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Abstract

Antiretroviral drugs that target various stages of the Human Immunodeficiency Virus (HIV)

life cycle have been effective in curbing the AIDS epidemic. However, drug resistance, off-

target effects of antiretroviral therapy (ART), and varying efficacy in prevention underscore

the need to develop novel and alternative therapeutics. In this study, we investigated

whether targeting the signaling molecule Sphingosine-1-phosphate (S1P) would inhibit HIV-

1 infection and generation of the latent reservoir in primary CD4 T cells. We show that

FTY720 (Fingolimod), an FDA-approved functional antagonist of S1P receptors, blocks cell-

free and cell-to-cell transmission of HIV and consequently reduces detectable latent virus.

Mechanistically, FTY720 impacts the HIV-1 life cycle at two levels. Firstly, FTY720 reduces

the surface density of CD4, thereby inhibiting viral binding and fusion. Secondly, FTY720

decreases the phosphorylation of the innate HIV restriction factor SAMHD1 which is associ-

ated with reduced levels of total and integrated HIV, while reducing the expression of Cyclin

D3. In conclusion, targeting the S1P pathway with FTY720 could be a novel strategy to

inhibit HIV replication and reduce the seeding of the latent reservoir.

Author summary

Human Immunodeficiency Virus (HIV) is currently managed by antiretroviral drugs,

which may have side effects and are of limited use in prevention of transmission of the

virus between individuals. We investigated an alternative tactic to combat HIV infection

by harnessing a component of the immune system involved in the progression of infec-

tion, Sphingosine-1-phosphate (S1P). We tested a drug known to modulate the action of

S1P receptors, FTY720 (Fingolimod) in human immune cells to investigate whether tar-

geting S1P could inhibit HIV infection. We observed that FTY720 was able to block infec-

tion in human CD4 T cells by hindering multiple steps in the life cycle of HIV. FTY720 is

already clinically approved and did not affect the viability of the human cells in our model

system; therefore, we believe that this compound may be a promising novel therapy for

HIV treatment and prevention.
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Introduction

Human Immunodeficiency Virus (HIV-1) remains a global health burden, with nearly 40 mil-

lion people currently living with HIV. Treatment of infection is lifelong, due to the ability of

the virus to establish latency by integrating its genome into that of host cells, which become

quiescent and long-lived, resulting in the potential of viral reactivation at a future time [1–8].

By establishing latency, HIV evades eradication by host defense mechanisms and drug treat-

ment. Following various stimuli including immune activation and “kick and kill” strategies,

quiescent cells harboring virus become activated and the virus becomes transcriptionally

active, resulting in production of viral proteins [9, 10]. Currently available antiretroviral thera-

pies (ART) are able to control viral load but do not specifically target latent infection and have

off-target effects in many individuals [11]. For this reason, discovery of novel methods to target

establishment of HIV infection and latency is crucial.

Currently implemented ART consists mainly of classes of drugs that target various stages of

the viral life cycle, including inhibitors of entry, protease, integrase and reverse transcriptase

[11]. Another potential target to treat HIV infection is the use of immunomodulatory com-

pounds directed toward a component of the immune system. This tactic could potentially have

efficacy in a wide range of individuals and avoid some of the off-target effects observed with

ART. Thus far, immunomodulatory compounds that target innate immune factors have not

been extensively characterized for treatment of HIV. We were interested in examining the

effect of modulation of the cellular signaling molecule Sphingosine-1-phosphate (S1P) on the

establishment of productive as well as latent HIV infection. S1P is a lysophospholipid intra-

and intercellular signaling molecule with a myriad of roles in the human body, including cell

proliferation and migration, cytoskeleton rearrangement, membrane integrity, adhesion, sur-

vival/ apoptosis, and inflammation in nearly all cell types. These processes are modulated

through the five receptors to S1P, known as S1PR1-5 (reviewed in [12]). Although it is known

that S1P receptor 1 (S1PR1) and S1P receptor 4 (S1PR4) are expressed on several subsets of

CD4 T cells and can be modulated by various agonists and specific antagonists [13–15], the

full spectrum of functions of S1P signaling in CD4 T cells, as well as the impact of HIV-1 infec-

tion on expression and activity of the S1P receptors, remains to be elucidated. The involvement

of S1P in inflammation and various diseases is established [12, 16, 17] and S1P signaling mod-

ulators have been studied extensively as potential cancer treatments [18–20], yet there is a pau-

city of knowledge of the role of S1P in HIV-1 pathogenesis.

FTY720, also known as Fingolimod or Gilenya, is an immunomodulatory compound that

acts as a Sphingosine-1-phosphate receptor (S1PR) non-selective agonist and a selective antag-

onist of S1PR1 [21]. FTY720 was initially synthesized using the naturally occurring fungal

compound myriocin (ISP-1) as a lead [22]. The compound is clinically approved for treatment

of Multiple Sclerosis [23, 24] and is well-tolerated when taken orally on a daily basis [25, 26].

FTY720 has activity at four of the five S1P receptors (S1PR1, 3, 4 and 5) and has been shown to

cause downregulation of S1PR1 in lymphocytes and act as a modulator of S1P signaling, effect-

ing changes in chemotaxis, proliferation, and cell cycle state of lymphocytes and other cells

[15, 21, 27–29]. In the case of S1PR1, FTY720 binds to this receptor when phosphorylated and

causes its internalization and loss of signaling [27].

It has been reported that S1PR1 is highly co-expressed with the HIV-1 coreceptor CCR5 on

CD4 T cells and that targeting of S1PR1 reactivates HIV-1 from latency in an NF-κB-depen-

dent manner [14]. Recently, FTY720 has been shown to promote the retention of T cells in the

lymph node in SIV-infected non-human primates with a subsequent reduction in the levels of

SIV DNA in the blood [30]. Further indicating an interplay between S1P signaling and pro-

gression of HIV infection, inhibition of glycosphingolipid metabolism was shown to impact
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susceptibility of CD4 T cells to infection [31], and an impaired response to S1P and altered

Akt signaling of lymph node CD4 T cells in chronically infected HIV-1 patients has also been

observed [32]. Due to the established clinical efficacy and safety of FTY720, we hypothesized

that this immunomodulatory compound could potentially inhibit HIV infection. In this work,

we report that modulation of the S1P receptors with FTY720 reduces the susceptibility of CD4

T cells to both productive and latent HIV infection in primary CD4 T cells and suggest the use

of FTY720 as a potential novel adjuvant to treat HIV infection in prevention as well as curative

strategies.

Results

Functional antagonism of S1P signaling inhibits cell-free infection of HIV-

1

We first investigated the involvement of the S1P signaling pathway on establishment of pro-

ductive HIV infection using a modification of our primary cell model of HIV (Fig 1A), [33–

35]. We isolated naïve CD4 T cells from PBMCs of HIV-negative human donors by negative

selection and activated with αCD3/28 as previously described [33]. Following activation, cells

were expanded in culture with IL-2. To address the effects of FTY720 on cell-free HIV infec-

tion (Fig 1A, left schematic), CD4 T cells were treated with FTY720 at day 5 of culture at a

range of concentrations (30-100nM) for 48 hours. At day 7, cells were infected with either an

X4- or R5-tropic HIV-1 (NL4-3 or NL-AD8, respectively). We assessed levels of infection by

measuring p24-gag by flow cytometry 72 hours later (day 10). A representative flow cytometry

analysis (of 7 donors, NL4-3 infected) is presented in Fig 1B. We found that pre-treatment

with FTY720 reduced HIV-1 infection in a dose-dependent manner with an average reduction

of the frequency of infected cells for NL4-3 of 28.70+/-16.69%, 39.53+/-9.42%, 45.34+/-2.85%

and 55.23+/-7.57% for 30nM, 44nM, 66nM and 100nM FTY720, respectively (Fig 1C), and an

average reduction of the frequency of infected cells for NL-AD8 of 31.75+/-13.91%, 32.16

+/-9.95%, 41.60+/-12.57% and 41.12+/- 8.21% for 30nM, 44nM, 66nM and 100nM FTY720,

respectively (Fig 1D). Treatment with FTY720 did not alter viability at any of the concentra-

tions examined (S1A and S1B Fig) and the inhibitory efficacy of FTY720 was independent of

viral tropism or strain (dose response curve, Fig 1E) and S2 Fig.

Next, we investigated the effect of FTY720 on cell-to-cell transmission. To simulate cell-to-

cell transmission, HIV-infected primary CD4 T cells were cultured in 96-well round bottom

plates for three days (days 10–13, Fig 1A, right schematic). We have previously shown that this

procedure enhances cell-to-cell HIV transmission in primary CD4 T cells [34]. In line with

our cell-free infection results, we observed a marked decrease in productive infection with

66nM FTY720 following three days of culture as assessed by p24 at day 13 (Fig 1F), with an

average reduction in p24 of 54.4+/-16.02% (Fig 1G and 1H, raw values and relative infection,

respectively). This inhibition was, as for cell-free infection, not restricted to X4-tropic virus, as

we saw a similar inhibition of cell-to-cell transmission with R5-tropic virus (S3 Fig), and via-

bility was not reduced over 72 hours in culture with FTY720 (S1A and S1C Fig). In order to

determine whether the inhibitory effect of FTY720 was due to an effect on infected (producer)

cells, target cells, or both, we generated a co-culture system in which target CD4 TCM were cul-

tured with infected (producer) TCM. Target cells were pre-treated with 66nM FTY720 for 48

hours (the concentration used in cell-to-cell infection experiments), then labeled with Cell

Trace Yellow dye immediately prior to co-culture with infected CD4 T cells. In parallel,

untreated labelled targets were co-cultured with infected cells. Following 48 hours of co-cul-

ture, cells were harvested and infection assessed by flow cytometry. Intriguingly, in both

donors we examined, the magnitude of the p24+ population in Cell Trace-labelled, pre-treated
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target cells was approximately 1/3 that of labelled, untreated cells (2.52 vs. 6.26 and 8.11 vs

24.3% p24+, respectively (representative donor, S4 Fig). These results suggest that the inhibi-

tory effect of FTY720 during cell-to-cell transmission is due to failure of HIV to infect the tar-

get cells rather than the inability of infected cells to produce virions. To verify this, we treated

infected CD4 TCM with 66nM FTY720 and ART (1μM Raltegravir and 0.5μM Nelfinavir) for

72 hours in order to prevent further rounds of infection and assessed p24 (viral release) by

Fig 1. Functional antagonism of S1P signaling inhibits HIV infection. A. Primary TCM model of HIV infection (left: infection at day 7 with FTY720 pre-treatment;

right: infection at day 7 followed by crowding and FTY720 treatment day 10–13). B. Representative flow cytometry plot of HIV-gag p24 expression at day 10 following

pre- treatment with increasing doses of FTY720 (0-100nM) from days 5–7 and 3 days of culture post spin-infection with NL4-3 at day 7. C. Summary of 48-hr FTY720

pre-treatment followed by spin infection with NL4-3 and three days of culture. Mean + Standard Deviation (SD) is plotted. Data from seven individual donors

(p = 0.0156 for Untreated vs 30, 44, 66 and 100nM FTY720, Wilcoxon matched-pairs signed-rank test) are shown. D. Summary of 48-hr FTY720 pre-treatment followed

by spin infection with NL-AD8 and three days of culture. Mean + SD is plotted. Data from seven individual donors (p = 0.0156 for Untreated vs 30, 44, 66 and 100nM

FTY720, Wilcoxon matched-pairs signed-rank test) are shown. E. Dose response curve for FTY720 with NL4-3 and NL-AD8 cell-free infection expressed as the

percentage of infected cells (p24+) versus concentration of FTY720. F. Representative donor (of 7 total donors) from productive infection (day 13); uninfected, NL4-3

infected (no treatment), and NL4-3 infected (66nM FTY720 during days 10–13). G. Frequency of infected cells (p24+) at day 13 following treatment during crowding

from days 10–13 +/- 66nM FTY720; NL4-3 infected (no treatment) and NL4-3 infected (FTY720 during crowding). Mean + SD is plotted. Data from seven individual

donors are shown; p = 0.0156 by Wilcoxon matched- pairs signed- rank test. H. Relative infection day 13; NL4-3 infected (no treatment) and NL4-3 infected (FTY720

during crowding). Data are representative of seven individual donors; p = 0.0156 by Wilcoxon’s matched- pairs signed- rank test. Normalization was performed as

follows: % relative infection = ((d13treat-d10treat)/(d13untr-d10untr))
�100.

https://doi.org/10.1371/journal.ppat.1008679.g001
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ELISA. We did not observe a difference in p24 production in the presence or absence of

FTY720 during ART treatment, indicating that this S1P signaling modulator does not likely

affect viral release in our model (S5 Fig).

FTY720 reduces total and integrated HIV-1 DNA in TCM

Using a primary cell model of latency, we have previously shown that latent infections are

established during cell-to-cell transmission and the magnitude of latent infection directly cor-

relates with productive infection measured at day 13 [34, 35]. Therefore, following our obser-

vation that FTY720 inhibits cell-free and cell-to-cell infection by HIV, we questioned whether

pre-treatment with FTY720 (days 10–13) would lead to a reduction in levels of proviral DNA

harbored within target cells and possibly to a reduction in the establishment of latency. To

address this question, infected cells were treated with 66nM FTY720 from day 10 to 13. At day

13, FTY720 was removed from the culture and cells were cultured with 1μM Raltegravir and

0.5μM Nelfinavir from days 13 to 17 to block further viral spread. At day 17, we isolated the

non-productively infected (CD4+) cells, which contain a mixture of uninfected and latently

infected cells [34]. At this point, latent HIV infection was assessed by measuring total and inte-

grated HIV DNA via nested PCR as previously described [36] (schematic, Fig 2A). We found

that treatment with FTY720 resulted in a reduction in both total and integrated HIV DNA at

day 17 (approximately 51.45+/-3.19 and 60.41+/-19.59%, respectively, Fig 2B–2E).

Next, we aimed to confirm that FTY720 interfered with the establishment of inducible

latent HIV in CD4 T cells by assessing whether the reduction in the levels of HIV proviral

DNA following FTY720 exposure translated to reduced reactivation of latent HIV. Latently

infected cells were subjected to reactivation by TCR stimulation with αCD3/28 (or IL-2 only

control) from days 17 to 19. TCR stimulation is one of the strongest stimuli that reactivates

latent HIV in this model and in cells isolated from aviremic participants [35, 37]. As expected,

the reduction of total and integrated HIV DNA due to FTY720 was accompanied by an aver-

age reduction in p24 following reactivation of 65.86+/-13.43% (Fig 2F, 2G and 2H) relative to

untreated controls. Interestingly, when FTY720 was added along with ART from days 13–17,

there was no significant difference in virus reactivated from latency at day 19, indicating that

in this model latent infection is established prior to ART and following ART exposure the

latent reservoir is not impacted by FTY720 (S6 Fig). In light of our previous work demonstrat-

ing that in this model latently infected cells are established during cell-to-cell transmission,

these results indicate that the brunt of the role of FTY720 on reduction of latency is likely a

consequence of the reduction in productive infection. Overall, our results indicate that

FTY720 not only reduces productive infection but that the effect is carried over into a reduced

incidence of latently infected primary CD4 T cells.

FTY720 reduces binding and fusion of HIV-1 in TCM

Next, we wished to address the mechanisms by which FTY720 inhibits HIV infection. Our

results demonstrating that FTY720 reduced both total and integrated HIV DNA suggested

that FTY720 inhibits HIV infection at a step prior to reverse transcription. Therefore, we first

examined whether there was a block to infection during viral binding or fusion. To quantify

binding, TCM either pre-treated for 48 hours with 66nM FTY720 or untreated were incubated

with NL4-3 (300ng p24) for 30 min at 4˚C, then immediately lysed for p24 assessment by

ELISA (modification of [38, 39]). We observed that in FTY720 pre-treated TCM there was

reduced virion binding in the majority of the donors tested (Fig 3A, 8 of 9 donors, average

reduction 23.32+/-16.99%). Next, we examined viral fusion using NL4-3-BLaM. This virus car-

ries beta-lactamase-Vpr chimeric protein (BLaM-Vpr) which permits determination of virion-
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host cell membrane fusion based on cleavage of the substrate CCF2 upon virus entry [40]. TCM

pre-treated with FTY720 or untreated were incubated with NL4-3-BLaM and cleaved substrate

was assessed by flow cytometry. As with binding, we observed that in the majority (7 of 8) of

donors accessed, there was a reduction in viral fusion in FTY720 pre-treated TCM very similar

to that of binding (Fig 3B–3D, average reduction 24.23+/-26.00%). As HIV binding and fusion

depend on expression and proper aggregation of CD4 and the co-receptor CXCR4 or CCR5

[41–47], we assessed the expression of CD4 in cells either treated with FTY720 or untreated

for 48 hours. We did not observe a difference in percent expression of CD4 following 48 hours

of FTY720 exposure; however, we did observe a significant reduction in the mean fluorescence

intensity (MFI) of CD4 (Fig 3E, average reduction 22.70+/-5.99%). Interestingly, the reduction

in CD4 surface expression nearly matches that observed in both virion binding and fusion.

There was not a statistically significant reduction in the MFI of CXCR4, but a significant

reduction in the MFI of CCR5 on the CD4+ subset was observed (Fig 3F and 3G, respectively).

Thus, FTY720 pre-treatment of TCM results in a reduction of the surface density of CD4 that

leads to a reduction in both binding and fusion. This reduction (average 23.52%) could only

partially account for the strong reduction in integrated proviral HIV DNA observed (average

60.40%); thus, additional steps in the viral life cycle must be altered by FTY720 in CD4 T cells

to account for the strong reduction in total and integrated HIV DNA.

FTY720 promotes a reduction in phosphorylated SAMHD1 concomitant

with a reduction in Cyclin D3

As S1P signaling modulators have previously been shown to cause cell cycle arrest in other

model systems [48, 49] and quiescent T cells have been observed to be relatively non-permis-

sive to infection by HIV-1 [1, 50], we investigated the effect of FTY720 on cell cycle state in

our primary cell model. We treated uninfected TCM from day 10 of our model with 66nM

FTY720 for 24, 48 and 72 hours and assessed cell cycle state by RNA/DNA staining (Fig 4A,

one representative donor of five) in order to mimic as closely as possible the phenotype of the

cells from our model used for cell-to-cell transmission experiments. Following FTY720 treat-

ment, we observed an increase in G0 (Fig 4B) and G1b (Fig 4C) stages and a concomitant

reduction in S/G2 phase (Fig 4D) starting from 24 hours post-treatment, which increased over

time and was statistically significant at 48 and 72 hours (Fig 4D). In agreement with an

increase in G0 and decrease in S/G2 phases, we also observed a reduction in the proliferation

marker Ki67 at 48 hours post-treatment of uninfected cells with 66-100nM FTY720 (Fig 4E

and 4F). The reduction in Ki67 with FTY720 treatment was also observed on infected cells (S7

Fig).

Following our observation that FTY720 promotes a non-cycling state in TCM and a reduc-

tion in total and integrated HIV DNA in our model, we hypothesized that FTY720 may be

Fig 2. FTY720 treatment reduces the establishment of latency and total and integrated HIV-1 DNA in TCM. A. Schematic of primary cell model of

HIV latency. For B-E, all figures represent nested PCR performed on CD4+ T cells isolated at day 17 with no treatment or FTY720 (66nM) treatment

from day 10–13; whether total or integrated HIV DNA. Data are representative of five individual donors. B. Total copies of HIV DNA per 106 cells at

day 17 (p = 0.0019, paired T-test). C. Relative total copies of HIV DNA per 106 cells (total copies of HIV DNA in treated/ total copies of HIV DNA in

untreated) at day 17 (p<0.0001, paired T-test). D. Integrated copies of HIV DNA per 106 cells at day 17 (p = 0.0374, paired T-test). E. Relative

integrated copies of HIV DNA per 106 cells (integrated copies of HIV DNA in treated/ integrated copies of HIV DNA in untreated) at day 17

(p = 0.0023, paired T-test). F. Representative donor from inducible latent HIV reactivation (day 19); untreated (IL-2 only), IL-2 + αCD3/28, IL-2

+ FTY720 and FTY720 + αCD3/28. G. Frequency of infected cells (% p24+) at day 19 following CD3/28 stimulation days 17–19 with treatment during

crowding from days 10–13 +/- 66nM FTY720; untreated (IL-2 only), IL-2 + αCD3/28, IL-2 + FTY720 and FTY720 + αCD3/28. Data is shown as Mean

+ Standard Deviation (SD). Data from seven individual donors, each with a unique symbol, are shown; p = 0.0156 for IL-2 only vs. αCD3/28 and αCD3/

28 vs FTY720 + αCD3/28; p = ns for FTY720 + IL-2 vs FTY720 + αCD3/28, Wilcoxon matched-pairs signed-rank test for all comparisons. H. Relative %

p24 upon reactivation by CD3/28 stimulation from days 17–19 (untreated or 66nM FTY720 treated from days 10 to 13, p = 0.0156, Wilcoxon matched-

pairs signed-rank test). Normalization was performed as follows: % relative infection = ((d19treat-d17treat)/(d19untr-d17untr))
�100.

https://doi.org/10.1371/journal.ppat.1008679.g002
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Fig 3. FTY720 reduces binding and fusion of HIV-1 to TCM. A. Relative NL4-3 binding to TCM either untreated or pre-treated 48 hrs with 66nM

FTY720 (n = 9, p = 0.0117 by Wilcoxon matched-pairs signed-rank test, treated values plotted as percent binding of untreated (pg/mL p24 in

FTY720-treated/ pg/mL p24 in untreated)). B. NL4-3-BLaM fusion assay, two representative donors; uninfected, untreated NL4-3-BLaM infected

and 66nM FTY720 + NL4-3-BLaM. C. Frequency of cells with HIV fusion events (%cleaved CCF2-A) in NL4-3-BLaM fusion assay (n = 8,

p = 0.0234, Wilcoxon matched-pairs signed-rank test, raw values shown). D. Relative %cleaved CCF2-A for NL4-3-BLaM fusion assay (n = 8,

p = 0.0234, Wilcoxon matched-pairs signed-rank test, treated values plotted as percent fusion events of untreated). E. Mean fluorescence intensity

(MFI) of CD4 on CD4 TCM either untreated or pre-treated 48 hrs with 66nM FTY720 (n = 12, p = 0.0002, Wilcoxon matched- pairs signed- rank

test, violin plot with median and quartiles shown). F. MFI of CXCR4 within CD4 TCM either untreated or pre-treated 48hrs with 66nM FTY720

(n = 7, p = 0.2877, Wilcoxon matched-pairs signed-rank test, violin plot with median and quartiles shown). G. MFI of CCR5 within CD4 TCM either

untreated or pre-treated 48hrs with 66nM FTY720 (n = 11, p = 0.001, Wilcoxon matched-pairs signed-rank test, violin plot with median and

quartiles shown). For E-G, each donor is represented by a unique symbol and these symbols denote the same donor across the three plots.

https://doi.org/10.1371/journal.ppat.1008679.g003
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promoting the activity of an innate HIV restriction factor. SAM Domain and HD domain-

containing protein 1 (SAMHD1) is an established HIV-1 restriction factor that impairs reverse

transcription via control of the dNTP pool and has been shown to be modulated by various

cell cycle-related kinases in proliferating and non-proliferating cells [51, 52]. Thus, we exam-

ined the effect of FTY720 on expression of total and phosphorylated (inactive) SAMHD1. We

treated TCM from day 10 of our model with 100nM FTY720 for 24 hours and quantified pro-

tein expression by Western blot. Following 24 hours of FTY720 treatment, we observed a sig-

nificant reduction in pSAMHD1 (39.63+/-4.47%, Fig 5A and 5B) but did not observe an

overall effect on total SAMHD1 levels (Fig 5A and 5C), indicating a relative increase in the

active form of the restriction factor. SAMHD1 phosphorylation has been shown to be con-

trolled by Cyclins and Cyclin-Dependent Kinases (CDKs) in primary human T cells and mac-

rophages [53];[54]. Therefore, we evaluated whether FTY720 modulates the expression and

phosphorylation of these kinases. We did not observe an effect on the levels of the majority of

Cyclin-Dependent Kinases (CDKs) or Cyclins associated with transition from G1b to S phase

of the cell cycle (CDK4, CDK6, Cyclin D2, CDK2, p21) or G2 to M phase (CDK1/pCDK1, Fig

6A–6I); however, we observed a significant reduction in the levels of Cyclin D3 (46.89

+/-14.61%, Fig 6J, all blots and respective β-actin controls shown in S8 Fig). Cyclin D3 has

been demonstrated to regulate the activity of CDK6 and subsequently SAMHD1, the dNTP

pool and HIV infection in macrophages [55]. Our results indicate a relative increase in the

active (non-phosphorylated) form of SAMHD1, which may be associated with the decrease we

observed in Cyclin D3. The mechanism of the regulation of SAMHD1 in our primary cell

model remains to be elucidated.

Fig 4. FTY720 promotes a quiescent state and reduction in proliferation in TCM. A. RNA (PyroninY) and DNA (7-AAD) stain of TCM untreated

or treated with FTY720 for 24, 48 and 72 hrs (one donor shown; representative of 5 donors). B. % G0 (PyroninY-/7-AAD-) TCM in untreated (grey)

or FTY720 treated (green) TCM at 24, 48 and 72 hrs of culture (n = 5, Mean + Standard Error of Mean (SEM) shown). C. % G1b (PyroninY-/7-AAD

+) in untreated (grey) or FTY720 treated (green) TCM at 24, 48 and 72 hrs of culture (n = 5, Mean + SEM shown). D. % S/G2 (PyroninY+/7-AAD+)

in untreated (grey) or FTY720 treated (green) TCM at 24, 48 and 72 hrs of culture (n = 5, Mean + SEM shown, p = 0.028 for 48 hours and p = 0.044

for 72 hours by Multiple T test.). E-F. % Ki67+ cells in 48 hr untreated, 66nM FTY720 treated and 100nM FTY720 treated (all uninfected) TCM (days

10–12 of culture). E. Representative staining of Ki67 in untreated (grey dotted line) and 66nM FTY720 treated (light green), overlay of histograms;

and Ki67 in untreated (grey dotted line) and 100nM FTY720 treated (forest green), overlay of histograms. One representative donor of 8 (66nM) or 7

(100nM) total donors. F. % Ki67+ cells in 48 hr untreated, 66nM FTY720 treated and 100nM FTY720 treated (all uninfected) TCM (days 10–12 of

culture, p = 0.0078 and 0.0156 for 66 and 100nM, respectively, Wilcoxon matched-pairs signed-rank test, n = 7 or 8, Mean + SD shown).

https://doi.org/10.1371/journal.ppat.1008679.g004

Fig 5. Treatment with FTY720 induces a decrease in inactive (phosphorylated) SAMHD1. A. Phosphorylated and total SAMHD1 and β-actin control

for two representative donors (one male, one female), untreated and 100nM FTY720-treated, with molecular weight of each protein indicated. B.

Phosphorylated SAMHD1 in 24 hr untreated and FTY720 treated cultures, p = 0.0312, Wilcoxon matched-pairs signed-rank test (n = 6). Phosphorylated

SAMHD1 is normalized to β-actin control and pSAMHD1 of the treated is plotted as a percentage of that of the untreated. C. Total SAMHD1 in 24 hr

untreated and FTY720 treated cultures, p>0.9999, Wilcoxon matched-pairs signed-rank test (n = 6). SAMHD1 is normalized to β-actin control and

SAMHD1 of the treated is plotted as a percentage of that of the untreated.

https://doi.org/10.1371/journal.ppat.1008679.g005
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Fig 6. Alterations in Cyclin D3 are observed concomitantly with pSAMHD1 reduction. A. Representative Western Blot determination of protein levels of multiple

Cyclin-Dependent kinases and Cyclins involved in cell cycle state, with molecular weight of each protein indicated. Shown are two representative donors of 6 total

donors. B-J. Quantification of protein levels (by Western Blot) of the following Cyclin-Dependent Kinases, Cyclins or regulators of cell cycle, respectively: B. CDK1, C.

pCDK1, D. CDK2, E. CDK4, F. CDK6, G. Cyclin D2, H. p21, I. p27, and J. Cyclin D3. p values displayed for Wilcoxon matched-pairs signed-rank test (all

comparisons), n = 6 for all targets. For all proteins, the target is normalized to its respective β-actin control and expression of the treated is plotted as a percentage of that

of the untreated.

https://doi.org/10.1371/journal.ppat.1008679.g006
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FTY720 does not impact the efficacy of previously characterized Latency

Reversal Agents

An S1PR1 specific agonist, SEW2871, has previously been shown to be a latency-reversing

agent (LRA) in an in vitro model of resting PBMCs, and FTY720 also demonstrated modest,

albeit non-significant, LRA activity [14]. We therefore evaluated whether FTY720 could reacti-

vate latent HIV alone or in combination with a panel of well-established LRAs with different

mechanisms of action, including αCD3/28 (the positive control for latency reactivation in our

model), the HDAC inhibitor SAHA (330nM), the TLR2/6 agonist Pam2CSK4 (1μM), the STAT

SUMOylation inhibitor HODHBt (100μM) and the protein kinase C agonist Ingenol (100nM)

[56–59]. We treated CD4 T cells isolated on day 17 of our model with 66nM FTY720 either

alone or in combination with each LRA for 48 hours. The frequency of reactivated cells was

measured by detection of the p24+ cells by flow cytometry. As can be seen in Fig 7, FTY720 did

not hinder the ability of any of the LRAs tested to reactivate HIV from latency and showed

Fig 7. FTY720 does not impact the efficacy of previously characterized Latency Reversal Agents. CD4+ (non-

productively infected) TCM isolated at day 17 of our model of latency were cultured for 48hrs in the presence of 30 IU/

mL IL-2 and a panel of several well-characterized Latency Reversal Agents (LRAs) alone or in combination with 66nM

FTY720, including: the weak LRA/ control IL-2 only, αCD3/28 beads, SAHA (330nM), Pam2CSk4 (1μM), HODHBt

(100μM) and Ingenol (100nM). Following the two days of culture each sample condition was accessed for the

frequency of reactivated HIV (intracellular p24) by flow cytometry. For all LRAs, reactivation by each treatment is

plotted as the percentage of the maximal stimulation in our model by αCD3/28, with each donor represented by a

unique symbol (n = 5). Significance was determined by Wilcoxon matched- pairs signed- rank test for all comparisons.

https://doi.org/10.1371/journal.ppat.1008679.g007
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moderate latency reversal activity alone in some of the donors tested. These results suggest that

FTY720 could be a novel potential adjuvant in “Shock-and-kill” cure strategies as it does not

interfere with the action of other LRAs and blocks further rounds of productive infection.

Discussion

In this study, we investigated whether targeting S1P could inhibit the establishment of HIV-1

infection and the generation of the latent reservoir in CD4 T cells. Prior to our work, others

had observed the potential of an S1P receptor agonist to reactivate HIV from latency as well as

a decreased response to S1P signaling in chronically infected individuals [14, 31, 32]; however,

the role of S1P signaling in establishment of infection and the potential to modulate this path-

way to alter the course of infection or prevent establishment of the latent reservoir in CD4 T

cells had not been reported.

Sphingolipids have been proposed to be involved in various stages of the HIV-1 life cycle

[31, 60, 61]. Sphingolipids are integral components of the cellular membrane [62–66] and inhi-

bition of glycosphingolipids strongly reduces HIV-1 fusion and productive infection in cell

lines and primary T cells, respectively [31, 67]. Various groups have proposed a key role for

this class of lipids in entry of HIV-1 in CD4 T cells via stabilization of the gp120-CD4 interac-

tion necessary for fusion [68–71]. We took advantage of the well-characterized, clinically

approved S1P receptor modulator FTY720/Fingolimod, currently utilized for treatment of MS,

to examine the potential role of S1P-S1P receptor signaling in HIV infection as well as in the

establishment of latency. Our results demonstrate that the effects of FTY720 in HIV infection

are multifactorial. First, FTY720 reduces the surface density of CD4 on T cells, supporting a

partial repression of virion binding and fusion by FTY720. Although we observed a reduction

in the MFI of CCR5 on CD4 T cells, likely due to its reported co-expression with S1P receptor

1 in primary CD4 T cells [14], FTY720 inhibited infection irrespective of HIV-1 tropism, indi-

cating a mechanism independent of coreceptor utilization. To our knowledge, there are no

reports of CD4 and S1PR colocalization on CD4 T cells, although this could be a potential

explanation of the reduction in MFI of CD4 observed. Alternately, the reduction in CD4 sur-

face density could reflect the tendency that we observed of FTY720-treated cells to enter a rest-

ing state, or perhaps a destabilization of the cell membrane leading to less CD4 abundance, as

glycosphingolipids have previously been implicated in other membrane interactions required

for viral entry and fusion [68–71]. We propose a potential modulation by FTY720 of single or

combined T cell surface features (CD4 abundance or distribution, lipid raft integrity, or stabil-

ity of the viral synapse) resulting in the observed decrease in HIV binding and fusion. Our

novel data indicate that there is yet much to uncover about the dynamics of membrane sphin-

golipids and HIV infection, as well as the potential regulation of membrane components by

S1P modulators including FTY720.

As the blocks in viral binding and fusion together accounted for up to just 24% of the

approximately 54% average reduction in productive HIV infection we observed, we examined

additional stages of the HIV-1 life cycle to identify those which may be affected by modulation

of S1P signaling. We measured the levels of total and integrated HIV-1 DNA by nested PCR

and found that both forms were reduced (average of 51.45 and 60.41%, respectively) in

FTY720-treated TCM relative to untreated TCM. This result indicates that FTY720 inhibits

infection at or prior to reverse transcription. This observation, along with our observation that

TCM in our model, when treated with FTY720, were encouraged toward a resting phenotype,

led us to examine the effect of FTY720 on innate cellular restriction factors that may be differ-

entially expressed across cell cycle states and contribute to inhibition of HIV-1 infection. We

discovered that the phosphorylated form of SAMHD1, a deoxynucleoside triphosphate
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triphosphohydrolase that maintains cellular dNTP level balance and has also been shown to be

an HIV-1 restriction factor [51, 52, 72] was significantly reduced by FTY720 treatment in TCM

(average 39.6% reduction). Phosphorylated SAMHD1 is the inactive form of the restriction

factor, thus, our observation of decreased levels of pSAMHD1 concomitant with maintenance

of the total SAMHD1 availability indicates increased relative expression of the active form of

this antiviral factor. SAMHD1 was first shown to restrict HIV-1 in myeloid and dendritic cells

[51] and was recently demonstrated to have an analogous role in macrophages [73–75] and

CD4 T cells [76–78]. In CD4 T cells, a cyclin-binding motif on SAMHD1 is required for its

restriction of HIV [79] and its regulation by cell-cycle associated proteins including cyclins or

Cyclin-Dependent Kinases (CDKs) has been demonstrated [54, 80]. In keeping with these

reports, we observed a marked decrease in Cyclin D3 (average 46.98%) with FTY720 treatment

along with increased relative expression of the active form of SAMHD1. Although Cyclin D3

has not yet been shown to interact with SAMHD1 in CD4 T cells as Cyclin A2 and Cyclin D2

have in other cell models [79, 81], this cyclin has been demonstrated to regulate SAMHD1 and

subsequently permissiveness to HIV infection in macrophages [55] and its expression was

altered by FTY720 in a model of murine diabetes [82]. As we also observed a reduction in S/

G2 cell cycle phase and Ki67 expression in TCM treated with FTY720, our results are consistent

with a model of an FTY720-induced decrease in cell cycling along with a reduction of Cyclin

D3 and potentially increased activity of SAMHD1. We therefore propose that Cyclin D3 may

be a regulator of SAMHD1 activity in a cell-cycle dependent manner and that S1P signaling

may regulate the levels of Cyclin D3 in CD4 T cells. Additional investigation will be needed to

confirm this and determine whether this is a direct regulation by phosphorylation or whether

other players are involved. Alternately, a different kinase may regulate activity of SAMHD1 via

phosphorylation in TCM and this kinase is inhibited by FTY720 in CD4 T cells.

Moreover, we aimed to determine the extent to which the effect of FTY720 observed during

cell-free and cell-to-cell infection would impact reactivation of latent HIV. We observed a sig-

nificant decrease in virus reactivated from latency in cells cultured with FTY720 from days 10

to 13, indicating that the ability of FTY720 to decrease infection translated to an inhibition of

seeding of the latent reservoir. In fact, the decrease in latency was more potent than the effect

on both cell-free and cell-to-cell infection (65.86% latency reduction vs 45.34 and 54.4% cell-

free and cell-to-cell at 66nM FTY720, respectively). This decrease in infection level was sup-

ported by nested PCR results, which revealed a 60.4% reduction in integrated DNA. Thus, the

reduction observed in integrated virus and the inhibition in the level of reactivation occur to

approximately the same extent in our model. This suggests that FTY720 strongly reduces

establishment of latency. Recently, Abrahams et al demonstrated that most latently infected

cells are generated near the time of ART initiation [83]. When we treated cells in our model

with FTY720 concomitantly with ART, we readily observed reactivation of HIV, albeit no dif-

ference in FTY720-treated or untreated samples. Therefore, our results suggest that FTY720

may be useful as a strategy to limit the size of the latent reservoir if used prior to ART initia-

tion, such as in acute infection. Finally, we examined whether FTY720 would interfere with

the ability of a panel of established LRAs to reactivate latent HIV in our model. A previous

report by Duquenne et al indicated that an S1PR1 agonist, SEW2871, could induce viral pro-

duction in an in vitro model of HIV latency in resting PBMCs [14]; however, in our primary

cell model of latent HIV infection, we observed only weak LRA activity of FTY720 following

48 hours of culture, likely due to differences in the models used as well as differing mecha-

nisms of FTY720 and other S1PR1 antagonists/ agonists. Importantly, we did not observe an

impairment of the activity of several well-established LRAs in the presence of FTY720, indicat-

ing that FTY720 may be used in combination with other LRAs towards reducing the latent

HIV reservoir.
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In conclusion, our results indicate that FTY720 may be an exciting novel therapy for HIV

infection. FTY720 is already clinically approved and well-tolerated and we show that it also

restricts HIV infection of CD4 T cells. As such, targeting the S1P-S1PR axis may be an alterna-

tive strategy to employ in the context of prevention as a potential microbicide; as an adjuvant

to current ART strategies to reduce the seeding of the latent reservoir; or in strategies aimed

toward viral reactivation and eradication of the latent reservoir.

Materials and methods

Ethics statement

Cells were isolated from buffy coats of anonymous healthy blood donors obtained from the

Gulf Coast Regional Blood Center (GCRBC) in Houston, Texas. GCRBC provided us with

only the biological sex and age of donors. No other personal identifiable information (includ-

ing race) was provided.

Reagents

The following reagents were provided by the AIDS Research and Reference Reagent Program,

Division of AIDS, National Institute of Allergy and Infectious Diseases (NIAID, MD): Nelfina-

vir (cat. # 4621), Raltegravir (cat. # 11680) from Merck & Company (NJ) and HIV-1NLAD8 and

HIV-1NL4-3 from Malcolm Martin (MD, cat. #s 11346 and 114). Human αIL-12 and αIL-4

were purchased through PeproTech (NJ). Human rIL-2 was obtained through the BRB/NCI

Preclinical Repository (MD). Antibodies were purchased from BD (NJ, Kc57-FITC, CD4-

APC), Biolegend (CA, Ki67), and eBiosciences (CA, eF450 fixable viability dye, CXCR4-

PE-Cy5.5, CCR5-AF488). FTY720 (Fingolimod) was obtained from Cayman Chemical (MI,

cat. # 10006292, CAS#162359-56-0).

Cell culture and generation of primary cell model of latency

Human peripheral blood mononuclear cells were obtained from healthy, unidentified blood

donors (Gulf Coast Regional Blood Center (GCRBC), TX). Naive CD4 T cells were isolated

from PBMCs by negative selection and activated in non-polarizing conditions at 0.5x106 cells/

mL in the presence of 2μg/mL αhuman IL-12, 1μg/mL αhuman IL-4, 10ng/mL TGF-β and

αCD3/28 stimulation beads at one bead/cell (Dynal/Invitrogen, CA) as previously performed

[33, 34]. Subsequently, cells were expanded with 30 IU/mL hIL-2 in RPMI supplemented with

1% L-Glutamine, 10% Fetal Bovine Serum and 1% Penicillin/Streptomycin. Incubation with

FTY720 was performed on cells from various time points of our model for 24–72 hours at con-

centrations of 30-100nM. HIV-1NLAD8 and HIV-1NL4-3 viruses were generated in HEK293FT

cells by calcium phosphate transfection and latently infected cells were generated as previously

described [33, 34].

For latency reversal experiments, cells were cultured at 0.5x106 cells/mL in the presence of

30 IU/mL hIL-2. Reactivation conditions included: IL-2 only, 66nM FTY720, or one of the fol-

lowing LRAs +/- 66nM FTY720: αCD3/28 stimulation beads (one bead/cell), SAHA (330nM,

Cayman), Pam2CSK4 (1μM, Invivogen), HODHBt (100μM, A.K. Scientific), or Ingenol

(100nM, Cayman). Following 48 hours of culture, intracellular p24-gag was assessed by flow

cytometry.

Flow cytometry

To analyze productively infected cells, 2.5x105 cells were stained for CD4 (clone: S3.5, APC,

BD), fixable viability dye (eF450, eBiosciences) and intracellular p24-gag (BD) and were
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analyzed on a Celesta flow cytometer (BD) as previously performed [34]. For proliferation

studies, cells were stained for CD4, viability and intracellular Ki67 (clone: 6604665, FITC, Bio-

legend). To analyze cellular RNA/ DNA content in order to determine cell cycle state, cells

were stained with 7-AAD (Millipore Sigma, MA) and PyroninY (Sigma, MO) as previously

done [84]. To label cells prior to co-culture assays, cells were stained with Cell Trace Yellow

proliferation dye (ThermoFisher, MA). Flow cytometry analysis was performed in FlowJo soft-

ware (BD) and further statistical analysis was performed in GraphPad Prism (CA).

Quantitative real-time PCR for total and integrated HIV DNA

Nested PCR was performed as previously described [36]. Briefly, CD4 T cells were digested

with Proteinase K. A first round of PCR pre-amplification (12 cycles) was performed directly

on cell lysates using primers for the LTR/gag region (total HIV DNA) or primers specific for

the LTR region (ULF1) together with two Alu primers (integrated HIV DNA). A nested real-

time PCR was then carried out on a Rotor-Gene Q instrument (Qiagen, Mississauga, Canada)

using inner primers and a TaqMan probe. The number of copies of the CD3 gene was deter-

mined to accurately quantify the number of cells in each reaction. Results were expressed as

HIV DNA copies per 106 CD3 T cells.

NL4-3-BLaM assay

TCM were cultured for three hours with NL4-3-BLaM to determine viral fusion with the host

cell membrane by incubation with beta-lactamase-Vpr chimeric proteins (BLaM-Vpr) sub-

strate and flow cytometry as previously done [40].

Protein analysis

To analyze protein expression, 107 cells/mL were lysed in NETN lysis buffer (100mM NaCl,

20mM Tris-Cl (pH 8.0), 0.5mM EDTA, and 0.5% v/v Nonidet P-40 (NP40) supplemented

with protease and phosphatase inhibitors (cOmplete mini, Millipore Sigma and PhosStop,

Roche, Basel, Switzerland, respectively). Protein concentration was quantified by BCA assay

and 10μg of both untreated and 100nM FTY720 pre-treated (24hr) sample were subjected to

gel electrophoresis. Following transfer to nitrocellulose membrane, membranes were blotted

with antibodies to phosphorylated and unphosphorylated SAMHD1 (cat. # 89930S, cat. #

12361), CDK1 (cat. # 77095), pCDK1 (cat. # 4539), CDK2 (cat. # 2546), CDK4 (cat. # 12790),

CDK6 (cat. # 3136), Cyclin D2 (cat. # 3741), Cyclin D3 (cat. # 2936), p27 (cat. # 3686), and p21

(cat. # 2947) plus β-actin control (cat. # A5441), all from Cell Signaling Technologies (MA),

followed by HRP-conjugated secondary antibody (cat. #s 115-035-146 (α-mouse) and 111-

035-046 (α-rabbit), both Jackson Immunoresearch, PA) and visualization with Immobilon

HRP substrate (Millipore) and GeneGnome software (Syngene, Bangalore, India). Quantifica-

tion was performed in GeneTools (Syngene).

Supporting information

S1 Fig. Viability of FTY720-treated TCM A. TCM obtained by immunomagnetic isolation

from PBMCs were cultured with 66nM FTY720 for 72hrs and viability was evaluated by fixable

viability dye and Activated Caspase 3 staining. Representative donor staining of viability dye

and activated Caspase 3 on TCM. B-C. TCM obtained from naïve cells expanded in our primary

cell model of latency were infected with NL4-3 or NL-AD8 and pre-treated +/-FTY720 (30–

100 nM) and stained for flow cytometric assessment of viability at day 10 or 13. B. Viability of

7 donors infected with NL4-3 and 7 donors infected with NL-AD8 pre-treated +/-30-100nM
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FTY720 from day 5–7 and infected from day 7–10 (as in Fig 1A left schematic). C. Viability of

7 total donors infected with NL4-3 at day 7 (as in Fig 1A right schematic) and treated+/-

66nM FTY720 from day 10–13. For B-C., Wilcoxon signed-rank matched-paired tests were

used for all comparisons.

(TIF)

S2 Fig. Infection of CD4 T cells with HIV 89.6 and JR-CSF Primary CD4 T cells expanded

and pre-treated at day 5 with 66 or 100nM FTY720 (as in Fig 1A, left schematic) were infected

with dual-tropic HIV-1 (89.6) or R5-tropic HIV-1 (JR-CSF) at day 7 of culture. Frequency of

p24+ cells was assessed at day 10 by flow cytometry (N = 3 donors for each virus and each con-

centration of FTY720). A. Representative donor infected with 89.6 and JR-CSF, either

untreated or treated with two concentrations of FTY720. B. Summary of infections with 89.6

and JR-CSF. Data are expressed as the percent of infection in the FTY720-treated conditions

relative to untreated. Mean + SD are shown; statistical comparison was performed by paired

T-test and is color coded for each virus (green = JR-CSF, purple = 89.6).

(TIF)

S3 Fig. Functional antagonism of S1P signaling inhibits cell-to-cell transmission of

R5-tropic HIV-1. CD4 T cells were infected at day 7 with NL-AD8, crowded and treated with

66nM FTY720 from day 10–13, and assessed for frequency of infected cells by flow cytometry.

A. Two representative donors from productive infection (day 13); uninfected, NL-AD8

infected (no treatment), and NL-AD8 infected (66nM FTY720 from day 10–13). B. Schematic

of the experimental design. C. %p24+ cells at day 13 following treatment during crowding

from day 10–13 with (or without) 66nM FTY720. Data comprise four total donors, each repre-

sented by a unique symbol. Statistical comparison was performed by paired T-test.

(TIF)

S4 Fig. Co-culture of labeled FTY720-treated and NL4-3 infected TCM. TCM either treated

or untreated with 66nM FTY720 for 48 hrs were labeled with Cell Trace Yellow dye and co-

cultured with unlabeled pre-crowded NL4-3 infected (producer) TCM. 48hrs later, pre-treated

and untreated target cells were evaluated for intracellular expression of p24 by flow cytometry,

gating on Cell Trace Yellow+ cells. Shown is one representative donor of two individual

donors (uninfected, untreated, and FTY720 pre-treated Cell Trace-labeled target cells and

unlabeled producer cells.)

(TIF)

S5 Fig. FTY720 treatment during ART does not alter viral release. Primary CD4 T cells

from our model were infected at day 7 and treated at day 10 with ART+/- 66 or 100nM

FTY720, followed by assessment of p24-gag by ELISA at day 13 in order to determine the effect

of FTY720 on viral release. A. Schematic of p24 ELISA following ART+/-FTY720 for 72 hours

(days 10–13). B. Summary of p24 ELISA at day 13 following treatment of infected cells from

day 10–13 with ART+/-FTY720 (either untreated or +FTY720, n = 4, statistical comparisons:

paired T-test).

(TIF)

S6 Fig. FTY720 treatment during ART does not alter reactivation from latency Primary

CD4 T cells from our model of HIV latency were infected with NL4-3 at day 7, crowded at day

10, uncrowded at day 13 and treated for 4 days with ART (1μM Raltegravir/ 0.5 μM Nelfinavir)

in the presence or absence of 66nM FTY720 prior to isolation of non-productively infected

(CD4+) cells at day 17 and reactivation of latent HIV-1 for 48 hours with αCD3/28 or IL-2

only control. Frequency of reactivated virus (%p24+ cells) was assessed by flow cytometry at
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day 19. A. Schematic of latency reversal following FTY720 treatment during ART. B. Two rep-

resentative donors (of 4 individual donors) from day 19, following 48 hours of reactivation

with αCD3/28 or IL-2 only control, either untreated or +66nM FTY720 from day 13–17. C.

Summary of day 19 reactivation with αCD3/28 or IL-2 only control (either untreated or

+66nM FTY720 from day 13–17, n = 4, both statistical comparisons: paired T-test). Mean is

indicated and each donor is represented by a unique symbol.

(TIF)

S7 Fig. Ki67 Expression on NL4-3 infected cells treated with FTY720. Primary CD4 T cells

were cultured and expanded, infected with NL4-3 at day 7, crowded at day 10 and treated or

not treated with 66nM FTY720, and stained at day 13 for flow cytometry to assess the expres-

sion of the proliferation marker Ki67. Two infected donors were stained. Grey dotted line:

uninfected/ untreated; green dotted line with light fill: uninfected + 66nM FTY720; pink dot-

ted line: NL4-3 infected/ untreated; dark green filled histogram: NL4-3 infected + 66nM

FTY720.

(TIF)

S8 Fig. Western Blots of cell cycle proteins and β-actin controls. Primary CD4 T cells (Cul-

tured T Central Memory cells) were treated for 24 hours +/- 100nM FTY720 and were lysed

for Western Blot determination of protein levels of multiple Cyclin-Dependent kinases and

Cyclins. Shown are 6 total donors assayed for: CDK1, pCDK1, CDK2, CDK4, CDK6, Cyclin

D2, p21, p27, Cyclin D3, pSAMHD1 and total SAMHD1, with the molecular weight of each

protein indicated.

(TIF)
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