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Klebsiella pneumoniae is an opportunistic bacterial pathogen leading to life-threatening

nosocomial infections. Emergence of highly resistant strains poses a major challenge

in the management of the infections by healthcare-associated K. pneumoniae isolates.

Thus, despite intensive efforts, the current treatment strategies remain insufficient to

eradicate such infections. Failure of the conventional infection-prevention and treatment

efforts explicitly indicates the requirement of new therapeutic approaches. This prompted

us to systematically analyze the K. pneumoniae metabolism to investigate drug targets.

Genome-scale metabolic networks (GMNs) facilitating the systematic analysis of the

metabolism are promising platforms. Thus, we used a GMN of K. pneumoniae MGH

78578 to determine putative targets through gene- and metabolite-centric approaches.

To developmore realistic infectionmodels, we performed the bacterial growth simulations

within different host-mimicking media, using an improved biomass formation reaction.

We selected more suitable targets based on several property-based prioritization

procedures. KdsA was identified as the high-ranked putative target satisfying most

of the target prioritization criteria specified under the gene-centric approach. Through

a structure-based virtual screening protocol, we identified potential KdsA inhibitors.

In addition, the metabolite-centric approach extended the drug target list based on

synthetic lethality. This revealed the importance of combined metabolic analyses for a

better understanding of themetabolism. To our knowledge, this is the first comprehensive

effort on the investigation of the K. pneumoniae metabolism for drug target prediction

through the constraint-based analysis of its GMN in conjunction with several bioinformatic

approaches. This study can guide the researchers for the future drug designs by providing

initial findings regarding crucial components of the Klebsiella metabolism.

Keywords: Klebsiella pneumoniae, infection, genome-scale metabolic networks, pathogen, flux balance analysis,

drug target

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2019.00447
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2019.00447&domain=pdf&date_stamp=2020-01-14
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:tcakir@gtu.edu.tr
https://doi.org/10.3389/fcimb.2019.00447
https://www.frontiersin.org/articles/10.3389/fcimb.2019.00447/full
http://loop.frontiersin.org/people/557720/overview
http://loop.frontiersin.org/people/692464/overview
http://loop.frontiersin.org/people/489044/overview
http://loop.frontiersin.org/people/41354/overview
http://loop.frontiersin.org/people/44495/overview


Cesur et al. Systems-Level Drug Target Identification for K. pneumoniae

INTRODUCTION

Klebsiella pneumoniae, originally discovered in the lung samples
of pneumonia patients, is a gram-negative, facultative anaerobic
bacterium within the Enterobacteriaceae family (Friedlander,
1882). It can inhabit a wide range of environments, and it is also
a part of normal flora of human (Bachman et al., 2015; Navon-
Venezia et al., 2017). The opportunistic pathogen colonizes in
human mucosal surfaces and can spread to other tissues like
respiratory tract (Li et al., 2014; Paczosa and Mecsas, 2016). K.
pneumoniae is among the six pathogens known as “ESKAPE”
pathogens, a group of resistant strains that effectively escape from
the activity of most of the available antimicrobial drugs (Taneja
and Kaur, 2016). A reduction in the antimicrobial activity of
many available drugs alongwith ever-increasing prevalence of the
resistant Klebsiella strains poses a serious therapeutic challenge.
This growing threat affects public health and global economic
cost. Klebsiella infections primarily affect immunocompromised
patients, and they may be treated by the use of β-lactams
and other antibiotics (Doorduijn et al., 2016; Paczosa and
Mecsas, 2016). On the other hand, even healthy individuals
can suffer from the hypervirulent Klebsiella infections (e.g.,
meningitis, pneumonia, endophthalmitis, cellulitis, and pyogenic
liver abscesses), and conventional medicine has failed to eradicate
such infections (Doorduijn et al., 2016; Paczosa and Mecsas,
2016; Santajit and Indrawattana, 2016). Therefore, identification
of novel drugs, use of synergistic drug combinations and drug
repositioning remain areas of active investigation (Sun et al.,
2016; Taneja and Kaur, 2016), pointing to the crucial role of post-
genomic approaches to cope with Klebsiella infections (Bachman
et al., 2015; Santajit and Indrawattana, 2016). In this context, the
evaluation of whole metabolism of the pathogen at genome scale
can provide comprehensive insight for the elucidation of more
efficient drug targets and enable a deeper understanding of the
pathogen phenotype.

Genome-scale metabolic network (GMN) models are
commonly used to decipher pathogen and host metabolisms
since they offer a systems-wide approach (Durmus et al., 2015).
In silico analyses based on GMNs can significantly narrow down
putative drug targets. Thus, systems biology approach reduces
the dependency to labor-intensive, costly and time-consuming
experimental approaches. Flux Balance Analysis (FBA) is the
most widely used in silico analysis method to predict intracellular
flux distributions from GMNs at steady-state, which solves an
optimization problem satisfying a predefined objective function
(e.g., maximal growth rate; Varma and Palsson, 1994; Edwards
et al., 2002; Orth et al., 2010). When FBA is used to simulate gene
deletion phenotypes, it provides significant quantitative insights
about the bacterial metabolism, pathway activities, and potential
drug targets (Cesur et al., 2018). To date, this approach has been
commonly used in drug target discovery process at systems-level
for different pathogens (Raman et al., 2008; Plata et al., 2010;
Perumal et al., 2011; Ahn et al., 2014; Larocque et al., 2014;
Presta et al., 2017). GMN models are available for different K.
pneumoniae strains (Liao et al., 2011; Henry et al., 2017; Ramos
et al., 2018; Norsigian et al., 2019). The first K. pneumoniae
model at the genome level, called iYL1228, appeared in 2011 for

the MGH 78578 strain (Liao et al., 2011). The authors refined
and validated their model by testing the qualitative growth
phenotype of the organism on several nutrient sources. They
have also identified essential genes in the organism in silico, in
aerobic minimal medium. The second model was developed for
rifampin-resistant highly virulent strain KPPR1 using the GMN
of the MGH 78578 strain as a reference (Henry et al., 2017).
Similar validation analyses were performed using the model,
termed iKp1289, and essential genes were identified in silico in
aerobic rich media. Both works lack a GMN-based identification
of drug target candidates. In a recent work, a GMN of multi drug
resistant (MDR) Kp13 strain was developed (Ramos et al., 2018).
The authors did not perform an FBA-like analysis based on the
calculation of flux distributions. Rather, they used the network
topology of the reconstructed GMN to prioritize drug targets in
combination with genomic, transcriptomic and structure-based
information. More recently, the GMN models of diverse K.
pneumoniae strains with different levels of antibiotic resistance
were reconstructed (Norsigian et al., 2019). They were used to
predict the catabolic capabilities of these strains.

Here, we aim to provide a better insight into K. pneumoniae
metabolism in different host-mimicking conditions in order to
reveal putative drug targets through gene- andmetabolite-centric
approaches. To our knowledge, this is the first comprehensive
effort on the investigation of the K. pneumoniae metabolism
through the constraint-based analysis of its GMN in conjunction
with several bioinformatic approaches to reveal the most suitable
targets. The subsequent major step in the therapeutic strategies
is inhibitor discovery against the most remarkable targets.
Structure-based in silico drug prediction is a powerful method to
explore suitable inhibitors among the available chemical library
compounds. In this study, 2-dehydro-3-deoxyphosphooctonate
aldolase (KdsA) was reported as the high-ranked putative
target satisfying most of the target prioritization criteria
specified under the gene-centric approach. Using molecular
docking, we attempted to elucidate the interaction dynamics
of the KdsA enzyme and to identify possible inhibitors. We
identified various potential anti-infectious agents interacting
with the enzyme. Taken together, we suggested the putative
targets and the KdsA inhibitors through the comprehensive
bioinformatic analyses in this work. These findings can provide
crucial insights to guide experimentalists for the development
of new drugs.

MATERIALS AND METHODS

Metabolic Network Model
The genome-scale metabolic network of K. pneumoniae MGH
78578 (GenBank accession number: CP000647), iYL1228 (Liao
et al., 2011) accounting for 1,228 genes and 1,658 metabolites
involved in 2,262 reactions was used in this work. The GMN
covers a set of reactions associated with the metabolism of
amino acids, nucleic acids, fatty acids, cofactors, and carbon
sources. It contains a reaction for biomass formation to simulate
maximal growth conditions. An updated version of the biomass
reaction was used in this work (see the next section). The energy
required for the biomass formation, termed growth-associated
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maintenance, was set to 71.7mmol ATP/gDW/h in the model
while the non-growth-associated maintenance, which is the
energy dedicated to cellular functions apart from growth (e.g.,
motility and repair), was set to 6.8mmol ATP/g dry weight
(gDW) (Liao et al., 2011).

Biomass Reaction
Based on a recent work that drew attention to the importance
of inclusion of essential cofactors in biomass formation
reactions, we improved the biomass formulation of the original
model through integration of universally essential cofactors of
prokaryotes [NAD, NADH, NADP, NADPH, FAD, coenzyme A
(CoA), flavin mononucleotide (FMN), pyridoxal 5′-phosphate
(PYDX5P), and S-adenosyl-L-methionine (SAM/AMET)]
(Xavier et al., 2017) to represent the bacterial composition better.
In this context, we added each missing cofactor to the biomass
formation reaction with a stoichiometric coefficient based on
the biomass formula of a GMN model of Escherichia coli K-12
MG1655 (Orth et al., 2011). The newly added coefficients with the
magnitudes between 10−3 and 10−5 did not affect the capability
of the model to predict the growth rates in different growth
conditions (data not shown). In addition, the coefficient of FMN
was not available in the E. coli model and it was taken as 1 ×

10−5 in this study. A low coefficient value ensured the necessity
of cofactors for growth, without disturbing carbon flows in
the metabolic network. The coefficients for the new biomass
formation reaction is available in Supplementary Dataset 1.

Simulation Constraints
Host microenvironment is an important source of the nutrients
supporting the bacterial growth. More realistic infection models
can be developed by mimicking the host conditions in order
to reveal the phenotype of K. pneumoniae within the host and
to identify novel efficacious antimicrobial drugs. Using FBA,
we simulated three different growth conditions: human body
fluid (HBF) (Hadi andMarashi, 2014), sputum-macrophage (SM)
(Bordbar et al., 2010; Oberhardt et al., 2010), and a more generic
host medium. One hundred and twenty of four hundred and five
metabolites in the HBF were defined as exchange metabolites
in the model, and they were used here to represent HBF
medium. Thus, the HBF medium consists of 120 metabolites,
and SMmedium includes 40 metabolites defined in the Klebsiella
model. For a more generic host medium, common metabolites
in both iYL1228 and Recon 2 (a comprehensive literature-
based human metabolic network including 1,789 genes, 7,440
reactions, and 2,626 unique metabolites; Thiele et al., 2013) were
identified through the name and ID matching (López-Ibáñez
et al., 2016). There are 192 human-matched metabolites in the
pathogen metabolic network for which there are defined uptake
reactions. These metabolites were used to represent the generic
host medium. Compositions of all growth media used in this
work are listed in Supplementary Dataset 2. All conditions were
mimicked by setting maximum uptake rates of all components
within the media in question to 10 mmol gDW−1 h −1 in
the model during the simulations while the uptake of other
compounds were blocked. Subsequently, maximization of the

rate of biomass formation reaction was set as the objective in FBA
to predict the growth rate.

Gene-Centric Identification of Drug Targets
Essential genes (EGs) of K. pneumoniae, which are indispensable
for survival, were determined via in silico deletion of
each metabolic gene using FBA and the inspection of the
corresponding bacterial growth rate. Single-gene knockout
studies were performed under specific growth conditions
explained above. These perturbations were achieved by setting
the rate of the associated reaction(s) to zero for each gene.
Compensatory functions of isoenzymes were also considered
during the gene deletions. The effect of each single-gene
knockout on the biomass production was evaluated based on a
cut-off of 1% of the maximum wild-type growth rate (Pratapa
et al., 2015). The use of zero as the cut-off led to the same results.
Therefore, the genes were considered as essential if their deletions
resulted in a substantially reduced growth rate (smaller than the
cut-off) relative to the wild-type cell (Supplementary Dataset 3).

Homology analysis is crucial to avoid any undesired harmful
effects of the drugs. We identified the essential gene products
sharing little to no homology with human proteins. To do
so, the essential pathogen proteins were subjected to BLASTp
search against human protein sequences in Refseq database
(Pruitt et al., 2007) at an expected value (E-value) cut-off
of 1 × 10−4 (Jamal et al., 2017; Presta et al., 2017). The
proteins having <30% sequence identity with their human
counterparts were considered as non-homologous (Presta et al.,
2017). Hence, a putative drug target list consisting of the non-
homologous essential K. pneumoniae proteins was compiled. To
characterize the putative drug targets, pathways associated with
these proteins were identified by means of KOBAS v3.0 web
server. It identifies significantly enriched pathways using KEGG
and BioCyc pathway databases (Wu J. et al., 2006). We chose a
closely related and well-characterized model organism E. coli K-
12 MG1655 to annotate the putative targets of K. pneumoniae.
The enriched pathways were determined using a false discovery
rate threshold of 10−4.

Prioritization of Putative Drug Targets
Through a systematic workflow, the non-homologous drug
target candidates identified by the gene-centric approach were
prioritized to discover more effective therapeutic targets. To
this aim, in silico screening was employed based on subcellular
localization, druggability, antibiotic resistance, virulence, and
distribution of the target candidates in prominent pathogenic
strains (conservation).

Subcellular Localization Prediction
Subcellular localization is among the factors determining protein
function because compartments include various compounds
contributing to the function of a protein. In other words,
cellular compartments and protein function are interconnected.
Furthermore, localization provides significant information about
the nature of the putative targets for drug design. Outer
membrane-associated and extracellular proteins may be vaccine
targets. On the other hand, small-molecule therapeutics should
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be designed against cytoplasmic and periplasmic targets (Uddin
et al., 2015; Kumar et al., 2016). To address the localization
information of the putative drug targets, PSORTb v3.0.2 (scoring
cut-off of 7.5; Yu et al., 2010; Ramos et al., 2012; Uddin et al.,
2015), CELLO2GO (E-value cut-off of 1× 10−4; Yu et al., 2014),
and iLoc-Gneg (Xiao et al., 2011) were used. If the cellular
compartment of a protein was confirmed by at least two web
servers, it was considered to be correctly predicted. Contradictory
results were cross-checked via UniProt database (Wu C. et al.,
2006) and a comprehensive study on annotation and localization
of E. coli K12 proteome by Lopez-Campistrous and colleagues
(Lopez-Campistrous et al., 2005).

Determination of Druggable Proteins
Druggability is defined as the ability of a target to bind drug-like
chemical compounds with high affinity. It is an important
criterion in the target prioritization because the proteins with
higher druggability are more vulnerable to drugs (Ludin et al.,
2012; Shende et al., 2017). DrugBank is a useful knowledgebase
including a comprehensive up-to-date data regarding drug-
target interactions (Wishart et al., 2008). Druggability assessment
was performed using the DrugBank database, to evaluate the
risk to invest in a putative target. Sequence search option in
the database was used to perform BLASTp with the default
parameters. This led to the alignment of the non-homologous
proteins of K. pneumoniae against the known drug targets in the
DrugBank database. Degree of the druggability was determined
using the E-value cut-off of 1 × 10−25 (Holman et al., 2009;
Chawley et al., 2014).

Antibiotic Resistance Screening
Antibiotic resistance leads to the emergence of antibiotic-
unresponsive pathogens, against which they were previously
susceptible. It occurs owing to a widespread use of the antibiotics
and results in the counteraction of conventional treatment
approaches (Kumar et al., 2011; Beceiro et al., 2013). Transfer
of the resistance-conferring plasmids promotes dissemination of
the MDR isolates within the Enterobacteriaceae family members
(Kumar et al., 2011). Development and dissemination of the
resistance led us to investigate existing or putative antibiotic
resistance genes (ARGs) within the identified putative drug target
lists. Antibiotic resistance screening was performed using ARG-
ANNOT tool, which harbors up-to-date information on the
ARGs against 11 antibiotic classes (Gupta et al., 2014; Jia et al.,
2017). In this work, a recently updated data (May, 2018) in ARG-
ANNOT was used through BioEdit software (Gupta et al., 2014)
with an E-value cut-off of 1× 10−4 and 65% sequence identity.

Identification of Potential Virulence Factors
There is an interplay between antibiotic resistance and
virulence. Virulence refers to the degree of pathogenicity,
the capacity of a pathogen to cause disease, which has some
common characteristics with the antibiotic resistance. Both
can disseminate via the gene transfer among bacteria, and
they support survival of the pathogens within the harsh host
environment by enhancing the defense against the host immune
response and antimicrobials. To cope with the host, they have

some common mechanisms such as modification of the cell
wall, use of some global transcriptional regulators, production
of efflux pumps and porins (Trevor and Snow, 2005; Beceiro
et al., 2013; Llobet et al., 2015). Particularly, combinatorial
therapies including application of anti-virulence agents and
antibiotics may promote more effective drug therapy and reduce
antibiotic resistance development (Beceiro et al., 2013). Thus, we
concentrated on the investigation of potential virulence factors
(VFs) in addition to ARGs. To elucidate VFs within the identified
potential drug target lists, core dataset within the VFDB database
was used (Chen et al., 2016). This database includes up-to-date
data related to VFs of 30 prominent bacterial pathogens. We
annotated putative virulence factors using BLASTp option in the
database with the E-value cut-off of 1 × 10−4, bit score of 100
and identity threshold of 65% (Gawade and Ghosh, 2018).

Broad-Spectrum Analysis
A homology analysis against diverse infectious bacteria
was performed to evaluate the broad distribution of the
candidate targets. This analysis may provide a clinically effective
opportunity for the treatment of co-infections or multiple
infections. In addition, the conservation of a gene may indicate
a lower level of mutation rate, so targeting such genes may delay
the development of antibiotic resistance. Here, broad-spectrum
analysis was performed through PBIT web browser (Shende
et al., 2017). To this aim, we executed the BLASTp search in
the tool, which performs a similarity search against protein
sequences of 181 pathogenic organisms with the E-value cut-off
of 1 × 10−5, bit score of 100 and sequence identity of 35%. If
a protein was identified to be common in at least 40 diverse
pathogenic strains, it was considered as a broad-spectrum target
(Mondal et al., 2015).

Structure-Based Inhibitor Discovery
The K. pneumoniae MGH 78578 KdsA enzyme was determined
as the top candidate drug target through the target prioritization
step. The amino acid sequence of the enzyme was subjected
to BLAST search against the Protein Data Bank (PDB) to
find its crystal structure. The sequence identity and similarity
from multiple sequence alignments were further confirmed by
ClustalW (Thompson et al., 2003). The crystal structure of the
matched E. coli enzyme (PDB code: 1D9E) was prepared as
a receptor via UCSF chimera to perform the structure based
analyses (Pettersen et al., 2004). The active site residues and
corresponding cavity volumes for 1D9E were assigned based on
the reported literature (Radaev et al., 2000). In order to perform
a structure-based virtual screening protocol, a subset of the
ligand database Aldrich was retrieved from the ZINC database,
containing 18,142 compounds in ready-to-dock, 3D format
(Irwin et al., 2012). To perform the docking experiment, the
program AutoDock Vina was used (Trott and Olson, 2010). The
docking program Vina requires input files in PDB format. A grid
box was set with x, y, and z dimensions of 140 Å. Vina generated
maximum nine poses of each compound interacting with the
protein. The docked complexes with top ranked Vina scores were
used to narrow down the compounds based on ranking scores.
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Metabolite-Centric Identification of Drug
Targets
Essential metabolites (EMs) of K. pneumoniae are among the
major components of the bacterial metabolism. Metabolite-
centric gene deletion is equivalent to simultaneous removal of
all outgoing reactions around each metabolite by constraining
the rates of related reactions to zero and the inspection of
the corresponding bacterial growth rate. Same as in the
gene-centric approach, we employed a cut-off of 1% of the
maximum wild-type growth rate (Pratapa et al., 2015) to decide
whether a metabolite is essential or not. The simulations were
performed in SM, HBF, and generic host media separately. If
the blocking of a metabolite resulted in a significant growth
attenuation, it was considered as essential. The multiple
genes involved in the outgoing reactions of an EM are called
synthetic lethal. That is, not individual but simultaneous
targeting of their enzymes with an EM-like drug will
cause cell death.

Identification of the EMs was followed by a similar filtering
method of Kim et al. (2010) to narrow down the metabolite
list and to elucidate the enzymatic drug targets. To filter the
EMs, we followed two main steps: In the first step, the EMs
were screened in terms of their presence in human metabolism
for their removal. To this aim, the common metabolites of the
K. pneumoniae and human were compiled using the human
genome-scale metabolic reconstruction, Recon 2 (Thiele et al.,
2013), and HumanCyc database (Trupp et al., 2010). This
step also ensured the removal of currency metabolites (e.g.,
ATP, H2O, NAD) known as the metabolites involved in many
reactions in a metabolic network (Samal and Martin, 2011).
The common compounds were detected through the name and
ID comparisons (López-Ibáñez et al., 2016) and eliminated to
avoid any potential damages to the host metabolism. Hence,
the EMs specifically dedicated to the pathogen metabolism were
obtained by applying this step. In the second step, the pathogen-
specific EMs associated with any human homologous enzymes
as substrates or products were removed to avoid possible side
effects. To this aim, similar to the analysis applied in gene-
centric identification of drug targets, the associated enzymes
were evaluated in terms of homology. This was performed
using BLASTp search against the human protein sequences in
Refseq database (Pruitt et al., 2007), using the same E-value and
sequence identity cut-offs as in the gene-centric identification
part (1 × 10−4 and 30%, respectively). The enzymes in the
outgoing reactions of EMs that passed the cut-offs were suggested
as the putative drug targets.

RESULTS AND DISCUSSION

Here, we simulated the K. pneumoniae MGH 78578 metabolism
through the GMN of iYL1228 for the computational prediction
of effective drug targets. The available infection models
are predominantly based on the simulation of the bacterial
growth in laboratory media. Although these conditions are
also informative, they are insufficient to represent the host-
cell nutrient environment. Therefore, we employed growth

simulations in different host-mimicking conditions including
SM, HBF, and generic host media.

Sputum is mainly composed of inflammatory components,
the lower airway mucus, and bacterial products. It is modified
in the inflamed lungs (Turner et al., 2015). K. pneumoniae
induces production of thick jelly sputum (Fukuyama et al., 2014;
Paczosa and Mecsas, 2016). It was also demonstrated that K.
pneumoniae (considered as an extracellular pathogen) could
survive inside alveolar macrophages by blocking phagosome
maturation (Cano et al., 2015). Taken together, both host
environments including sputum (Oberhardt et al., 2010) and
alveolar macrophage (Bordbar et al., 2010) were combined in
order to provide novel insight into the pathogenesis and fitness
requirements of K. pneumoniae within this special medium
(i.e., SM medium). It is used to discover the putative drug
targets. In addition to sputum, body fluid cultures (e.g., blood,
urine) are frequently used for the detection of K. pneumoniae
(Goroll and Mulley, 2009). Here, another growth medium
mimicking the body fluids (i.e., HBFmedium; Hadi andMarashi,
2014) and a more generic host medium were also integrated
to the GMN for more comprehensive overview of the host
environment. In addition to the simulation of more realistic
growth conditions, improving the biomass formation reaction
is also crucial to ensure more accurate representation of the
bacterial metabolism. Furthermore, model-predicted knockout
phenotypes are significantly affected by the biomass reaction.
Therefore, the biomass formulation of the original model was
improved via the integration of the universally essential organic
cofactors involved in the biomass compositions of prokaryotes
(Xavier et al., 2017).

The improved simulation conditions provided identification
of the putative drug targets in K. pneumoniae using the
GMN of iYL1228 through both gene- and metabolite-centric
approaches. The putative targets predicted through the gene-
centric approach were prioritized based on several property-
based filtering procedures detailed in the section Materials
and Methods (Figures 1A–E). The compounds interacting with
the top target (KdsA) among the virulent, druggable, and
broad-spectrum enzymes were predicted using a structure-
based virtual screening. Accordingly, the active site of the
enzyme was explored and docking was employed to shed
light on the interaction dynamics and putative inhibitors
of this enzyme.

Gene-Centric Approach
Identification of Potential Drug Targets
Identification of EGs is the first key-step in most drug discovery
pipelines. This step can be employed through experimental or
computational methods. Here, the GMN was constrained by
imposing the condition-specific nutrients. The EGs were defined
by a significant reduction in the bacterial growth rate based
on in silico knockout of each gene. A total of 69 and 102 EGs
were predicted in the metabolic simulations in HBF and SM
growth media, respectively (Figure 1A). The EGs identified via
SM simulation cover all 69 EGs identified in the HBF simulation
(Supplementary Dataset 3). The gene essentiality analysis for the
generic host medium resulted in the identification of 67 essential
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FIGURE 1 | Numbers of candidate drug targets predicted through in silico gene essentiality simulations in host-mimicking medium [i.e., human body fluid (HBF) and

sputum-macrophage (SM)] are given in (A). The genes predicted by the HBF simulation are the subsets of SM derived results. Numbers of human non-homologous

genes among essential genes are given in (B) while (C–E), respectively, give the results of the prioritization applied to the essential non-homologous genes using

druggability, virulence factor, and broad-spectrum analyses. NEG, non-essential gene; EG, essential gene; NHG, non-homologous gene; HG, homologous gene;

UDG, undruggable gene; DG, druggable gene; NVG, non-virulence gene; VG, virulence gene; NST, narrow-spectrum target; and BST, broad-spectrum target.

genes, which are the subsets of the HBF- and SM-derived results.
The remaining SM-specific EGs were defined as “conditionally
essential” due to their indispensability for the growth in only
SM medium.

When compared to the essential genes identified by Bachman
et al. (2015), a small fraction of the predicted EGs was found
to be common. Using a mouse model of pneumonia, they
identified 69 mutants with over 10-fold fitness defect and 333
mutants with an over two-fold fitness defect for K. pneumoniae
KPPR1. They next investigated the conservation of these genes in
severalK. pneumoniae strains. A comparison withK. pneumoniae
MGH78578 genome revealed that many of them are shared by
both strains (Bachman et al., 2015). Almost half of these genes
were found in iYL1228. The EGs predicted in the current work
may have lost their essentiality during mouse infection. This
highlights the discriminative role of the growth condition on the
gene essentiality. Nonetheless, we proceeded with all EG sets for
a more comprehensive analysis, without making an additional
filtering based on the growth condition.

The EGs were evaluated in terms of homology with human
proteome to avoid off-target effects. The pathogen proteins
showing sequence similarity higher than the selected cut-off were
discarded from the list of putative drug targets. Out of 69 essential
proteins predicted by the HBF simulation, 49 were found to
be non-homologous to the host proteins. Use of the generic
host medium led to a similar result and 49 HBF-derived non-
homologous genes were found to cover the 47 non-homologous
genes identified via the generic host medium. The two genes
not predicted as essential in the generic host medium compared
to HBF-based medium are nadD and nadE. Indeed, there are
many works supporting their potentials as drug targets in diverse
bacterial pathogens and investigation of possible inhibitors
against them (Sorci et al., 2009; Huang et al., 2010; Rodionova
et al., 2014; Wang et al., 2017). This highlighted the power of
HBF with 120 metabolites compared to the generic host medium
with 192 metabolites to properly simulate the host environment.
The remaining analyses were performed for this more specific but

powerful host condition by ignoring the generic host medium.
Only one of the aforementioned genes (nadE) is available in the
prioritized gene list given in Table 1 (see the footnote to the
table). In the same manner, we performed homology analysis
for 102 EGs from the SM simulation, out of which only 62
were identified as non-homologous proteins (Figure 1B). The
SM-specific collection of 62 genes includes all non-homologous
EGs from the HBF simulation. The identified non-homologous
genes were shortlisted as potential drug targets. To characterize
the candidate targets, we first used pathway enrichment analysis.
In this regard, we investigated metabolic pathways in KEGG
and BioCyc databases associated with the putative targets. The
potential targets from the SM simulation were found to be
mainly involved in the metabolism of the bacterial membrane
structure, amino acid biosynthesis, and cofactor production
(Figure 2A). Several pathways were specifically identified only
for the SM simulation, which also corresponds to the common
functions of the conditionally essential genes required for
survival in the SM media. The conditionally essential genes were
found to be predominantly involved in nucleotide and cofactor
biosynthetic processes. Among these, panBCD gene cluster is
crucial to manage pantothenate synthesis pathway, which is
crucial for CoA production (Leonardi and Jackowski, 2007). The
pantothenate synthesis may be a promising target considering
that the CoA participates in many vital metabolic processes
such as degradation and synthesis of the fatty acids, production
of non-ribosomal proteins, and biosynthesis of phospholipids
(Leonardi and Jackowski, 2007; Spry et al., 2008). It is worth
emphasizing that essentiality of the panBCD is dependent
on the intrinsic capacity of the microorganisms to import
exogenous pantothenate (Gerdes et al., 2002). K. pneumoniae
MGH 78578 has a sodium/panthothenate symporter (encoded
by panF gene) dedicated to the transportation of pantothenate.
Since HBF medium includes pantothenate unlike SM medium
(Supplementary Dataset 2), the genes in the panBCD gene
cluster were predicted as essential in only SM simulation.
This also shows that medium selection greatly influences the
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predictive accuracy. On the other hand, any HBF-specific
cellular processes could not be identified since HBF-based non-
homologous EGs are the subset of SM-based EGs (Figure 2B).

Prioritization of Potential Drug Targets
The non-homologous essential pathogen proteins were further
characterized to select a set of targets by assessing suitability of
these candidates. In this regard, they were filtered through the
target prioritization pipeline. Subcellular localization was used as
the first criterion since the localization information is crucial to
provide an insight into structural and functional characteristics
of the proteins. Most of the putative targets were found to be
cytoplasmic while a small amount localizes at inner membrane,
as illustrated in Figure 3. This result indicates that our list does
not include any vaccine targets. Thus, small molecule drug design
is required to allow entry into the bacterial cells and inhibit
these targets.

The ability of proteins to bind to drug-like molecules is
as much important as protein localization in the drug design
process. This is because not all protein structures are capable of
binding to drug-like compounds (Shende et al., 2017). Therefore,
we also assessed the putative drug targets in terms of druggability.
Thirty-eight targets from the SM simulation were found to be
druggable (Figure 1C). They play key roles in the synthesis of
cell wall (i.e., outer membrane and peptidoglycan layer), cofactor
formation, nucleotide metabolism and amino acid biosynthesis.
Among them, 11 candidates showed affinity with at least five
drug molecules (Table 1). We next investigated the significantly
matched approved drugs interacting with the 38 putative targets.
Gentamicin, pyrophosphoric acid, ethionamide, isoniazid, and
fosfomycin approved by the Food and Drug Administration
(FDA) were found to interact with three putative targets
[NAD+ synthetase (NadE), enoyl-(acyl carrier protein) reductase
(FabI), andUDP-N-acetylglucosamine 1-carboxyvinyltransferase
(MurA)]. Druggability analysis identified 29 targets from HBF
simulations as druggable (Figure 1C), all of which were members
of 38 target-set identified via SM simulations. A complete list of
drugs is presented in Supplementary Dataset 4.

The resistance that emerges through the transfer of ARGs
and/or mutations requires an urgent introduction of efficient
therapeutic strategies. This is because the acquisition of resistance
genes promotes predomination of resistant populations via the
elimination of wild-type microorganisms (Munita and Arias,
2016). Here, the antibiotic resistance screening was employed
as another important prioritization step to improve the success
in the eradication of the Klebsiella infections. In this regard, the
presence of any resistance-associated proteins within the putative
drug target list was investigated. However, no ARGs could be
determined. This result prompted us to focus on VF screening.
There is an obvious relationship between VFs (e.g., capsular
polysaccharide (CPS), lipopolysaccharide (LPS), fimbriae, outer
membrane proteins, and siderophores) and ARGs considering
that they share some common characteristics (Thornley and
Horne, 1962; Beceiro et al., 2013; Paczosa and Mecsas, 2016).
Thus, targeting the VFs may significantly damage the pathogen
by reducing both its pathogenicity and drug resistance. As

TABLE 1 | Prioritization of putative drug targets (elucidated via gene essentiality

and homology analyses) in terms of druggability, virulence, and broad-spectrum

distribution.

Putative drug target list Prioritization of putative drug targets

Locus ID Description Virulence

analysis

Druggability

analysis

Broad

spectrum

analysis

KPN_02230 kdsA + 12 107

KPN_00194 lpxA + 2 107

KPN_00100 lpxC + 6 101

KPN_00236 gmhA + 1 107

KPN_03963 hldD + 2 58

KPN_01284 fabI – 27 117

KPN_00478 purE – 1 154

KPN_02000 ribC – 1 95

KPN_00020 ribF – 3 94

KPN_00367 ribH – 14 128

KPN_03599 murA – 7 200

KPN_04350 murB – 2 56

KPN_00095 murC – 3 100

KPN_00092 murD – 8 59

KPN_00089 murE – 3 110

KPN_00090 murF – 1 69

KPN_00094 murG – 1 78

KPN_04256 murI – 3 61

KPN_04135 glmU – 5 149

KPN_04352 coaA – 3 59

KPN_03974 coaD – 5 148

KPN_00141 panB – 2 138

KPN_00140 panC – 5 130

KPN_00139 panD – 2 94

KPN_03979 dfp – 2 151

KPN_02812 dapA – 1 139

KPN_00039 dapB – 2 96

KPN_00179 dapD – 5 67

KPN_01096 tmk – 1 97

KPN_01074 pyrC – 4 59

KPN_03983 pyrE – 2 53

KPN_01277 pyrF – 3 92

KPN_01228 nadE* – 6 78

KPN_03799 asd – 3 63

KPN_02202 galU + – 208

KPN_00192 lpxD + – 74

KPN_02493 ugd + 4 30

Targets predicted by at least two prioritization approaches are given here. The genes that

satisfy all three criteria are given at the top of the table. Target candidates from human

body fluid simulation (HBF) are the subset of sputum-macrophage (SM) simulation-derived

results and they are given in red letters. The number of the bacterial pathogen genomes

containing the potential targets and the number of interacting drugs are listed in the table.
*All HBF medium-predicted genes in the table were also predicted to be drug targets

via the generic host medium simulation, apart from nadE. The nadE gene was classified

as essential by HBF and SM simulations, but it was not predicted by the generic host

medium simulation.
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FIGURE 2 | Significantly enriched pathways (FDR < 10−4) regarding the targets from (A) sputum-macrophage (SM) and (B) human body fluid (HBF) simulations. The

pathways that appear specifically in SM medium (A) point to the common functions of SM-specific conditionally essential genes. Only a subset of the pathways in (A)

covers all pathways identified for the HBF medium (B). For each pathway, the bar shows number of putative targets involved in that pathway. The pathways from

KEGG pathway database is given by gray bars while the bars representing BioCyc pathways are highlighted in claret red.

mentioned in the section Materials and Methods, we used VFDB
to reveal VFs within the putative drug target list. Regardless of
simulation conditions (i.e., HBF or SM), eight virulence genes
including lpxA, lpxC, lpxD, ugd, hldD (formerly rfaD), galU,
kdsA, and gmhA (formerly lpcA) were predicted (Figure 1D).
They are primarily involved in the formation of the bacterial
membrane (Figure 4).

LPS (also known as endotoxin) is one of the major
components of the outer membrane in gram-negative bacteria,
and it contributes to protection against antimicrobial molecules
in addition to membrane integrity (Deacon et al., 2000).
It consists of three principal layers including O-antigen,
core oligosaccharide, and lipid A (Maldonado et al., 2016).
The core oligosaccharide region of LPS contains inner core
[association of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo)
and heptose residues] and outer core [association of hexoses

(galactose and glucose) and hexosamines]. Several structural
features of the LPS differ within bacterial species. For
instance, the Kdo of K. pneumoniae LPS is also localized
in the outer core unlike E. coli (Regué et al., 2005).
Phosphoheptose isomerase (encoded by gmhA) and ADP-
L-glycero-D-manno-heptose-6-epimerase (encoded by hldD)
catalyze the biosynthesis of the heptose precursors. On the other
hand, 2-dehydro-3-deoxyphosphooctonate aldolase (encoded by
kdsA) is responsible for the synthesis of the Kdo, which links
lipid A and core oligosaccharides (Strohmaier et al., 1995).
Lipid A is the innermost leaflet of the outer membrane. It
supports the integrity of the outer membrane along with
the core oligosaccharide, and it is essential for bacterial
survival (Barb and Zhou, 2008; Llobet et al., 2015). UDP-N-
acetylglucosamine acyltransferase (encoded by lpxA), UDP-3-
O-acyl-N-acetylglucosamine deacetylase (encoded by lpxC), and
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FIGURE 3 | Subcellular localizations of the putative drug targets from gene essentiality and homology analyses. The candidate genes identified by sputum-

macrophage (SM) simulation are a subset of genes predicted through the human body fluid (HBF) simulation. (A) The pie-charts demonstrate the distribution of the

drug targets in K. pneumoniae from human body fluid (HBF) and sputum-macrophage (SM) simulations on the basis of their subcellular localizations. (B) A Gram-

negative bacterial cell wall consists of an outer membrane and peptidoglycan layer. The peptidoglycan layer is located within periplasmic space between outer and

inner membranes. The outer membrane is composed of lipopolysaccharides, porins and receptor proteins.

UDP-3-O-(3-hydroxymyristoyl) glucosamine N-acyltransferase
(encoded by lpxD) are involved in the lipid A biosynthesis
(Clements et al., 2002). Other VFs reported as the putative drug
targets in this study play an important role in both LPS and
CPS biosynthesis. UDP-glucose pyrophosphorylase (encoded by
galU) is responsible for the regulation of the intracellular UDP-
galactose and UDP-glucose concentrations (Lai et al., 2001; Shu
et al., 2009). Conversion of UDP-glucose into UDP-glucuronic
acid is managed by UDP-glucose 6-dehydrogenase (encoded by
ugd at the 3′ end of K. pneumoniae cps gene clusters) and this
compound is used as a substrate for synthesis of different surface
structures (Shu et al., 2009; Mainprize et al., 2013; Figure 4).

To delay the resistance development, another prominent
approach is inhibition of the conserved targets. Discovery of
more conserved, broadly distributed targets may not only enable
to slow resistance development but also facilitate to reveal
the targets for a bacterial co-infection or multiple infections.
Therefore, we explored the putative targets, homologs of
which are widely distributed among pathogens. The analysis
resulted in 53 potential broad-spectrum targets from the SM
simulation, which are involved in at least 40 strains of the
serious pathogens (e.g., Bacillus cereus, Clostridium botulinum,
Acinetobacter baumannii, Haemophilus influenzae, Helicobacter
pylori,Mycobacterium tuberculosis, Salmonella typhimurium, and
Staphylococcus aureus, among others; Figure 1E). Twenty-two
of the targets are distributed across at least 100 strains, and
these proteins are mainly responsible for the membrane synthesis
or cofactor production. Broad-spectrum analysis of 49 non-
homologous essential targets from the HBF simulation revealed

42 possible broad-spectrum antibacterial targets, which are also
included in the set of the broad-spectrum targets from the SM
analysis (Figure 1E). Eighteen of them are present in at least 100
strains. Overall, the broad conservation of the targets predicted
in the study can have a great advantage in avoiding emergence of
drug resistance in different pathogenic strains.

Analysis of the Prioritized Drug Targets
In-depth examination of the prioritized list of the drug targets
reveals a total of 57 non-homologous genes that satisfy at
least one prioritization criteria. In a recent multi-omics study
by Ramos and colleagues, 29 potential drug targets for MDR
K. pneumoniae Kp13 were proposed (Ramos et al., 2018).
Comparison of the computational predictions revealed 18
common targets with that study.

The genes identified by at least two prioritization approaches
are listed inTable 1, which amount to 37 genes. Only five proteins
(encoded by lpxA, lpxC, hldD, gmhA, and kdsA) in this prioritized
target list were identified by the three prioritization approaches.
That is, those proteins were predicted to be druggable, broad-
spectrum, and virulence factors (Table 1). They are responsible
for the biosynthesis of the bacterial cell wall components as
described before (Figure 4). Of these five targets, LpxA and
LpxC were also suggested as putative drug targets by Ramos
et al. (2016, 2018) confirming the involvement of these enzymes
in polymyxin B resistance. The LpxA exhibits no significant
structural or sequence homology with mammalian enzymes
(Barb and Zhou, 2008; Joo, 2015). To date, crystal structures
of this protein have been revealed for various bacteria such
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FIGURE 4 | Overview of all bacterial membrane-associated drug targets suggested in this study. The membrane structure was illustrated based on the well-known

membrane compositions of the Escherichia coli. The putative targets responsible for biosynthesis of the membrane components of K. pneumoniae MGH 78578 are

highlighted.

FIGURE 5 | Identification of the most convenient KdsA homolog to investigate the inhibitors against K. pneumoniae MGH 78578 KdsA. (A) Sequence alignment

between the KDO8P synthase enzymes of E. coli and K. pneumoniae. (B) Crystal structure of the E. coli KDO8P synthase (PDB code: 1D9E) is represented.

as E. coli (Raetz and Roderick, 1995; Williams and Raetz,
2007), and Leptospira interrogans (Robins et al., 2009). More
recently, the crystal structure of Moraxella catarrhalis LpxA
was determined and potential inhibitors were suggested by
presuming that they may also interact with the LpxAs from other
gram-negative bacteria (Pratap et al., 2017). When compared
to the LpxA, there is a further effort for the development of

the LpxC inhibitors (Lee et al., 2011; Kalinin and Holl, 2017).
Considering conservation and essentiality of the LpxC protein
among the gram-negative bacteria, it is a quite promising drug
target (Barb and Zhou, 2008). In a recent study, 3D structure of
MDR K. pneumoniae HS11286 LpxC was modeled using X-ray
crystallographic structure of E. coli LpxC as the template. Based
on the molecular docking and molecular dynamics simulations,
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FIGURE 6 | Active site region of the receptor (PDB code: 1D9E). (A) surface representation, (B) stick representation, and (C) ribbon representation.

a uridine-based receptor antagonist was suggested to be a
potential inhibitor destabilizing the substrate-binding site of the
K. pneumoniaeHS11286 LpxC (Ahmad et al., 2018a).

In addition to the components in the lipid A synthesis
pathway, other enzymes responsible for LPS synthesis are also
attractive target candidates (Figure 4). HldD and GmhA are
two other proteins predicted as drug targets by the three
prioritization approaches, which are crucial for resistance within
harsh host environment and against medical interventions.
They are especially promising in the design of broad-spectrum
antibiotic adjuvants in order to enhance the sensitivity of
the pathogens against available antimicrobial agents (Taylor
et al., 2008). The HldD, with no mammalian counterpart,
is involved in the generation of an obligatory component
of the LPS core domain in the most gram-negative bacteria
(Deacon et al., 2000; Kuo et al., 2016). A reduced ability
of hldD mutants (i.e., core-defective mutants) to survive in
the host (Deacon et al., 2000) and the contribution of the
HldD to the bacterial virulence (Kuo et al., 2016) have been
reported. Thus, development of potent epimerase inhibitors
may facilitate powerful antibiotic adjuvant therapies. The GmhA
is another conserved enzyme. The cell wall-damaging agents
are well-tolerated thanks to this enzyme by many gram-
negative pathogens [e.g., Fusobacterium nucleatum (Kumar
et al., 2016), Neisseria gonorrhoeae (Wierzbicki et al., 2017),
L. interrogans (Umamaheswari et al., 2010), and E. coli
(Taylor et al., 2008)]. Hence, design of the GmhA inhibitors
holds promise to cope with the ongoing resistance problem
by increasing the antibiotic susceptibility of the pathogens.
Homology models and crystallographic structures of this enzyme
were investigated for various pathogens to further shed light
on structure/function relationship of the enzyme and facilitate
the design of alternative therapeutic approaches (Taylor et al.,
2008; Umamaheswari et al., 2010). The homology model of L.
interrogans GmhA provided prediction of 14 novel competitive
inhibitors (Umamaheswari et al., 2010).

Based on the prioritization criteria discussed above, the
KdsA was defined as the highest-ranked drug target among the
target candidates satisfying all criteria defined for the virulence,

druggability, and broad-spectrum analyses (Table 1). It is the
top candidate since, among the five mentioned proteins, it
has the highest number of interacting drugs. In addition, it
shares the highest broad-spectrum score with two others. This
enzyme may be a promising target, considering that inhibition
of the Kdo biosynthesis results in suppression of replication
and so cell growth arrest (Xu et al., 2003; Ahmad et al., 2019).
The KdsA from different pathogens has been so far proposed
as the putative drug targets through in silico studies such as
metabolic pathway analysis (Perumal et al., 2007; Rath et al.,
2016), multi-omics approach (Ramos et al., 2018), subtractive
genomics (Amineni et al., 2010), and subtractive proteomics
(Ahmad et al., 2018b) as well as through in vitro studies (Perumal
et al., 2010). Moreover, several Kdo inhibitors with a limited in
vivo activity, despite their promising in vitro applications, have
been developed (Du et al., 1999; Birck et al., 2000; Grison et al.,
2005; Le Calvez et al., 2009; Harrison et al., 2012; Smyth and
Marchant, 2013). These inhibitors were reported to be useful
for inhibition of the KdsA activity in different bacteria. More
recently, KDO8P oxime was evaluated in terms of the inhibitory
capacity, which supported a greater understanding of the binding
kinetics. This may lead to more efficient KdsA inhibitors (Gama
et al., 2018). Identification of the KdsA protein at the top of
the ranked putative target list in the current study and studies
on KdsA inhibitors encouraged us to investigate K. pneumoniae
KdsA inhibitors. We investigated potent inhibitors for this
protein through the structure-based virtual screening protocol
(see the next section).

It is important to note that we discussed only targets meeting
all specified criteria (apart from antibiotic resistance screening) in
the target prioritization process. However, the targets identified
by most of the prioritization approaches may be also attractive.
For instance, Ugd is a promising drug target though it was
not prioritized in the broad-spectrum analysis. It is crucial
for the biosynthesis of both CPS and LPS (Figure 4), which
support gram-positive and gram-negative bacterial evasion of
host innate immune response (Mainprize et al., 2013). The
correlation between the enzymatic activity of the Ugd and
antibiotic resistance indicates convenience of this enzyme as
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FIGURE 7 | The receptor (PDB code: 1D9E) interacting with (A) ZINC95543764 (−11.6 Kcal/mol) and (B) ZINC20057784 (−7.0 Kcal/mol).

drug target in several pathogens [e.g., K. pneumoniae CG43
(Cheng et al., 2010) and Pseudomonas aeruginosa (Hung et al.,
2007)]. Furthermore, Chen and colleagues demonstrated the
inhibitory role of the UDP-glucuronic acid on this enzyme.
They identified conformational changes in the enzyme via both
competitive and allosteric inhibition along with the increased
UDP-glucuronic acid concentration in K. pneumoniae NTUH-
K2044. Thus, it was highlighted that regulation mechanism
of the UDP-glucuronic acid would be guiding in the design
of inhibitors (Chen et al., 2011). Another example is GalU,
and it was found that galU-deficient mutant of K. pneumoniae
CG43 had a defect in both the utilization of galactose
and production of capsular polysaccharide (Figure 4). Hence,
galU mutation impairs the virulence in vivo (Chang et al.,
1996).

Identification of Potential Drugs for KdsA
Computer-aided drug design is a useful approach to reduce
time and cost. Therefore, we investigated putative inhibitors
against the high-ranked potential target (KdsA) using in silico
techniques. To our knowledge, this is the first attempt for
the K. pneumoniae KdsA enzyme. A comparative structure
prediction method was firstly used since the 3D structure of K.
pneumoniae KdsA enzyme was not available. Upon similarity
search via BLAST, the 3D structure of KDO8P synthase from
E. coli was selected (PDB code: 1D9E). The E. coli enzyme
showed 95.42% sequence identity, 100% query coverage, and had
a high resolution with 2.4 Å. Figure 5A shows the sequence
similarity between the two proteins. The PDB structure was
found as a homotetramer (Figure 5B). Since it is homotetramer
composition, the chain A was kept for the docking and the
rest of the other chains were removed. The literature helped to
assign following active site residues (Radaev et al., 2000): LYS55,
LYS60, ARG63, SER64, ALA116, LYS138, ARG168, HIS202,

and GLU239. Figure 6 shows the active site regions of the
protein 1D9E.

Each compound from the ZINC database was docked using
the AutoDock Vina tool to identify potential inhibitors of the
enzyme. The corresponding energy score of each compound
was estimated and retrieved for the purpose of ranking the
compounds. A histogram was generated showing the frequency
of compounds with respect to the scoring range. The histogram
had a normal-like distribution, and showed that the maximum
number of compounds were found in the scoring bin of −7.0
to −6.8 Kcal/mol. Since it is interesting to see how these
compounds interact with the receptor, the compounds in this
range were extracted using shell script. Top 5% compounds
were selected from the histogram and prioritized as potential
inhibitors of KDO8P synthase (Supplementary Dataset 5). To
make a comparison, the 2D interactions of the top most energy
scored (i.e., −11.6 Kcal/mol) and the most frequent scored
(i.e., −7.0 Kcal/mol) compounds are presented in Figures 7A,B,
respectively. We used LigPlot to generate the 2D interaction
diagrams (Wallace et al., 1995). Table 2 has 2D structures of
the compounds ZINC95543764 and ZINC20057784. Figure 7A
shows that the compound ZINC95543764 mediates significant
interactions with the active site and the residues in the vicinity.
The main hydrogen bonding interactions include ARG1168,
ASN1062, HIS1202, ASP1199, and ASN1026. This compound
is a derivative of coumarin, and it is reported to have too low
acute toxicity in mice, with high antimicrobial and antioxidant
potential (Hamdi et al., 2008). Bactericidal and fungicidal efficacy
of the naturally occurring or synthetic coumarin derivatives
are commonly investigated in literature (Hamdi et al., 2008;
Siddiqui et al., 2011; Dastan et al., 2016; Singh et al., 2017;
Tan et al., 2017). To date, the significant inhibitory activity
of several biologically active coumarin-based compounds has
been demonstrated on K. pneumoniae (Siddiqui et al., 2011;
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TABLE 2 | 2D structures of the compounds ZINC95543764 and ZINC20057784.

ZINC ID Name Structure Vina dock score

ZINC20057784 (5R)-5-(3-Ethoxy-4-hydroxyphenyl)-4-[hydroxy-(4-methoxy-2-

methylphenyl)methylidene]-1-(3-morpholin-4-

ylpropyl)pyrrolidine-2,3-dione

−7.0 Kcal/mol

ZINC95543764 3-[[4-[Bis(4-hydroxy-2-oxochromen-3-yl)methyl]phenyl]-(4-

hydroxy-2-oxochromen-3-yl)methyl]-4-hydroxychromen-2-

one

−11.6 Kcal/mol

Tan et al., 2017). Based on the antibacterial potential of the
coumarin derivatives, we suggest ZINC95543764, the top most
energy scored compound in this study, as a potential Klebsiella
inhibitor. Figure 7B shows the interactions mediated between
the compound ZINC20057784 and the active site residues of the
receptor. The key hydrogen bonding interactions in this case
are ASP1199, HIS1202, LYS1060, ASN1026, ASN1062, ARG1168,
and PHE1117. The list of identified compounds can be tested in
follow-up experimental studies.

Metabolite-Centric Approach
The putative drug targets identified through the gene-centric
approach were extended via the metabolic-centric approach,
which is based on FBA-based prediction of EMs. The metabolic-
centric approach follows similar steps to the gene-centric
approach. First, EMs are predicted using FBA based metabolite-
blocking simulations. Then, among the identified EMs, those
also available in human cells and those associated with human
homologous enzymes are filtered out. The structural analogs of
remaining EMs are proposed as potential drug candidates. The
enzymes associated with the outgoing reactions of these EMs are
potential drug targets, whose simultaneous blocking will cause
cell death. Themetabolite-centric approach enables identification
of sets of novel drug targets that could not be predicted by
the gene-centric approach. The steps of the metabolic-centric
approach are detailed below.

Firstly, EMs were determined by constraining the flux
through the associated outgoing reaction(s) of each metabolite
in the model to zero. In this manner, the effect of the absence of
a metabolite on the growth rate of the organism was simulated.
Forty-one EMs were predicted via the SM simulation. Of these,
23 metabolites were found to be essential for the bacterial
growth in the HBF. The generic host medium simulation led
to identification of the same EM list as HBF simulation. These

metabolites were filtered to eliminate the compounds also
involved in the human metabolism. Removal of the common
metabolites is crucial to decrease the risk of drug-related
side effects. In this regard, the metabolites found in both
K. pneumoniae metabolism and human metabolism were
screened using the list of 807 common metabolites given
in Supplementary Dataset 6. Seventeen out of forty-one
EMs from the SM simulation and 5 out of 23 EMs from the
HBF (or the generic host medium) simulation were listed as
pathogen-specific compounds while the remaining EMs were
excluded. To explore the putative drug targets, the enzymes
catalyzing the reactions associated with the selected metabolites
were analyzed in terms of homology to human enzymes. The
EMs associated with homologous enzymes were excluded.
A total of six enzymes (encoded by ribC, ribH, mrcA, mrcB,
pbpC, and fabI) are associated with the remaining EMs,
involved in the corresponding outgoing reactions (Table 3).
Therefore, they were suggested as putative drug targets. The
associated six metabolites are 4r5au [4-(1-D-Ribitylamino)-5-
aminouracil], dmlz [6,7-Dimethyl-8-(1-D-ribityl)lumazine],
uaagmda [undecaprenyl-diphospho-N-acetylmuramoyl-(N-
acetylglucosamine)-L-ala-D-glu-meso-2,6-diaminopimeloyl-D-
ala-D-ala], t3c5ddeceACP (trans-3-cis-5-dodecenoyl-ACP),
t3c7mrseACP (trans-3-cis-7-myristoleoyl-ACP), and
t3c9palmeACP (trans-3-cis-9-palmitoleoyl-ACP). They were
proposed to be drug analogs. This is because drugs share
structural similarities with metabolites. Use of such drugs is
equivalent to simultaneous suppression of all outgoing reactions
around each EM. This ensures that inhibitors (structural
analogs of the metabolites) primarily target synthetic lethal
interactions, enabling more efficient treatments. The predicted
enzymes [riboflavin synthase subunit α (RibC), riboflavin
synthase subunit β (RibH), penicillin-binding protein 1A-C
(PBP 1A, PBP 1B, and PBP 1C encoded by mrcA, mrcB, and
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TABLE 3 | List of the filtered essential metabolites and the associated putative drug targets as well as the outgoing reactions.

Metabolite Putative drug target (Enzyme) Reaction

Name Metabolism Name Essential Druggable Broad-

spectrum

Localization Name Essential

4r5au Riboflavin

Synthesis

ribC + + + C RBFSa +

dmlz Riboflavin

Synthesis

ribH + + + C RBFSb +

uaagmda Peptidoglycan

Synthesis

mrcA

mrcB

pbpC

–

–

–

+

+

+

+

+

+

IM

IM

IM

MPTG/MPTG2 +/−

t3c5ddeceACP

t3c7mrseACP

t3c9palmeACP

Fatty Acid

Synthesis

fabI* + + + IM EAR161x/y

EAR141x/y

EAR121x/y

–

–

–

C, cytoplasm; IM, inner membrane.

*Predicted by only sputum-macrophage (SM) simulation.

pbpC genes, respectively), and enoyl-(acyl carrier protein)
reductase (FabI)] are involved in several outgoing reactions,
which are associated with the riboflavin, peptidoglycan, or
fatty acid metabolism. Of these enzymes, RibC, RibH, and FabI
were found to be independently essential, and the PBP 1A-C
enzymes were identified as synthetic lethal. Characteristics
of the final EMs and the associated genes are summarized
in Table 3.

Bacterial fatty acid synthesis is an essential process supporting
formation of the cell membrane. Even if each step in
this pathway is vital for the bacteria, FabI has received
a particular interest owing to its rate-controlling role in
the fatty acid synthesis. It catalyzes the last step in the
elongation cycle of fatty acid synthesis including NAD(P)H
dependent reduction of the trans-2-enoyl-ACP to acyl-ACP
(Yao and Rock, 2016). There is an intense effort to develop
inhibitors for this regulatory protein (Yao and Rock, 2016;
Mistry et al., 2017). However, various resistance mutations
in this enzyme render the available inhibitors ineffective (Yao
and Rock, 2016). To address this challenge, novel inhibitors
must be introduced. To this aim, the EMs identified in the
current study may help researchers in the structure-based
drug design.

RibC and RibH (encoded by ribC and ribH) were predicted
using both gene- and metabolic-centric approaches. They are
essential in riboflavin (vitamin B2) synthesis. Riboflavin is an
essential precursor of FMN and FAD. Its synthesis is essential
in the gram-negative bacteria lacking a transport system for
riboflavin uptake while the ribC is conditionally essential in the
bacteria with a riboflavin transporter. Disruption of the ribC was
reported as lethal in the mutant H. influenzae cells cultured in
a riboflavin-deficient medium (Saeed-kothe et al., 2004). Other
targets including PBP 1A, PBP 1B, and PBP 1C participate
in the peptidoglycan biosynthesis (Figure 4). Peptidoglycan is
a cross-linked polymer in the periplasm that plays a critical
role in the protection of the bacteria from rupturing by the
high intracellular pressure (Vollmer and Höltje, 2000; Vollmer
and Bertsche, 2008). The backbone of this mesh-like polymer

consists of disaccharide peptide moiety of lipid II cross-
linked by peptide bridges. Penicillin-binding proteins (PBPs)
carrying transpeptidase and/or glycosyltransferase activities
are involved in the final stages of peptidoglycan synthesis.
Polymerization of peptidyl disaccharide subunits is managed
through the glycosyltransferase activity, and cross-linking by
peptide bridges is catalyzed through the transpeptidase activity
(Derouaux et al., 2013; Mesleh et al., 2016). Inhibition of
the peptidoglycan synthesis was reported to result in bacterial
cell lysis and subsequently death of the cell (Derouaux
et al., 2013). Here, the metabolite-centric approach supported
this phenomenon by predicting the related enzymes as the
putative targets. Furthermore, these enzymes were found
as synthetic lethal. Prediction of such targets without the
requirement of time-consuming multiple gene deletions is
a prominent superiority of the metabolite-centric approach.
Investigation of a drug mimicking the structure of uaagmda
is a dramatically reasonable approach to narrow down the
available chemical library compounds. Therefore, uaagmda
analogs may be screened for the simultaneous suppression of
PBP 1A-C. Such drugs may be more effective to diminish
rapid resistance development when compared to single-
target inhibitors.

CONCLUSION

Genome-scale metabolic networks of different K. pneumoniae
strains have been developed so far (Liao et al., 2011; Henry et al.,
2017; Ramos et al., 2018; Norsigian et al., 2019), but to our
knowledge they were not used for drug target discovery via the
constraint-based analysis coupled to bioinformatic prioritization
steps. This prompted us to investigate candidate drug targets
for K. pneumoniae comprehensively via a network-based
metabolism-centered approach.We identified theK. pneumoniae
enzymes that are crucially involved in the bacterial survival.
In all simulations, different host-mimicking environments and
an improved biomass formation reaction were included in the
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GMN. Upon gene-centric approach, KdsA enzyme was found
to be the high-ranked putative target highly satisfying most of
the target prioritization criteria. This result encouraged us to
investigate the potential KdsA inhibitors. We identified a list
of compounds including ZINC95543764 and ZINC20057784,
which can efficiently bind to the active site of the enzyme.
It is important to note that a scarce number of KdsA
inhibitors have so far been reported (Du et al., 1999; Birck
et al., 2000; Grison et al., 2005; Le Calvez et al., 2009;
Harrison et al., 2012; Smyth and Marchant, 2013). We provided
an insight on the molecular nature of binding interactions.
This may open new avenues to explore the novel inhibitors.
We also presented additional promising putative targets and
corresponding drugs, laying the foundation for future studies
in the scope of this work (Supplementary Datasets 3, 4).
In addition to the gene-centric approach, we employed
the metabolite-centric approach. This yielded the synthetic
lethal targets that could not be detected through the gene-
centric approach. Collectively, the comprehensive effort on
the investigation of the K. pneumoniae metabolism has
enabled better understanding of the pathogenic phenotype and
elucidation of the putative targets. Future studies can provide
more evidence for the targets and inhibitors suggested in
this study.
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