the histological image for spots with a weak gene expression signal.275

In the horizontal slices, we see cases where using the image information reduces the alignment perfor-276

mance. For example, the LTARI drops from 0.56 (expression) to 0.50 (expression and image) for horizontal277

subslices of pair AB (Fig. S14a,b). The aligned part of subslice B in Fig. S14d shows that many spots are left278

unaligned in the actual overlap region, and there is a clear stripe of unaligned blue spots towards the left part279

of the subslice. Looking at the H&E image of subslice B in Fig. S14b, we see a clear dark stain on the left of280

the subslice that is missing from the image of subslice A, at exactly the same location of the unaligned stripe.281

This indicates that the stain on the H&E image is the cause for the worse alignment performance.282

For the other pairs, the LTARI for PASTE2 alignments with and without images is approximately the same.283

This is not too surprising since the H&E images of DLPFC slices do not display strong heterogeneity across284

different layers (Fig. 4b, Fig. S14b). However, the fact that utilizing image information corrects the alignment285

of low UMI spots demonstrates the potential for histological images to guide PASTE2 alignment. The image286

information can help overcome the sparsity of gene expression, and when the histological images have greater287

variation across spots, using the images should further improve the alignment quality by complementing the288

gene expression signal.289

3.4 Spatial transcriptomics of Drosophila embryo290

We applied PASTE2 to analyze a Stereo-seq dataset from a Drosophila embryo [12]. Stereo-seq is a new291

SRT technology with ⇡ 500nm resolution, two orders of magnitude smaller than the 10X Visium platform,292
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c d
slice C slice D

subslice C
subslice D

subslice Csubslice D subslice D

Figure 4: Evaluating the benefit of using histological image information in PASTE2 alignment. a, The Label
Transfer ARI (LTARI) of PASTE2 partial alignments of pairs of vertical subslices extracted from DLPFC sample 3
using only gene expression (blue) and using both gene expression and image information (orange). b, Histological
images of sample 3 slice C and slice D. The red boxes bound the vertical subslices extracted for partial alignment. The
right part of subslice C should be aligned to the left part of subslice D. c, Visualization of PASTE2 alignment of the
subslice pair CD using gene expression and spatial information. Yellow spots are aligned by PASTE2, while blue spots
are unaligned. Thin black lines connect pairs of spots that are aligned by PASTE2 with high weight. d, Visualization of
PASTE2 alignment of the same subslice pair when gene expression, histological image, and spatial information are all
used.

but with lower UMIs per spot. [47] applied Stereo-seq to two late-stage Drosophila embryos 14-16 hours293

and 16-18 hours after egg laying (labeled E14-16 and E16-18) and three stages of larvae (labeled L1-L3).294

Each slice has ⇡ 1000 spots with median UMI per spot of ⇡ 2000, compared to ⇡ 4000 spots and ⇡ 5000295

median UMI per spot in the 10X Visium DLPFC dataset. In the published analysis, the cell type of each296

spot was derived by unsupervised clustering of gene expression followed by annotation based on marker297

genes. The publication used PASTE to align all slices from the same stage and obtain a 3D map of spatial298

expression of each stage. However, slices from the same stage vary in size and cell type compositions and do299

not fully overlap in space. For example, inspection of annotated cell types shows that adjacent slices from the300

E14-16 sample do not fully overlap (Fig. S15). Therefore, it is appropriate to use PASTE2 to realign the301

adjacent slices respecting the different composition of cell types across slices, and to obtain a more accurate302

3D reconstruction of the Drosophila embryo.303

We applied PASTE2 to compute a partial alignment for each pair of 16 adjacent slices from the E14-16304

sample, estimating the overlap percentage using the PASTE2 model-selection heuristic (Supplement §1).305

Slices 7 and 8 have clear differences in the composition of cell types annotated by [47], with the carcass cells306

showing the largest difference in proportion (Fig. 5a). PASTE2 addresses this imbalance by aligning a similar307

proportion of carcass cells across slices, leaving the excess cells in slice 8 unaligned. The spots from the308

two slices included in the PASTE2 partial alignment show similar spatial organization (Figure 5b) and cell309

type composition (Fig. S16b). For example, the proportions of carcass cells in slices 7 and 8 differ by 10%310

before alignment (Fig. S16a), but after alignment the difference is less than 3% (Fig. S16b). The differences311

in proportions shrinks for salivary gland cells as well, indicating PASTE2 correctly identifies and aligns the312

overlapping parts. PASTE2 optimal projection of the two slices to the same coordinate system puts slice 8313

slightly higher in y coordinates than slice 7, consistent with the observation that slice 8 has unaligned carcass314

cells at the top (Figure 5c). The LTARI obtained by PASTE2 for this pair is 0.49, compared to a LTARI of315
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Figure 5: PASTE2 alignment of Stereo-seq data from E14-16 Drosophila embryo from [47]. a, Stereo-seq slices 7
and 8 with spots labeled by cell types annotated in [47]. b, Spots from slices 7 and 8 that are included in the partial
alignment computed by PASTE2. Spots selected by PASTE2 have similar proportions of cell types and spatial locations.
c, Optimal projection of slices 7 and slice 8 onto the same 2D coordinate system using the PASTE2 partial alignment. d,
PASTE2 3D reconstruction using all 16 slices from the Drosophila embryo.

0.39 for PASTE, again showing the advantages of partial alignment. Examination of pair of adjacent slices316

14 and 15 shows a similar advantage of partial alignment. Slice 15 has a stripe of carcass cells that is absent317

in slice 14 (Fig. S17a). PASTE2 leaves the stripe unaligned across slices (Fig. S17bc), increasing the LTARI318

from 0.29 for PASTE to 0.52 for PASTE2. Since PASTE computes an alignment for all spots, the extra319

carcass cells in slice 15 are mapped somewhere on slice 14, creating false correspondences between spots320

(Fig. S18).321

We compared the LTARI of the PASTE2 alignment with the LTARI scores of PASTE, Pamona, and322

Tangram on every pair of adjacent slices. PASTE2 achieves the highest LTARI for most pairs, with the largest323

gain in pairs where the two slices have different compositions of cell types, such as slice 14 and 15 (Fig. S19).324

Pairs where PASTE2 does not obtain the highest LTARI, such as slice 2 and 3, have relative similar sizes and325

cell types, and PASTE2 still achieves comparable LTARI with the highest performing method. This indicates326

that PASTE2 not only aligns partially overlapping slices correctly, but also performs well on pairs of similar327

slices.328

We used PASTE2 to generate a 3D reconstruction of all 16 slices of the E14-16 Drosophila embryo, where329

adjacent slices have on average 70% of overlapping spots (Fig. 5d). The PASTE2 3D reconstruction will be330

useful for refining the analyses presented in [47] who demonstrated that the PASTE-generated 3D expression331

helped detect functional subregions and uncover the dynamics of cell state changes and tissue-specific gene332

regulation.333

4 Discussion334

We present PASTE2, a method to perform pairwise alignment and 3D reconstruction of multi-slice spatial335

transcriptomics data. PASTE2 addresses the important situation where slices partially overlap in space or336

have different cell type compositions, which is the case for most real datasets. We formulate the ST partial337

pairwise alignment problem using a partial Fused Gromov-Wasserstein optimal transport framework and338

derive an optimization algorithm to solve this problem. We further design a model selection procedure to339

determine the overlap between slices, and extend the framework to incorporate both gene expression and340

imaging information.341

We found that PASTE2 outperforms multiple other methods for alignment of spatial transcriptomics or342

single cell data including PASTE, Pamona, Tangram, and STUtility. We show that PASTE2’s use of histology343

images can further improve alignments, although the results are variable depending on the quality of the344

images. We expect that PASTE2 will achieve much higher accuracy incorporating image information in345

datasets where histological images display stronger signal across spots – in preliminary results on unpublished346

cancer datasets with high-quality H&E images we observed even larger gains. Finally, we demonstrate347

PASTE2’s capabilities on larger datasets from another SRT technology by generating a 3D reconstruction of348

10

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 8, 2023. ; https://doi.org/10.1101/2023.01.08.523162doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.08.523162
http://creativecommons.org/licenses/by-nc/4.0/


a Drosophila embryo from 16 slices of Stereo-seq data.349

There are multiple directions for future work. First, is to extend the partial alignment framework to350

integrate multiple slices into a single consensus slice to address the data sparsity issue by pooling counts from351

corresponding spots [48]. Second, one could stitch together multiple partially overlapping slices into a larger352

2D slice. This stitching would be helpful in cases where adjacent tissue slices are close in the z-coordinate353

which is often the case with thin tissue slices (⇡ 10µm). In addition, one could incorporate additional354

spatial regularization terms to enforce more contiguous overlapping regions. Third, it would be interesting to355

apply PASTE2 to integrated spatial transcriptomics and imaging data from other platforms such as Slide-seq356

[37, 40], or combined Stero-seq and imaging data which [47] noted as a future technology development.357

Finally, it would be interesting to examine the effectiveness of other optimal transport frameworks such as358

unbalanced OT [38] that impose soft constraints rather than hard constraints on partial alignments.359

We anticipate that PASTE2 will be a useful tool for integrating transcriptomic information across multi-360

slice ST datasets and for building 3D tissue atlas across both normal and diseased tissues, such as in the361

Human Tumor Atlas Network and related projects.362
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