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Abstract 
Background.   The diffuse growth pattern of glioblastoma is one of the main challenges for accurate treatment. 
Computational tumor growth modeling has emerged as a promising tool to guide personalized therapy. Here, we 
performed clinical and biological validation of a novel growth model, aiming to close the gap between the experi-
mental state and clinical implementation.
Methods.   One hundred and twenty-four patients from The Cancer Genome Archive (TCGA) and 397 patients from 
the UCSF Glioma Dataset were assessed for significant correlations between clinical data, genetic pathway acti-
vation maps (generated with PARADIGM; TCGA only), and infiltration (Dw) as well as proliferation (ρ) parameters 
stemming from a Fisher–Kolmogorov growth model. To further evaluate clinical potential, we performed the same 
growth modeling on preoperative magnetic resonance imaging data from 30 patients of our institution and com-
pared model-derived tumor volume and recurrence coverage with standard radiotherapy plans.
Results.   The parameter ratio Dw/ρ (P < .05 in TCGA) as well as the simulated tumor volume (P < .05 in TCGA/UCSF) 
were significantly inversely correlated with overall survival. Interestingly, we found a significant correlation be-
tween 11 proliferation pathways and the estimated proliferation parameter. Depending on the cutoff value for 
tumor cell density, we observed a significant improvement in recurrence coverage without significantly increased 
radiation volume utilizing model-derived target volumes instead of standard radiation plans.

Toward image-based personalization of glioblastoma 
therapy: A clinical and biological validation study of a 
novel, deep learning-driven tumor growth model  

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License 
(https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any 
medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

https://orcid.org/0000-0002-1459-5741
https://orcid.org/0000-0003-4123-4690
https://orcid.org/0000-0002-2963-7772
mailto:marie.metz@tum.de?subject=
https://creativecommons.org/licenses/by-nc/4.0/


 2 Metz et al.: Tumor growth modeling for personalized GBM therapy

Conclusions.   Identifying a significant correlation between computed growth parameters and clinical and 
biological data, we highlight the potential of tumor growth modeling for individualized therapy of glioblas-
toma. This might improve the accuracy of radiation planning in the near future.

Key Points

•	 Tumor growth modeling promises individualized therapy for glioblastoma 
patients.

•	 Here, the model-derived parameters significantly correlate with clinical and genetic 
variables.

•	 With a novel neural solver, growth modeling becomes applicable in short 
computing time.

Glioblastoma (GBM), the most aggressive primary brain 
tumor, is unique in several ways. Most characteristic, 
its spread is highly infiltrative and thus, standard mag-
netic resonance imaging (MRI) fails in distinguishing 
surrounding brain tissue and peritumoral edema from 
non-enhancing tumor infiltration. Moreover, GBM is the 
only cancer in which morbidity is almost solely due to 
local progression.1 Therefore, a reliable prediction of 
individual tumor spread, even beyond the tumor out-
lines visible on MRI scans, would mark a tremendous 
advancement in the diagnosis and treatment of this fatal 
disease.

Standard clinical treatment of GBM consists of max-
imal safe tumor resection, followed by combined radio-
chemotherapy targeting the tissue around the resection 
cavity to account for residual tumor cells.2 Due to a lack of 
knowledge about the individual tumor spread, the clinical 
target volume (CTV) for irradiation is defined by a standard 
margin of usually 2 cm around the resection cavity (and 
the FLAIR-hyperintense region, depending on the specific 
target volume recommendations) sparing sensitive areas 
such as the brainstem and the chiasm.3 Besides local re-
currences occurring directly at the resection cavity, the 
high recurrence rate of GBM can be possibly attributed 
to the microscopic invisible tumor infiltration beyond the 
margins of the CTV.4 Radiotherapy plans might therefore 
benefit from an accurate prediction of tumor infiltration 
pathways which is the reason for the increasing amount of 
research focused on this field.5–7

Mathematical tumor growth modeling aims to simulate 
tumor growth by using established mathematical concepts 
such as the reaction–diffusion equation that has first been 

applied by Murray et al. in the early 1990s.8 In the context 
of medical imaging-based modeling, current models for 
tumor growth describe gross biomechanical phenomena 
such as migration and proliferation of tumor cells, tumor 
interaction with brain tissue (mass effect),9 or formation of 
the necrotic tumor core.10

To identify parameters of the growth model that most 
exactly match the observed tumor anatomy on medical im-
ages, one has to solve the so-called inverse problem. This 
can be achieved using formulations such as constrained 
optimization11,12 or Bayesian inference.13,14 However, most 
of these approaches still require large amounts of com-
puting time, reaching for instance from approximately 5 h 
for a scheme providing point parametric estimates,12 up to 
several days for models that also provide uncertainty esti-
mates for the inferred model parameters.13 Further, some 
models require specific input sequences (such as amino 
acid PET) to initialize the solver, limiting their broad clinical 
applicability.13

In this work, we implement a novel model that has re-
cently been introduced by our working group.15 This model 
applies a neural network-based methodology that shows 
potential for clinical implementation by estimating the 
individual tumor growth parameters only from preoper-
ative MR standard imaging in a matter of minutes. Here, 
we present validation and clinical application of this tumor 
growth model in 3 independent ways: First, in 2 large, in-
dependent glioblastoma cohorts, we investigate correl-
ations between patient overall survival and the calculated 
tumor volume as well as the model-derived parameters. 
In the second part, we compare the derived model param-
eters, that is, proliferation and infiltration indices, with 

Importance of the Study

There is a crucial need to improve treatment in glio-
blastoma patients. Tumor growth modeling promises 
to individualize radiotherapy, providing a personalized 
dose distribution and thus potentially improving pa-
tient outcomes. We here present an in-depth validation 
of our deep learning-based model for inferring tumor-
specific growth model parameters from preoperative 
MRI scans. In particular, our study revealed a signifi-
cant correlation between the predicted patient-specific 

tumor parameters and the overall patient survival as 
well as activation of proliferation pathways stemming 
from mRNA data. Moreover, we showed that the radi-
otherapy plans derived from the patient-specific tumor 
predictions provide better coverage of tumor recur-
rence than standard plans. Our results highlight the po-
tential of this approach to improve patient treatment in 
the future and constitute a starting point for further clin-
ical implementation of tumor growth modeling.
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corresponding genetic data accessed from The Cancer 
Genome Archive Network (TCGA) looking for biological 
correlates of the estimated growth behavior.16

Finally, to assess the potential of the model to guide per-
sonalized radiotherapy plans, we compare model-based 
target volumes with standard radiotherapy plans from our 
institution with regard to the complete radiation volume 
and coverage of the following tumor recurrence. Thus, this 
study aims to facilitate translation of computational tumor 
modeling toward clinical applications.

Materials and Methods

Patient Characteristics and Study Design

We investigated 3 different datasets in this study with the 
same growth model. First, imaging, clinical, and genetic 
data from 124 adult glioblastoma patients from TCGA17 
were assessed, as well as clinical and imaging data from 
501 glioma patients from the UCSF Preoperative Diffuse 
Glioma MRI Dataset (UCSF).18 N = 6 patients in the TCGA 
dataset had an IDH1 mutation (R 132 H) and therefore were 
excluded from our study. In the UCSF dataset, we also ex-
cluded all IDH mutant tumors (n = 104), leaving a total of 
397 IDH wildtype glioblastomas.

In the second part, we evaluated 30 glioblastoma cases 
from our prospective glioma cohort (BraTUM) that have 
been approved by the local ethics committee. All of these 
underwent gross-total tumor resection and were confirmed 
by histopathological study as IDH wildtype glioblastoma 
as per WHO 2021 classification of CNS tumors.19 In our in-
stitutional cohort, all patients were scanned in a 3T whole-
body MRI scanner (Achieva, Philips Medical Systems, Best, 
The Netherlands). The protocol consisted of T2 turbo spin 
echo (T2), T2-FLAIR, non-enhanced and contrast-enhanced 
T1 (CE-T1).

Image Processing

For our local patient cohort, we exported preoperative 
and postoperative MR images as well as the MR exam 
showing the first tumor recurrence from our PACS. Images 
were processed and segmented using the openly avail-
able BraTS Toolkit.20–22 All postoperative scans from our 
patients were registered onto the preoperative scan 
using a 2-stage approach (rigid followed by a deform-
able SyN registration) using ANTs.23 For TCGA and UCSF 
data, we downloaded preprocessed preoperative imaging 
data.17 All registrations and segmentations were checked 
by neuro-radiologist (M.M. with 5 years of experience in 
glioma imaging).

Preparation of Genetic Data

Genomic and clinical (meta)data for TCGA data were 
downloaded from the TCGA server. These encompass DNA 
methylation-based classification to exclude G-CIMP cases 
(carrying an IDH mutation) as well as PARADIGM pathway 
analysis data.24,25 In brief, Pathway Representation 

and Analysis by Direct Inference on Graphical Models 
(PARADIGM) predicts the activity of a diverse set of mo-
lecular processes from a probabilistic belief propagation 
strategy that incorporates multimodal data such as copy 
number and gene expression estimates. The 433 pathways 
were filtered for keywords such as “proliferation” that 
seemed to be associated with cell growth and tumorigen-
esis. This resulted in 129 relevant pathways that were fur-
ther assessed.

Computational Tumor Growth Modeling

To estimate tumor cell growth and infiltration, we model 
the tumor using the established reaction–diffusion model:
∂c
∂t

= ∇ · (D∇c) + ρc(1− c),

where ∂c/∂t is the evolution of tumor cell density c over 
time, D is the diffusion tensor, and ρ denotes the tumor pro-
liferation rate in (1/s). In particular, the tensor D is defined 
through Dw and Dg, where Dw is the diffusion coefficient 
in white matter, and Dg is the diffusion coefficient in gray 
matter, both with the unit (m2/s). Notably, those diffusion 
tensors are not associated with or derived from diffusion-
weighted imaging, but rather mathematically describe the 
tendency (and direction) of tumor cells to infiltrate the sur-
rounding brain. Both tensors in diffusion-tensor imaging 
and in our models are mathematical tensors that describe 
varying spatially propagation of cells. In the case of diffu-
sion tensor imaging, it is a migration of water molecules, 
while in the case of our tumor model, it is a propagation 
of tumor cells. It is typically believed that tumor cells mi-
grate faster in white matter compared to gray matter. Also, 
no cell diffusion takes place in the cerebrospinal fluid. 
Thus, in our model, we define the diffusion coefficient 
in white matter to be 10 times larger than in gray matter. 
Furthermore, tumor cell migration into the cerebrospinal 
fluid is constrained in the model.

Traditionally, these partial differential equations are 
solved numerically, as in Lipkova et al.26 Given that these 
solvers have high demands in computational power and 
time, deep learning-based models are an attractive alter-
native.14 In recent work, we have trained a deep neural 
network to solve the inverse problem, that is, estimate the 
model parameters best describing an individual patient’s 
tumor.15 In brief, a patient’s tumor segmentation is 
morphed into the SRI24 atlas space27 using ANTs. Next, a 
deep neural network that has been trained on 80,000 tumor 
simulations (that have been generated by randomly sam-
pling parameter combinations within plausible ranges28) 
in this atlas space (and has been validated on 8000, and 
tested on 12,000 simulations, respectively) is used to find 
the parameters of the above growth model which best 
fit  the individual tumor. In other words, the exact degree 
of the cell diffusion (D) and proliferation (ρ) are the param-
eters that are inferred by connecting the tumor model with 
the tumor information available on medical scans. Using 
these parameters as input, we run a single forward simu-
lation to obtain tumor cell distribution and warp this result 
back to patient space using the inverse of the registration 
transform.
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The training was done on Nvidia P8000 GPU with 48 GB 
of VRAM but could also be done on CPU without any rel-
evant prolongation of the total pipeline running time (as 
the network prediction both on CPU and on GPU is a lot 
faster than the registration step in the pipeline). Detailed 
technical information about the applied growth model, its 
architecture, and training process can be found in our re-
cent technical publication.15

Comparison with Standard Radiotherapy 
Planning

For the local patient cohort, we exported CTV maps from 
the radiation oncology planning system. Planning was 
performed according to the ESTRO-ACROP recommenda-
tions.3 These maps (planned on the postoperative MR 
image) were mapped to the preoperative space as de-
scribed above. To binarize the continuous tumor cell dis-
tributions from our computational growth model, we 
re-scaled densities by the 99th percentile (to calculate rela-
tive tumor cell densities) and tested various relative tumor 
cell density cutoffs (ct = {0.33, 0.5, 0.66, 0.75}) to compare 
both the coverage of the later recurrence as well as the 
total radiation volume.

Statistical Analysis

To assess the prognostic significance of growth model 
parameters (in particular the ratio Dw/ρ, which is associated 
with infiltration length,29 and the simulated tumor volume), 
we calculated multivariable Cox regression models, in-
cluding established prognostic factors, that is, patient 
age at diagnosis and volume of the contrast-enhancing 
tumor. For reference, single-variable Cox regression 
was performed as well. Further, to avoid misleading re-
sults. we checked for collinearity of the predictors in the 
multivariable Cox regression models. For correlation of 
PARADIGM pathway activations and model parameters, 
we employed Spearman correlation testing. To account 
for multiple tests, we performed 1000 label permutations 
and used the resulting distribution to perform significance 
testing. Lastly, to check if there are significant differences 
between volume and recurrence coverage of model-
derived CTV and standard CTV from the clinical routine we 
performed Wilcoxon signed-rank test. All analyses were 
done in Python 3.8.

Results

Clinical Characteristics of the Study Samples

In the TCGA-dataset (n = 124), mean patient age at in-
itial diagnosis was 57.6 years (SD = 14.3). There were 
76 male and 48 female patients. In the UCSF cohort 
(n = 397), 235 were male and 162 were female with a 
mean age of 61.5 years (SD = 11.9). In our institutional 
cohort (BraTUM, n = 30), mean age at diagnosis was 
62.2 (SD = 9.1). There was also a male predominance in 
the dataset (18 vs. 12).

Correlation Between Growth Model Parameters 
and Clinical Metrics

For the TCGA and UCSF cohorts, we performed 
multivariable Cox regression analysis with the estimated 
parameter ratio Dw/ρ as well as the estimated tumor 
volume (using a relative tumor cell density cutoff of 0.5). 
Since we found a fairly strong collinearity between those 
predictors (Pearson’s r = 0.5), we did not integrate both fac-
tors in the same Cox regression model. For reference, we 
included the volume of the contrast-enhancing tumor as 
well as patient age at diagnosis in both models which has 
been shown to correlate with survival in prior studies.30,31 
Of note, between real contrast-enhancing tumor volume 
and simulated tumor volume as well as Dw/ρ, the correla-
tion was weaker (Pearson’s r = 0.31 and −0.2, respectively). 
All results of the correlation analysis can be found in the 
Supplementary material (Additional file 1).

In the TCGA, Dw/ρ and the estimated tumor volume sig-
nificantly correlated inversely with survival, whereas the 
contrast-enhancing tumor volume did not (Table 1A). More 
precisely, the parameter ratio Dw/ρ had a hazard ratio (HR) 
of 1.9 (P < .05). Patient age at the time of diagnosis was sig-
nificantly correlated with survival in both models. Figure 1 
depicts the survival curves of the 5th, 25th, 50th, 75th, and 
95th percentile of Dw/ρ in TCGA that show shorter survival 
with an increasing ratio of Dw/ρ, that is, with a higher infil-
tration of tumors. The baseline is the median value.

In the UCSF cohort, we again observed a significant as-
sociation of simulated tumor volume with overall survival 
when also including age and contrast-enhancing tumor 
volume (HR 1.08, P = .049). Also here, contrast-enhancing 
tumor volume was not significantly associated with sur-
vival after inclusion of simulated tumor volume. For the 
parameter ratio Dw/ρ we found no significant association 

Table 1.  Multivariable Comparison Analysis of Clinical Parameters 
and Growth Model-Derived Parameters.

Variables Multivariable Analysis I:
(Cox Proportional 
Hazard Model)

Multivariable Analysis II:
(Cox Proportional 
Hazard Model)

Hazard 
Ratio

P-value Hazard 
Ratio

P-value

(A) TCGA (n = 124 patients)

Volume of 
contrast-enhancing 
tumor

1 0.07 1 0.85

Diagnosis age 1.03 <0.05 1.02 0.01

Dw/ρ 1.9 <0.05 – –

Simulated tumor 
volume

– – 1.16 0.04

(B) UCSF (n = 397 patients)

Volume of 
contrast-enhancing 
tumo

1.01 0.05 1 0.14

Diagnosis age 1.03 <0.05 1.03 0.01

Dw/ρ 1.12 0.2 – –

Simulated tumor 
volume

– – 1.08 0.04

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad171#supplementary-data


N
eu

ro-O
n

colog
y 

A
d

van
ces

5Metz et al.: Tumor growth modeling for personalized GBM therapy

with survival (Table 1B). For reference, we also performed 
a single-variable Cox regression analysis and added the re-
sults to the Supplementary Material (Additional file 2).

Biological Validation Utilizing Pathway Activation 
Maps

Eleven pathways showed a significant correlation with 
Dw/ρ after permutation-based adjustment for multiple 
comparisons. Intriguingly, we observed a clear associa-
tion with the proliferation parameter ρ, as most correlation 
parameters were negative with Dw/ρ. For example, patients 
whose genetic alterations led to an over-activity of a spe-
cific cellular pathway for cell proliferation (eg, pathway 
“119_Cell Proliferation”) showed a significantly lower pa-
rameter ratio of Dw/ρ in our computational growth model. 
A lower parameter ratio might be due to higher values of 
the proliferation parameter ρ, and/or due to lower values 
of the infiltration parameter Dw. Therefore, our model’s es-
timation matches the genetic observations of the tumor’s 
proliferation activity. Table 2 gives an overview of those 
signaling pathways and the results of the correlation anal-
ysis. The complete table of 129 relevant pathways can be 
found in the Supplementary Material (Additional file 3a) 
as well as the complete, unfiltered table of 433 pathways 
(Additional file 3b).

Comparison With Standard Radiotherapy Plans

In the third part of the study, we evaluated the growth 
model for its clinical potential on data from 30 patients from 
our institutional glioma cohort. Therefore, we compared 
the simulated tumor infiltration with the corresponding 
CTV as planned for the clinical routine. We investigated: (1) 
how much the radiation volumes differ and (2) if coverage 
of future contrast-enhancing recurrent tumors might be 
improved when using the predicted tumor spread instead 

of standard radiotherapy plans. The results for the different 
cutoff values (ct) of tumor cell density are shown in Table 3 
(with the raw data accessible in Supplementary Material 
Additional file 4). Naturally, choosing lower values for ct, 
leads to larger simulated tumor volumes and hence, to an 
improvement of recurrence coverage. On the other hand, 
this of course also yields larger radiation volumes. Figure 
2 illustrates improvement of recurrence coverage for each 
patient for 4 different cutoff values of the tumor cell den-
sity (ct = {0.33, 0.5, 0.66, 0.75}). To approach clinical utility, 
we were looking for a reasonable tradeoff between im-
proved recurrence coverage and a radiation volume as low 
as possible. A ct-value of 0.5 leads to a significant mean 
improvement of recurrence coverage of 4.567% (P = .044) 
without a significant increase in tumor volume compared 
to the CTV (P = .926), thus showing the most promising 
results for clinical application. The absolute and relative 
numbers of the plots can be found in the Supplementary 
Material (Additional file 5). For example, with a model-
derived radiation plan defined by a c-value of 0.5 we would 
have improved recurrence coverage in 37% of the patients, 
while there would have been no difference in 43%, and 
even less recurrence coverage in 20% of the cases, com-
pared to standard radiotherapy planning.

Figure 3 presents an exemplary case of a patient with 
recurrent GBM following the fiber tracts of the corpus 
callosum. Of note, on the preoperative images, no vis-
ible alterations were visible in most of the area of later 
recurrence. In this case, standard CTV planning on postop-
erative MRI captured only a small proportion of the later re-
current site. In contrast, the model-derived target volumes 
based on three different isolines for estimated tumor cell 
density showed significant improvement in the recurrence 
coverage, as this tumor was simulated to have a highly 
infiltrative nature (high Dw), proven by the later recurrence.

Discussion

Important Aspects of Growth Modeling

To aid clinicians in individualizing the therapy of GBM pa-
tients, tumor growth models need to be (1) reliable and 
sufficiently validated, (2) applicable with widely available 
computational resources, and (3) time-efficient and fea-
sible in daily radiological practice. Here, we introduce a 
growth model that can be trained in a supervised fashion 
with a data set of numerical simulations. Hence, unlike 
in other successful studies,32 there is no need for a large 
data set of longitudinal brain tumor images which can be 
difficult to obtain for smaller institutions and may fail to 
capture the diffuse, multi-faceted growth patterns seen 
in this disease. Furthermore, the model is able to predict 
patient-specific spatial distribution of the tumor on data 
from a single time point (preoperatively) and commonly 
acquired MR sequences, namely CE-T1 and T2/FLAIR, 
which also makes it easily accessible. A major advantage 
of our model is also its short computing time of 4–7 min. in 
total, which in this case includes registration, morphing the 
input images to atlas space, inference, tumor simulation, 
and morphing the growth simulation back to patient space. 
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Figure 1.  Survival probability curves show shorter survival times 
of glioblastoma patients with increasing percentile of the com-
puted parameter ratio Dw/ρ, which is a surrogate for tumor infiltra-
tion, derived from the tumor growth model.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad171#supplementary-data
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Importantly, the computing time is stable across tumor 
models of different complexity. Thus, this model outclasses 
prior approaches in terms of clinical applicability.12,26

Different Growth Model Parameters and Survival

The 2 most important parameter outputs of our growth 
model are the proliferation coefficient ρ and the diffusion 
coefficient Dw, which can be interpreted as a marker of infil-
tration. Further, from these individually estimated param-
eters we are able to infer tumor cell distributions, even 
beyond the visibly contrast-enhancing tumor. To investi-
gate the biological transferability of those, we performed 
survival analysis in a multivariable approach, including 
established parameters, namely patient age and volume 
of the contrast-enhancing tumor at initial diagnosis. While 
patient age remained an important prognostic marker in 
our study, the contrast-enhancing tumor volume failed 

to be of prognostic significance when including the sim-
ulated tumor volume in 2 large, independent cohorts 
(TCGA and UCSF, combined > 500 glioblastoma patients). 
Of note, by itself, contrast-enhancing tumor volume was 
significantly associated with survival in both cohorts. On 
the other hand, the simulated tumor volume with a cutoff 
value of 0.5 tumor cell density correlated significantly with 
survival in the multivariable setting. This might be due to 
inclusion of presumably relevantly tumor-infiltrated areas 
beyond the contrast-enhancing tumor margins. Effectively, 
this assumption is supported by studies that confirmed the 
non-enhancing, FLAIR-hyperintense infiltration volume on 
preoperative MRI as an important independent prognostic 
factor.33,34

Interestingly, in the multivariable Cox regression, the 
parameter ratio Dw/ρ had a hazard ratio of 1.9 (P < .05) in 
TCGA, indicating that an increase in Dw/ρ (either through 
a larger Dw, or lower ρ) translates into shorter survival. In 
UCSF, we observed a similar trend (i.e. HR > 1), although 
this was not significant (which might be due to different 
input images or different therapeutic approaches that af-
fect survival). While the negative correlation with the pro-
liferation coefficient might seem counterintuitive at first 
sight, it is in accordance with some studies that find no sig-
nificant correlation between the histopathological prolifer-
ation index KI-67 and survival in glioblastoma cases.35–37

Importantly, since there is an expectable correlation be-
tween the simulated tumor volume and the parameter ratio 
Dw/ρ we analyzed those predictors in separate Cox regres-
sion models. Furthermore, there is a weaker correlation 
between the actual contrast-enhancing tumor volume and 
the simulated tumor volume as well as Dw/ρ (0.31 and _0.2) 
which might affect the Cox proportional hazard models to 
a small degree.

Connecting Growth Model Parameters with 
Tumor Genetics

In recent years, a pathway-level understanding of ge-
nomic perturbation has become a promising approach to 
assessing the underlying genetic mechanisms in tumor-
igenesis. Pilot studies, such as by TCGA, made clear that 
in glioblastoma, different genomic alterations, or aberrant 
expression in different genes often result in alteration of 
the same pathways.16 Here, we used PARADIGM which 
can integrate any number of genomic and functional 

Table 3.  Results of the Clinical Validation Study. Comparison of Clinical Target Volume and Recurrence Coverage Between Standard Radiotherapy 
(RT) Plan and Tumor Growth Model (TGM)—Derived Target Delineations With Different Isolines Accounting for CutOff Values for Tumor Cell Density.

Cutoff Value 
for Tumor 
Cell Density

Clinical Target Volume Recurrence Coverage

Mean Volume 
Ratio
(TGM vs. RT Plan)

T-Value (Wil-
coxon Signed 
Rank Test)

P-Value (Wil-
coxon Signed 
Rank Test)

Mean Improvement of 
Recurrence Coverage
(TGM vs. RT Plan)

T-Value
(Wilcoxon Signed 
Rank Test)

P-Value (Wil-
coxon Signed 
Rank Test)

0.33 1.493 90.0 0.003 5.160% 5.0 0.005

0.5 1.220 228.0 0.093 4.567% 34.0 0.044

0.66 1.011 151.0 0.094 2.461% 77.0 0.469

0.75 0.907 106.0 0.009 −0.626% 92.0 0.627

Table 2  Relevant Proliferation Pathways That Revealed Significant 
Correlation With Growth Model-Derived Parameters.

Pathway Dw/ρ

Spearman Corre-
lation Coefficient

P-value 
(Spearman)

119_Cell proliferation −0.251 0.009

119_Apoptosis 0.252 0.007

71_Regulation of calcium-
dependent cell–cell adhesion

−0.234 0.012

45_Regulation of cell–cell 
adhesion

−0.233 0.007

71_Regulation of cell–cell 
adhesion

−0.234 0.008

22_Re-entry into mitotic cell 
cycle

−0.234 0.011

38_Homophilic cell adhesion −0.222 0.014

109_Apoptosis −0.198 0.034

43_Positive regulation of cell 
migration

−0.159 0.031

118_Cell proliferation −0.178 0.058

51_Mitosis −0.181 0.047

108_Cell migration 0.172 0.05
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genomic datasets to infer the molecular pathways altered 
in a patient sample and present them in the form of factor 
graphs.25 Utilizing mRNA data from the TCGA dataset we 
created pathway activation maps for 118 glioblastoma pa-
tients and compared them with our parameter ratio Dw/ρ. 
Interestingly, we observed a significant, negative correla-
tion between Dw/ρ and typical pathways that are associ-
ated with cell proliferation, regulation of cell‐cell adhesion, 
cell migration, or mitosis. This indicates that the prolifera-
tion coefficient ρ seems to have a strong correlation with 
typically altered pathways in tumorigenesis of GBM. To the 
best of our knowledge, this is the first study, that found 
a significant correlation between real genetic data and 
MRI-derived parameters of a mathematical tumor growth 
model, serving as a promising biological validation of this 
model.

Toward Personalized Radiotherapy Design

Previous studies have indicated that the common CTV in 
radiotherapy design of glioblastoma might not sufficiently 
cover all relevant tumor infiltrated areas.5,38 One reason 
for that might be that current radiotherapy planning util-
izes a uniform, isotropic margin around the resection 
cavity to define the CTV. However, the growth pattern of 
GBM is known to be anisotropic due to anatomical bound-
aries and the fact that its cells infiltrate gray matter much 
less than white matter.6,39 Unfortunately, to this point, 
standard MRI sequences are not capable of capturing 
areas of lower tumor infiltration, thus limiting an exact 

target delineation for radiotherapy planning. Therefore, 
a growing branch of radiological research is focused on 
finding means to detect microscopic tumor infiltration 
by implementing advanced imaging modalities, such as 
amino acid PET, chemical exchange saturation transfer 
MRI, or whole-brain MR spectroscopy.40–43 In addition to 
this, several studies suggest using mathematical models 
such as Fisher–Kolmogorov model, to estimate the tumor 
infiltration pathways beyond the regions of contrast-
enhancing tumor, and use this information to guide radio-
therapy dose distribution.6,26,44,45

All these models rely on isolines of the simulated tumor 
cell density to define the margins of the target volume. 
However, these isolines can be chosen differently. For ex-
ample, Unkelbach et al. decided on an isoline that encom-
passes the same total volume as the CTV used in clinical 
practice.6 For our study, we decided to test a few different 
isolines of estimated tumor cell density (ct = {0.33, 0.5, 
0.66, 0.75}) to find the best recurrence coverage with a total 
volume comparable to the manually delineated CTV, or 
even smaller, in order to keep radiation toxicity small. The 
results indicated that a cutoff value of 0.5 tumor cell den-
sity provides a reasonable tradeoff between a significant 
improvement of recurrence coverage while having a com-
parable volume. However, even with a not statistically sig-
nificant enlarged target volume of 1.2 times the standard 
CTV, those model-based radiotherapy plans would need 
to be quality-proofed for practicability in terms of meeting 
dose constraints to the brain and organs at risk. Notably, 
as Figure 2 (and additional file 3 in the supplements) il-
lustrates, there are many cases in which there was no 

Cutoff Value of Tumor Cell Density = 0.33A B

C DCutoff Value of Tumor Cell Density = 0.66 Cutoff Value of Tumor Cell Density = 0.75
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Figure 2.  Waterfall plots illustrate the change in recurrence coverage when utilizing isolines of cutoff values for tumor cell density for target 
delineation instead of standard radiotherapy planning. Subplots A‐D represent cutoff values for tumor cell density of 0.33, 0.5, 0.66, and 0.75, re-
spectively. In general, the lower the cutoff value is chosen, the larger the estimated target volume becomes, and naturally, the more recurrence 
area is covered.

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdad171#supplementary-data
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improvement of recurrence coverage at all. This is due to 
the fact that most recurrences occur close to the resection 
cavity and are therefore already covered by the standard 
CTV. The most promising advantage of model-derived ra-
diation plans might therefore be to prevent more distant 
recurrences by warping the plan toward areas with higher 
estimated tumor cell density.

Limitations of the Study

Radiotherapy personalization based on a reaction-
diffusion model relies on multiple assumptions, for ex-
ample, an initial hypothesis about the tumor cell density 
distribution over the whole brain at diagnosis time. Since 
histopathological validation is impossible for that pur-
pose, assumptions about the relation between tumor 
cell density and MRI features have to be utilized. It is 
common practice to use thresholds for the tumor cell 
density following the outlines of the enhancing tumor 
core, and of the FLAIR-hyperintense tumor portions com-
prising of non-enhancing tumor and peritumoral edema 
and gliosis. Upon agreement with experienced neuro-
pathologists from our institution, we decided on cutoff 
values of cenhancing = 0.6, and cedema = 0.3, for our model. 

However, in a recent postmortem histopathological val-
idation study, Martens et al. invalidated the assumption 
of a tumor cell density iso-value at the edema outlines.46 
Although our validation results already support the bio-
logical accuracy of our model, some assumptions might 
need to be adapted in the future to facilitate more accu-
rate results.

In terms of methodology, the registration steps from 
the postoperatively planned CTV to the recurrence image 
might be a source of error in accurately evaluating re-
currence coverage. In general, comparing standard and 
model-based CTVs by utilizing recurrence coverage as 
a proxy is just one vivid way to assess their potential 
superiority.

Further, since our growth model relies on the initial 
tumor morphology in the preoperative setting to estimate 
tumor cell density in the whole brain, it cannot be applied 
to postoperative images. Therefore, this method of de-
fining the CTV is conceptually different from the standard 
radiotherapy planning on postoperative images.

Importantly, due to the retrospective study design, we 
have to acknowledge the fact that all patients have been 
irradiated according to the standard radiotherapy planning 
which of course might affect the recurrence pattern. This 

Initial Tumor Size (CE-T1)A B CRadiotherapy Plan (CTV) Overlay FLAIR of Initial Tumor

TGM Overlay (ct  = 0.33)

Recurrence coverage: 83.7% Recurrence coverage: 88.5%

Recurrence coverage: 74.3%

Recurrence coverage: 92.9%

D E FTGM Overlay (ct  = 0.5) TGM Overlay (ct  = 0.66)

Figure 3.  Comparison of standard clinical target volume (CTV) and computed target delineations derived from isolines of different estimated 
tumor cell densities by the tumor growth model (TGM). Underlying images are contrast-enhanced T1 (CE-T1). 

Exemplary case of a patient with recurrent glioblastoma. (A) Depicts initial size of the tumor in CE-T1 imaging. (B) Shows the clinical target volume 
(CTV) planned on postoperative imaging and registered to the recurrence image that is visible underneath the overlay (C). Subparts D‐F illustrate 
target volumes derived from isolines of estimated tumor cell density by the growth model (TGM) with cutoff values of ct = 0.33 (D), ct = 0.5 (E), 
and ct = 0.66 (F). Note that percentage of recurrence coverage improves with lower cutoff value, and is, in this case, worst with traditional radio-
therapy planning. However, there was also an increasing tumor volume with a relative volume ratio of 1.03, 1.25, and 1.52. Therefore, a reasonable 
trade-off needs to be found between improved recurrence coverage and a radiation volume as small as possible.
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potential bias could only be solved by a prospective study 
design.

Furthermore, inclusion of advanced imaging methods, 
such as DTI or amino acid PET to account for regional dif-
ferences in the tumor cell density maps might be of great 
interest. Lastly, a prospective follow-up study needs to 
prove the benefit of our growth model for patient survival 
in the real clinical setting.

Conclusions

In this work, we tested a novel, deep learning-based model 
for radiotherapy personalization for its clinical applica-
bility in the advanced diagnostics and treatment of gli-
oblastoma. Of note, all patients used in this study were 
independent test data that the model had not seen during 
training. Our model is easy to deploy in clinical routine due 
to its few and readily available input sequences of CE-T1 
and T2/FLAIR from preoperative images only, and a con-
vincingly fast computing time on widely available hard-
ware. Furthermore, we found significant evidence that 
the derived model parameters reflect underlying tumor 
biology as shown by our extensive validation with clin-
ical and biological data. Ultimately, those models could be 
utilized for improved target delineation in radiotherapy of 
glioblastoma in the future as our first clinical application 
study indicates. Our results highlight the potential of this 
approach to improve patient treatment in the future and 
constitute a starting point for further clinical implementa-
tion of tumor growth modeling.

Supplementary material

Supplementary material is available online at Neuro-
Oncology (https://academic.oup.com/neuro-oncology).
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