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Abstract

Background: CRISPR/Cas9 genome editing technology is a DNA manipulation tool for trait improvement. This
technology has been demonstrated and successfully applied to edit the genome in various species of plants. The
delivery of CRISPR/Cas9 components within rigid plant cells is very crucial for high editing efficiency. Here, we
insight the strengths and weaknesses of each method of delivery.

Main text: The mutation efficiency of genome editing may vary and affected by different factors. Out of various
factors, the delivery of CRISPR/Cas9 components into cells and genome is vital. The way of delivery defines whether
the edited plant is transgenic or transgene-free. In many countries, the transgenic approach of improvement is a
significant limitation in the regulatory approval of genetically modified crops. Gene editing provides an opportunity
for generating transgene-free edited genome of the plant. Nevertheless, the mode of delivery of the CRISPR/Cas9
component is of crucial importance for genome modification in plants. Different delivery methods such as
Agrobacterium-mediated, bombardment or biolistic method, floral-dip, and PEG-mediated protoplast are frequently
applied to crops for efficient genome editing.

Conclusion: We have reviewed different delivery methods with prons and cons for genome editing in plants. A
novel nanoparticle and pollen magnetofection-mediated delivery systems which would be very useful in the near
future. Further, the factors affecting editing efficiency, such as the promoter, transformation method, and selection
pressure, are discussed in the present review.
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Background
Plants play a vital role in human life by offering a variety
of plant-based products such as fruits, food grains, vege-
tables, and medicine. The various traits of plants can be
improved by plant breeding and genetic engineering
activities [1]. Plant genetic engineering can be achieved
utilizing multiple tools such as overexpression, RNA
interference, Zinc finger TALEN nuclease, and CRISPR/
Cas9 [2–5]. CRISPR/Cas9 genome editing tool is derived

from the bacterial CRISPR system, which is known to in-
volve in the immune system. CRISPR/Cas9 technology
has gained tremendous popularity due to its specificity
and efficiency in editing the genome. Several CRISPR/
Cas9 and its variants have been applied for the genome
editing of many desired genes. The CRISPR (clustered
regularly interspaced short palindromic repeats) locus
and its associated proteins are basically found in few
bacteria, and it is related to immunity against phages.
The different regions of CRISPR locus transcribed and
lead to the formation of CRISPR RNA (crRNA) and
trans-activating CRISPR RNA (tracrRNA). The crRNA,
tracrRNA, and Cas9 encounter the phage DNA. The
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guide RNA (gRNA) is a synthetic gene comprised of
crRNA and tracrRNA [6].
The Cas9 gene and gRNA under the regulation of the

appropriated promoters within any vector, can be deliv-
ered into the plant cells. In another approach, the Cas9,
also known as RNA guided site-specific nucleases (RGNs)
and transcribed gRNA, is assembled and then delivered
into plant regenerative tissue. The target site must contain
5′NGG3′ for the action of the CRISPR/Cas9 system,
which is also known as Protospacer Adjacent Motif
(PAM). Cas9 cleaves both the strands of a target gene or
DNA with the help of gRNA. This double-stranded
breaks (DSBs) may be restored by either homologous
direct repair (HDR) or non-homologous end joining
(NHEJ) via a repair mechanism [7]. During DNA
repair, the insertion or deletion of nucleotide results
in the point mutation or frameshift mutation. These
mutations are generally identified by various tech-
niques; however, the restriction enzyme site loss assay,
AFLP, and Sanger-based sequencing are frequently
used [8, 9].
Different strategies have been developed to target mul-

tiple genes at a time, i.e., multiplexing [10, 11]. This
multiplex genome engineering is generally used to target
various genes within the genome or distinct target
within one gene to increase mutation efficiency. This
technique involves the expression of multiple gRNAs
under different promoters or single promoter using the

polycistronic gRNA unit [11]. Polycistronic gRNA unit is
assembled with the help of either tRNA-gRNA or Cys4-
gRNA. This single synthetic gene is transcribed by a sin-
gle promoter. The RNases P and Z enzymes cleave poly-
cistronic tRNA-gRNA. Csy4 (CRISPR system yersinia 4)
is an RNA nuclease characterized from Pseudomonas
aeruginosa separate polycistronic Cys4-gRNA into indi-
vidual gRNA [11]. The tRNA processing enzymes are
naturally present in almost all living organisms, in-
cluding plant cells [12]. This technology has been
demonstrated and applied in various plants such as
Arabidopsis, tobacco, potato, tomato, rice, wheat, and
banana [4, 5, 13, 14]. Targeting various genes by
employing CRISPR/Cas9 is a more relaxed approach
in comparison to the other known genome modifica-
tion tools. Therefore, it is considered as a most prom-
ising tool for metabolic engineering.
The delivery of CRISPR/Cas9 components within

rigid plant cells is a tough task. There are three
methods of the construct delivery in plant cell: PEG
mediated, Agrobacterium-mediated transformation, and
bombardment or biolistic transformation. However, we
insights the strength and weaknesses of each method of
delivery depend upon plant species. We have elabor-
ately discussed two potential methods for CRISPR/Cas9
vector-nanoparticle complex and a novel pollen
magnetofection-mediated delivery in plants that would
be most useful shortly (Fig. 1).

Fig. 1 Existing and potential future CRISPR/Cas9 delivery methods. Different well-known delivery methods such as Agrobacterium-mediated
delivery, Bombardment-mediated delivery, PEG-mediated delivery, and floral dip or pollen-tube tube pathway method. Potential pollen
magnetofection-mediated delivery and nanoparticle-mediated delivery will be useful in near future to avoid tissue culture
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Main text
PEG-mediated CRISPR/Cas9 vector delivery
This is an important genetic transformation method
carried out in the presence of polyethylene glycol
(PEG) (Fig. 2). This method is successfully performed
in protoplasts of different plants such as in maize, soy-
bean, A. thaliana, tobacco, rice, and wheat, as summa-
rized in Table 1. The plasmid-containing Cas9 and
gRNA is incubated with protoplast in the presence of
PEG. The PEG-mediated CRISPR construct delivery
was firstly reported in maize and in this U3, and
CaMV35S promoters were used for gRNA and Cas9,
respectively [25]. In a few studies, Cas9 was expressed
under some specific promoters, designed for specific
plants, and to target crucial gene [27]. Plasmid DNA is
dissolved in water and filtered to make it sterile and

then mixed with protoplast suspension. After a few mi-
nutes, the required concentration of PEG is mixed
slowly to protoplasts. After that, protoplasts are regener-
ated with a suitable regeneration medium [28]. Cas9/
gRNA ribonucleoproteins were used to make transgene-
free mutant plants in rice, Arabidopsis, tobacco, and let-
tuce using PEG-mediated delivery. The editing frequency
in lettuce mutants was up to 46% [29]. Later, Kim
et al. used Cpf1/CrRNA ribonucleoproteins to edit
the genome of soybean and tobacco without using
vector or DNA [30]. Cpf1 (CRISPR from Prevotella
and Francisella 1) is an endonuclease of class II and
type V CRISPR system. It identifies a thymidine rich
PAM (TTTN) in a target location. Cpf1-mediated
genome editing requires only crRNA, whereas Cas9
requires both crRNA and tracerRNA [30].

Fig. 2 Schematic representation of CRISPR/Cas9 construct transfer and genome editing processes. CRISPR constructs coated onto gold particles
(Gene gun mediated), transferred CRISPR construct into protoplast via PEG, and Agrobacterium strain having CRISPR vector. In the next step,
CRISPR constructs are delivered into initial explants. A single plant cells and pictorial representation of gRNA and Cas9 at their target site within
the genome. Further, the transformed explants are selected onto appropriate medium in plate. The survived plants were transferred into pots for
acclimatization. PCR and Sanger sequencing are generally done for mutation screening
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The main strength of the PEG-mediated delivery
method is widely used to deliver Cas9/gRNA ribonucleo-
proteins. The vector less or DNA-free edited mutants of
plants will be more acceptable and probably no issue
with regulatory and ethical barriers. In 2016, transgene-
free editing of six polyphenol oxidase mushroom was
generated using ribonucleoproteins and PEG mediated.
The mutant mushroom showed a 30% reduced enzyme
activity responsible for browning, and it also escapes US
regulation [31]. This ribonucleoprotein complexes cannot
be delivered by widely used Agrobacterium mediated or
floral-dip method.
The significant challenges and weakness of PEG-

mediated delivery method is the establishment of sus-
pension cells and protoplasts isolation. Apart from
this, the main hurdle of regeneration of protoplasts
into whole plants is in the case of recalcitrant plants.
Due to this reason, the alternate methods of delivery
of Cas9/gRNA ribonucleoproteins require to explore
for efficient genome editing.

Bombardment-mediated delivery of vector or Cas9/gRNA
ribonucleoproteins
This method of transformation or gene transfer needs a
device known as “gene gun or biolistic gun”. Generally,
gold, silver, and tungsten particles are used as the carrier
for vectors or Cas9/gRNA ribonucleoproteins (Fig. 2).
CRISPR/Cas9 components are transferred through
coated particles into explants by applying high pressure.
This method requires optimized conditions such as he-
lium pressure, target distance, particle size, and type of
explants used. The transformed explants are regenerated
onto regeneration medium with appropriate selection
pressure. The successful delivery of Cas9/gRNA ribonu-
cleoproteins and successive regeneration of mutants
have been reported in maize [32], potato [4], and bras-
sica [16], as tabulated in Table 2. Due to vector/DNA
less editing, the Cas9/gRNA ribonucleoprotein delivery
by the bombardment method is in demand. The regen-
eration of transformed tissues and selection pressure is
tedious, and therefore, very low editing efficiency is

Table 1 PEG mediated CRISPR/Cas9 components delivery into different plants

Plant name CRISPR/Ca9 vector or ribonucleoprotein complexes Targeted genes Reference

Apple Cas9-sgRNA ribonucleoprotein complexes DIPM-1, 2, 4 [15]

Brassica oleracea, Brassica rapa Cas9-sgRNA ribonucleoprotein complexes FRI, PDS [16]

Citrullus lanatus PHSN1, PHSN2 ClPDS [17]

Glycine max pCas9-GmU6-sgRNA, pCas9-AtU6-sgRNA Glyma08g02290, Glyma12g37050, Glyma06g14180 [18]

Grapevine Cas9-sgRNA ribonucleoprotein complexes MLO-7 [15]

Oryza sativum pRGE3, pRGE6 OsMPK5 [19]

Oryza sativum pUC19-OsCas9 OsSWEET14, OsSWEET11 [20]

Oryza sativum pJIT163-2NLSCas9 OsPDS, OsBADH2 [21]

Petunia Cas9-sgRNA ribonuclease protein complexes (RNPs) PhACO1 [22]

Physcomitrella patens pAct-Cas9, psgRNA PpAPT-KO4, PpAPT-KO7 PpAPT [23]

Solanum tuberosum Cas9-sgRNA Ribonucleoprotein complexes (RNPs) GBSS (GT4) [4]

Triticum aestivum pCR8-U6-gRNA TaEPSPS [24]

Zea mays p ZmU3-gRNA ZmIPK [25]

Zea mays CT-nCas9 ZmALS1, ZmALS2 [26]

Table 2 Particle bombardment method for CRISPR/Cas9 component delivery

Plant name CRISPR/Cas9 vector or RNP complex Selectable marker Target genes Reference

Glycine max QC810 and RTW830, QC799 and RTW831 HptII DD20, DD43 [33]

Hordeum vulgare pcas9:sgRNA HptII ENGase [34]

Oryza sativum pCam1300-CRISPR-B HptII crtI, ZmPsy [35]

Oryza sativum CRISPR-RNP complex HptII OsPDS1 [36]

Oryza sativum pJIT163-2NLSCas9 HptII OsPDS, OsBADH2 [21]

Oryza sativum pOsU3-sgRNA, pJIT163-2NLSCas9 HptII OsPDS, OsDEP1 [37]

Triticum aesituvam pJIT163-Ubi bar TaMLO-A1, TaMLO-B1, TaMLO-D1 [38]

Zea mays pSB11-Ubi:Cas9 Pat LIG1, Ms26, Ms45, ALS1, ALS2 [32]
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achieved in maize 2.4 to 9.7% [32]. Recently, Cas9 with
cytidine base editor along gRNA was in vitro transcribed
and used for delivery into protoplast of wheat and rice
for base editing [39].
The main strength of this delivery method is there is no

necessity of the CRISPR/Cas9 binary vector. Several types
of explants can be transformed with large and multiple
DNA and RNA can be delivered. The most important is
the Cas9/gRNA ribonucleoprotein complex which can
also be delivered efficiently. The main drawback of this
delivery method is random integration patterns within the
genome, relatively less editing efficiency, costlier than
others, and the bombardment sites such as cytoplasm, nu-
cleus, mitochondria, or plastid cannot be controlled [40].

Agrobacterium-mediated CRISPR/Cas9 construct delivery
Out of all delivery methods, this is the most widely used
for a wide range of plant species. The binary vector that

contains Cas9 and the gRNA expression cassette is
transformed into the Agrobacterium strain. Further, the
Agrobacterium-mediated genetic transformation of
CRISPR constructs into the desired explant such as
callus, leaf, and floral organs of plants (Fig. 2). To date,
more than 20 plant species were efficiently edited with
the help of Agrobacterium-mediated delivery of CRISPR/
Cas9 components, summarized in Table 3. Agrobacter-
ium-mediated transformation is more efficient and
showed high editing efficiency than the particle bom-
bardment method. Monocot crops that have less regen-
eration and transformation capacity are also frequently
used for genetic transformation utilizing Agrobacterium.
The CRISPR/Cas9 binary vectors suitable for Agrobac-
terium for high editing efficiency for monocot and dicot
were designed [61]. Agrobacterium-mediated genome
editing of banana cultivar Rasthali showed 59% mutation
frequency of the phytoene desaturase gene [13]. In

Table 3 Agrobacterium-mediated delivery of CRISPR/Cas9 components in different plant species

Plant name CRISPR/Cas9 vector Selectable
marker

Strain Target genes Reference

Arabidopsis thaliana pUC119-RCS Marker free GV3101 AtPDS3, AtFLS2, RACK1b, RACK1c [41]

Arabidopsis thaliana pCAMBIA1300 HptII GV3101 BRI1, GAI, JAZ1 [42]

Banana pRGEB31 HptII AGL1 RAS-PDS [13]

Banana pRGEB31 HptII AGL1 LCYε [43]

Citrus sinensis pCas9-GN NptII LBA4404 CsWRKY22 [44]

Cucumis sativum pRCS NptII EHA105 eIF4E, eIF(iso)4E [45]

Glycine max p201N Cas9 NptII K599 GFP transgene [46]

Kiwi fruit pHLW-sgRNA-Cas9-AtU6-1, pPTG-sgRNA-Cas9-
U6-1

NptII EHA105 AcPDS [47]

Lotus japonicus pCAMBIA1300 HptII EHA105 LjLb1, LjLb2, LjLb3, LjSYMRK [48]

Marchantia
polymorpha

pMpGE013 and pMpGE014 HptII – MpARF1 [49]

Medicago trancatula pMDC32-AtU6-26 HptII ARqual GUS [50]

Medicago truncatula pFGC5941 Bar – MtPDS [51]

Nicotiana
benthamaina

pICH86966 – AGL1 NbPDS, PDS [14]

Nicotiana
benthamaina

pUC19, pKQ334 HptII GV3101 NbPDS3, NbIspH [52]

Nicotiana tabaccum pORE NptII LBA4404 NtPDS, NtPDR6 [53]

Oryza sativum VK005 HptII EHA105 ISA1 [54]

Populous tomentosa pYLCRIPSR/Cas9, pUC18 HptII – PtoPDS [55]

Salvia miltiorrhiza pCAMBIA1300 HptII C58C1 SmRAS [56]

Solanum lycopersicum pYLCRISPR/Cas9 HptII – SGR1, LCY-E, Blc, LCY-B1, LCY-B2 [57]

Solanum lycopersicum pENTR-sgRNA: pMR290/Cas9 NptII EHA105 SlCCD8 [58]

Solanum tuberosum pMDC32 HptII – StALS1 [59]

Sorghum bicolor pVS1 binary vector derived from pLH7500 NptII Y158 DsRED2 [20]

Triticum aesituvam pBI121 NptII GV3101 Inox, PDS [14]

Zea mays pMCG1005 Bar EHA101 Argonaute 18, Dihydroflavonol-4-
reductase

[60]
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another report, 100% editing efficiency was reported in
Cavendish banana cultivar “Williams” using Agrobacter-
ium-mediated editing of the same gene [62]. Out of all
delivery methods, Agrobacterium mediated is the most
promising and useful method even for woody plants.
The woody plants such as Citrus sinensis and poplar
were efficiently edited by Agrobacterium-mediated gen-
ome editing [63, 64]. These methods are generally useful
for the plant that is easily transformed through the leaf,
callus, and floral organs.
The significant advantage of this method is high edit-

ing efficiency compared to other known methods. An-
other advantage of this method is broad applicability,
easily available, and less costly than others. By this
method, stable transgene integration is achieved, mostly
with single-copy integration [65]. Due to all these prop-
erties, to date, it is a widely accepted method of amongst
all known methods. The only drawback of this method
is, it requires a binary vector, and it incorporates an
alien gene into the plant genome.

Floral-dip or pollen-tube pathway method
The earlier plasmids was either directly applied onto the
surface of stigma or mixed with pollen and then applied
to their receptive stigma [66]. Further, various parame-
ters were optimized for efficient gene transfer such as
wounding and dipping of flowers having male and fe-
male organs into Agrobacterium suspension. For the suc-
cessful floral transformation of plants, the stage of plants
is crucial. Apart from various physical parameters such
as media composition, pH, optical density, temperature,
and humidity, molecular factors such as choice of the
promoter, gene size, and vector types are also important.
The well-known constitutive promoter such as
CaMV35S and Arabidopsis UBI10 was also involved for
increased editing efficiency. UBI10 promoter was found
more efficient in the germline of Arabidopsis [5]. Fur-
ther, the germline-specific promoter, such as MGE1,
YAO, RPS5a, AG, and ICU2 promoters, was used for ef-
ficient editing [5]. The highest editing efficiency was ob-
tained using RPS5a and YAO promoters [5]. Egg cell-
specific promoter EC1.2 and EC1.2::EC1.1 has also ex-
hibited substantial editing efficiency with CRISPR/Cas9
in Arabidopsis [67]. To date, the floral dip-mediated
genome editing is limited to only Arabidopsis [5, 67].
However, the successful plant genetic transformation
was done in flax, tomato, radish, Brassica rapa, and
wheat, Setaria viridis using floral dip [68–71]. The 50–
60% transformation efficiency was reported in flax,
which is higher than those reported for Arabidopsis
using the floral-dip method of gene transfer [69].
The main advantage of this delivery method did not

require a plant tissue culture facility. Floral-dip-
mediated delivery of CRISPR/Cas9 components is cost-

effective and straightforward. This method is most widely
and commonly used for Arabidopsis genome editing
across the world. The drawback of floral-dip-mediated de-
livery of CRISPR/Cas9 components is limited to few
plants such as Arabidopsis, flax, and tomato etc, with less
efficiency due to limited flower and seed formation.

Knock-in through the sequential floral-dip method
Site-directed insertion of the desired gene or promoter or
desired segment of DNA at a specific location by CRISPR/
Cas9 is in demand. This has been successfully demon-
strated in tomato, maize, wheat, and potato. In this, a
donor template or donor vector is required, which con-
sists of the left and right homology arm. For example, one
of the donor vectors consists of two T-MLO homology
arms and a GFP coding sequence. This constructed GFP
donor vector transferred into wheat protoplast for GFP
knock-in along with the CRISPR/Cas9 vector [38].
CRISPR/Cas9 component, along with the donor vector,
was used in soybean callus. This donor DNA is consists of
soybean specific promoter and HptII gene that confer
hygromycin resistance [33]. The knock-in using CRISPR
can be done into the germline cells or other regenerative
cells with the help of the donor vector. The Arabidopsis
line carrying Cas9 was used for sequential floral-dip
method of transformation using germline-specific pro-
moters such as DD45, Lat52, YAO, and CDC45 promoter
[72]. The Cas9 regulated with DD45 promoter was found
more efficient for knock-in, with the high rate of editing
in egg cells or early embryos as compared to other regen-
erative tissues [72]. The floral-dip method of gene transfer
has been demonstrated in various crops such as wheat
[68], flax [69], radish [70], and tomato [71]. The Cas9,
driven by egg cell or embryo-specific promoters along
with the desired donor DNA template, might lead to effi-
cient knock-in of targeted genes in different crops.

Nanoparticle-mediated delivery
To date, various efforts have been made to uptake differ-
ent nanoparticles into dicot and monocot plant cells.
The direct uptake of numerous nanoparticles includes
mesoporous silica nanoparticles [73], carbon nanotubes
[74], quantum dots [75], and metal/metal oxide NPs [76,
77]. The success of silicon carbide whisker-mediated
genetic transformation of various crops such as maize
[78], cotton [79], and rice [80] suggests that CRISPR/
Cas9-mediated genome editing will be useful to generate
transgene-free plants. Cas9/gRNA ribonucleoproteins,
along with appropriate nanoparticles, can be delivered
into regenerative tissues. The multiple gRNAs, along
with appropriate promoters and terminators, into a sin-
gle plant transformation vector, are required for modu-
lating multiple pathways (Fig. 3). However, the large size
of a construct or multiple gRNAs will be tedious for

Sandhya et al. Journal of Genetic Engineering and Biotechnology           (2020) 18:25 Page 6 of 11



delivering into plant cells. Therefore, polycistronic-
tRNA-gRNA or polycistronic-Csy4-gRNA, along with
nanoparticles, will be effective for multiple editing via
non-transgenic approaches. The success of every delivery
method depends upon the method used as well as suc-
cessive regeneration into whole plants. The plant proto-
plast is the primary target for the delivery of CRISPR/
Cas9 components. However, less regeneration frequency
leads to lower editing efficiency.
The main advantage of nanoparticle-mediated delivery

of CRISPR/Cas9 components is not limited to a proto-
plast. We can directly deliver it into plant regenerative
tissues. The disadvantage of this method is less efficient
and needs suitable nanoparticles with high carrying
capacity CRISPR/Cas9 components.

Pollen magnetofection-mediated delivery
Magnetofection is a technique of genetic transformation
that utilizes the magnetic force for the uptake of vector
allied with magnetic nanoparticles (MNP). In this

method, positively charged polyethyleneimine-coated
Fe3O4 MNPs and negatively charged vector are used to
form MNP-DNA complexes. Further, the pollens are
mixed with the complexes, and a magnetic field is ap-
plied. Then, the pollens were applied for pollination.
This technology has successfully applied to cotton [81].
Nowadays, two methods are frequently applied for deliv-
ery of CRISPR/Cas9 components: the first one is
CRISPR/Cas9 vectors, and the second is vector/DNA
less CRISPR/Cas9 system. The vector/DNA-free editing
by magnetofection will be beneficial for generating non-
transgenic crops. The following two methods are used to
achieve this: (i) Transcribed sgRNA and Cas9 mRNA:
The gRNA and Cas9 are transcribed in vitro and then
coated with MNP and delivered to stigma or protoplast.
For in vitro transcription, gRNA and Cas9 are regulated
by a T7 promoter. The T7 RNA polymerase can be used
for in vitro transcription and finally treated with DNase
I. For example, in vitro mRNA transcripts of gRNA and
Cas9 were co-bombarded into wheat calli [82]. (ii)

Fig. 3 Mechanism of Cas9/polycistronic-Csy4-gRNA complexes mediated editing of the genome. A CRISPR/Cas9 construct containing promoter
(Pro), Cas9, Csy4, terminator (T), and guide RNA (gRNA1, 2, and 3). Construct delivered into plant cells and transcribed into nucleus. The transcript
of Cas9 and Cys4 will translated into proteins (nucleases), whereas multicistronic gRNA are separated into individual sgRNAs (dark blue boxes)
due to action of Cys4 nucleases (sky blue circles). Further, gRNA1, 2, and 3 scan their respective target sites where Cas9 (green circles) binds and
breaks the genome
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Transcribed sgRNA and purified Cas9 protein: Cas9 pro-
tein and transcribed sgRNA can be attached to the MNP
and then mix with pollens. Further, these can be
transferred onto the stigma for fertilization or directly
regenerated by tissue culture for mutant haploid pro-
duction. Vector/DNA-free genome editing was shown
in Arabidopsis, tobacco, lettuce, and rice [29]. Fruit
crops such as grapevine and apple were also edited
by the vector-free method using CRISPR/Cas9 ribonu-
cleoproteins [83]. In maize, these complexes were
bombarded in the embryo, and transgene-free mutant
was recovered [32].
To date, there was no report for pollen magnetofection-

mediated genome editing. However, the advantage of this
method is we can directly transfer the CRISPR/Cas9 ribo-
nucleoproteins into pollens. This can save the time re-
quired for tissue culture and selection of transgenic.

Factors affecting editing efficiency
Different factors such as selectable marker, promoter
regulating Cas9 gene and gRNA, Agrobacterium strain,
PEG concentration, temperature, and bombardment
pressures might affect mutation frequency. Higher ex-
pression of the Cas9 gene and gRNA depends on the
correct promoter, and finally, it leads to higher muta-
tion. Recent studies showed that U6 small nuclear pro-
moter (U6) and human H1 Pol III promoter (H1)
promoters efficiently express gRNA. H1, U6, and U3
promoters are RNA polymerase III promoters that effi-
ciently transcribe short non-coding transcripts. There-
fore, these promoters are used to regulate 75 bp short
gRNA. However, the H1 promoter is more useful than
U6 because transcription can be initiated with any nu-
cleotide in the case of H1 promoter, whereas U6 re-
quires a G nucleotide. The robust H1 polymerase III
promoter efficiently regulates gRNA [84]. T7, T3, and
SP6 promoters are RNA polymerase promoters charac-
terized from bacteriophage. These promoters require ini-
tiating G nucleotide and used in in vitro transcription of
gRNA and Cas9 [84]. The strength of the promoter esti-
mated by comparing the percentage of mutation which
occurs in the plant. In Zea mays, the ubiquitin promoter
showed more efficiency than the CaMV35S [85]. Ubiqui-
tin (Ubi) and Cauliflower mosaic virus (CaMV35S) pro-
moters are well known as a constitutive promoter, and it
expresses every tissue of plants. DNA-dependent RNA
polymerase III (pol III)/U3 promoter and pol III termin-
ator are used to drive the gRNA expression. pRGE3 and
pRGE6 vectors use Oryza sativum pol III (SnoRNA U6
and U3) promoter. The Arabidopsis AtU6 and AtU3
promoters are frequently used to regulate gRNA in di-
cots plants, whereas OsU6 and OsU3 are used in mono-
cot plants [12, 28, 86].

Cas9 from Streptococcus pyogenes (SpCas9)was more
active at 37 °C as compared to 22 °C during the in vitro
assay. SpCas9 was used for genome editing in Arabidop-
sis. It showed higher editing efficiency when Arabidopsis
were subjected to heat stress at 37 °C as compared to
22 °C [87]. Genome editing using Cpf1 requires higher
temperatures for efficient editing efficiency. The Lach-
nospiraceae bacterium Cpf1 showed less editing effi-
ciency at 22 °C, whereas it showed 100% editing
efficiency at 28 °C [88]. CRISPR/Cas9-mediated genome
editing of citrus also showed higher editing efficiency
when plants were subjected to heat stress at 37 °C [87].
These all results suggest that temperature is also an
essential factor affecting the mutation frequency.

Advancement in CRISPR technology and future
perspective
Recent advancements in CRISPR technology are CRISPR
interference (CRISPRi) and CRISPR mediated activation
(CRISPRa). Different types of vectors for this are avail-
able commercially to open up new ways in genome en-
gineering. CRISPRi and CRISPRa had been used in
plants to control gene expression at the transcriptional
level [89, 90]. The deadCas9 (dCas9) catalytically inactive
is used in these techniques. The dCas9 alone or fused
with a transcriptional repressor is used in CRISPRi tech-
nology. This chimeric dCas9 protein binds at their re-
spective target site within the promoter region. Due to
this, RNA polymerase activity is suppressed, and finally,
the transcription is blocked [7, 89, 90]. In CRISPRa,
dCas9 fused with transcriptional activators and therefore
enhanced transcription as compared to normal promoter
strength [28]. Cas9 nickases are produced by mutating
RuvC (D10A) and HNH (H840A) domains of wild-type
Cas9 [91]. It can cleave only one strand of DNA and
therefore used as a paired to break both strands. Paired
Cas9 nickases have less off-target activity as compared
to wild-type Cas9 plants such as Arabidopsis and rice
[91]. Cas9 nickases are useful for targeted gene insertion
in plants.
All these chimeric proteins and variant Cas9 proteins

need to be delivered into plant cells efficiently. To date,
this has been achieved by Agrobacterium-mediated gen-
etic transformation. Agrobacterium-mediated transform-
ation of rice, tobacco, and Arabidopsis was done for
delivery CRISPRi and CRISPRa construct [28, 61]. The
delivery of this chimeric Cas9 protein along with mul-
tiple gRNA without using vector will be useful for crop
improvement. However, the delivery of in vitro tran-
scribed polycistronic tRNA-gRNA or Cys4-gRNA unit
along with purified Cas9 would be a challenge. Probably,
pollen magnetofection mediated and nanoparticle-
mediated delivery will solve these issues and generate
non-transgenic mutant plants.
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Conclusion
The high efficiency of genome editing depends upon
various factors. However, the most important is the type
of delivery method used. In banana, 100% editing effi-
ciency was reported using Agrobacterium-mediated de-
livery of CRISPR/Cas9 components [62]. The success of
every delivery method depends upon the tissue type and
successive regeneration into whole plants. These con-
cerns of regeneration depend upon the nature of plant
species, tissue type, and culture method. Therefore, this
publication emphasized the need to develop new
methods for delivery of CRISPR/Cas9 components such
as nanoparticle-mediated delivery and pollen magneto-
fection mediated delivery. These two potential methods
of delivery into pollen or directly into the meristematic
region would allow researchers to omit the time con-
suming and laborious tissue culture. The authors ex-
pected these novel delivery methods would boost up the
CRISPR/Cas technologies in agriculture. The crops with
altered genome will be cross the barrier of ethical as well
as regulatory issues because it does not require any vec-
tor of DNA for editing.
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