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Asthma is an inflammatory disease usually characterized by increased Type 2 cytokines 
and by an infiltration of eosinophils to the airways. While the production of Type 2 cyto-
kines has been associated with TH2 lymphocytes, increasing evidence indicates that 
group 2 innate lymphoid cells (ILC2) play an important role in the production of the 
Type 2 cytokines interleukin (IL)-5 and IL-13, which likely amplifies the recruitment of 
eosinophils from the blood to the airways. In that regard, recent asthma treatments 
have been focusing on blocking Type 2 cytokines, notably IL-4, IL-5, and IL-13. These 
treatments mainly result in decreased blood or sputum eosinophil counts as well as 
decreased asthma symptoms. This supports that therapies blocking eosinophil recruit-
ment and activation are valuable tools in the management of asthma and its severity. 
Herein, we review the mechanisms involved in eosinophil and ILC2 recruitment to the 
airways, with an emphasis on eotaxins, other chemokines as well as their receptors. 
We also discuss the involvement of other chemoattractants, notably the bioactive lipids 
5-oxo-eicosatetraenoic acid, prostaglandin D2, and 2-arachidonoyl-glycerol. Given that 
eosinophil biology differs between human and mice, we also highlight and discuss their 
responsiveness toward the different eosinophil chemoattractants.
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iNtrODUctiON

Asthma is a respiratory disease characterized by inflammation and hyperresponsiveness of the air-
ways and roughly affects 300 million people worldwide (1). Eosinophils play a pivotal role in asthma 
by generating many mediators inducing bronchoconstriction and/or contributing to inflammation 
and remodeling (2). Airway eosinophilia is observed in many subjects with asthma and increases 
with disease severity and exacerbations (3). The anti-inflammatory treatment of asthma is primar-
ily based on inhaled corticosteroids (4). The dose is adjusted to decrease eosinophil counts in the 
blood and/or in induced sputum, which results in a reduction of asthma exacerbations. However, the 
chronic use of corticosteroids is linked with significant systemic side effects even at low doses, and 
some severe asthmatics remain symptomatic and have high sputum eosinophil counts despite the 
use of high doses of corticosteroids (5). This stresses the need of developing new therapeutics that 
could limit both bronchoconstriction and inflammation.
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Increased eosinophil numbers are observed in many asthmat-
ics, notably those characterized by a Type 2-like inflammation, 
characterized by an increased production of the cytokines inter-
leukin (IL)-4, IL-5, and IL-13 (6). As such, it is well accepted that 
the Type 2 cytokines IL-4, IL-5, and IL-13 are linked to increased 
eosinophil numbers, either by promoting eosinophil survival 
(IL-5) or by inducing the production of eosinophil chemoattract-
ants (IL-4 and IL-13) (7, 8). While TH2 lymphocytes participate 
in the release of Type 2 cytokines, group 2 innate lymphoid cells 
(ILC2) are being increasingly recognized as a significant source of 
Type 2 cytokines as well (9, 10). Asthma treatments that focused 
on blocking Type 2 cytokines (IL-4, IL-5, and IL-13) decrease 
blood or sputum eosinophil counts and asthma symptoms in 
subjects with severe asthma presenting a high eosinophil count 
in their induced sputum (11–25). This article reviews the current 
evidence regarding eosinophil and ILC2 chemoattractants and 
their involvement in asthma and its severity.

DiscOverY tiMeLiNe OF tHe MAiN 
eOsiNOpHiL cHeMOAttrActANts

The extensive investigation of how eosinophils were recruited 
really began in the 1970s. Complement component 5a (C5a) 
has been known to induce guinea pig eosinophil migration 
since 1970 (26–29), and its impact on human eosinophils was 
documented in 1973 (26). Histamine was next documented as 
an eosinophil chemoattractant in 1975 (30) although its effect is 
limited (31–34).

In 1980s, other eosinophil chemoattractants were character-
ized, notably platelet-activating factor (PAF), leukotriene (LT) B4, 
and N-formylmethionyl-leucyl-phenylalanine (fMLP). Numerous 
reports indicate that PAF induces the migration of eosinophils 
(29, 35–41). Even if LTB4 is mainly characterized as a neutrophil 
chemoattractant, it also induces human eosinophil migration (29, 
37, 42, 43). fMLP is a weak chemoattractant for eosinophil migra-
tion: some studies unraveled a weak migration of eosinophils (29, 
37, 44, 45) while others did not find any effect (38, 46).

The expansion of the chemokine field in the 1990s allowed the 
characterization of additional eosinophil chemoattractants. CCL5 
[regulated on activation, normal T  cell expressed and secreted 
(RANTES)] was the first chemokine documented as a human 
eosinophil chemoattractant in 1992 (47) and was shown to induce 
both the migration and transmigration of human eosinophils  
(48–57). The effect of CCL3 (MIP-1α) on human eosinophil migra-
tion was also evaluated in 1992 (47). However, the ability of CCL3 
as an eosinophil chemoattractant is low, as later reports indicated 
that at optimal concentration, the CCL3-induced migration of 
eosinophil corresponded to about 33% of that induced by CCL5 
(48, 52, 57). Of note, one study showed that ~20% of individuals 
responded to CCL3 to the same extent than CCL11, while the 
others poorly responded to CCL3 and this was linked to CCR1 
(58). In mid-1990s, other chemokines were tested for their ability 
to elicit human eosinophil migration, notably CCL7 (MCP-3), 
CCL8 (MCP-2), and CCL13 (MCP-4) (34, 48, 50–53, 55–57,  
59, 60). However, their impact on human eosinophil migration 
was limited.

The discovery of eotaxins was a substantial leap forward in 
understanding how eosinophils were selectively recruited into 
the tissues. CCL11 (eotaxin-1) was first discovered by Jose et al. 
in guinea pigs (61, 62). Two years later it was confirmed as a 
selective chemoattractant of human eosinophils in 1996 (63) and 
several studies confirmed its potency in several migration models  
(55, 64–66). A year later, CCL24 (eotaxin-2) was discovered (67) 
and was confirmed as being as efficient as CCL11 (34, 55–57, 65).  
Last but not the least, CCL26 (eotaxin-3) was discovered in 
1999 (68, 69), and it is the most efficient eotaxin to induce the 
migration or transmigration of asthmatic eosinophils (65). 
Of note, CCL26 appears also critical for eosinophil migration/
tissue eosinophilia in other human disorders characterized by 
eosinophil recruitment, notably eosinophilic esophagitis and 
Churg–Strauss syndrome (70, 71).

It was also in the mid-1990s that additional bioactive lipids from 
the 5-lipoxygenase pathway were documented as human eosino-
phil chemoattractants. 5-Oxo-eicosatetraenoic acid (5-KETE) 
was identified as a potent chemoattractant of eosinophils in 1996  
(72, 73). To this date, 5-KETE is the most efficient human 
eosinophil chemotactic factor in cellulo (41, 43, 65, 66). LTD4 
was the first cysteinyl leukotriene (CysLTs) to be defined as a 
direct chemoattractant of human eosinophils (74) but induces a 
weak migration (75–78). It was also reported that LTC4 and LTE4 
induce an eosinophil migration comparable to LTD4 (79).

The new millennia also expanded our knowledge on how 
human eosinophils could be recruited into the tissue. In that 
regard, CXCL12 (SDF-1) was shown to induce the recruitment of 
eosinophils (65, 80, 81). Furthermore, a 2001 study demonstrated 
that prostaglandin (PG) D2 selectively induced the migration 
of eosinophils, Th2 lymphocytes cells, and basophils (82), and 
increasing evidence support the development of DP2/CRTH2 
antagonists for the management of asthma (83). However, 
PGD2 seems to induce a limited recruitment of eosinophils  
(66, 84–88). Of note, PGD2 increases CCL11- and 5-KETE-
induced-eosinophil migration (87). Finally, in 2004, the endo-
cannabinoid 2-arachidonoyl-glycerol (2-AG) was identified as an 
eosinophil chemoattractant (89); this effect of 2-AG involves the 
CB2 receptor and is largely potentiated by IL-3, IL-5, and GM-CSF  
(66, 90, 91).

HUMAN eOsiNOpHiL recrUitMeNt 
AND AstHMA

As underscored in the previous section, many soluble mediators 
and chemokines can induce human eosinophil recruitment 
and thus participate in asthma pathogenesis. In this section, 
we review how these chemoattractants contribute to eosinophil 
recruitment in a context of asthma. A differential eosinophil 
recruitment could be observed in asthma severity and/or during 
asthma exacerbations if there is a dysregulation in the release 
of the different chemoattractants or their receptors, notably by 
desensitization or internalization. To this end, our data (Figure 1) 
indicate that with the exception of the CXCR4 and the CB2 recep-
tors, the expression of chemoattractant receptors do not change, 
at the mRNA level, in human eosinophils isolated from the blood 
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FiGUre 1 | Expression of chemokines and lipid mediator receptors by human eosinophils. Human eosinophils were isolated from the blood of healthy controls, mild 
asthmatics, and severe eosinophilic asthmatics as defined and described in Ref. (92). mRNAs were quantitated by qPCR array using a custom qPCR array (RT2 
Profiler qPCR Multiplex Array Kit, Qiagen, ON, Canada). Chemokine receptor expression (A) and bioactive lipid receptor expression (B) are represented by the ratio 
between mRNAs and 18S rRNA control. Results are the mean (±SEM) of 3–4 donors for each group. Approval from the local ethics committee was obtained, and 
all volunteers signed an informed consent form.
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of healthy subjects, mild and severe eosinophilic asthmatics, as 
defined in Ref. (92). This supports the notion that perhaps the 
increased recruitment of eosinophils is rather the consequence of 
increased chemoattractants in the bronchial tissue.

cHeMOKiNes

The most studied chemokines in asthma are CCL5 and eotaxins, 
probably because their levels are usually increased in asthmatics 
compared to healthy controls in all body fluids tested, namely 
bronchoalveolar lavages (BAL), induced sputum, blood, and bron-
chial biopsies (92–115). Moreover, these chemokines are linked to 
poor asthma control and increased eosinophil recruitment to the 
airways. Indeed, CCL5 levels are greater in induced sputum from 
poorly controlled asthmatics than from controlled asthmatics 
(116, 117); subjects undergoing acute exacerbations have higher 
CCL11 levels in induced sputum and plasma samples than subjects 
with stable asthma or healthy controls (111, 118–120); and CCL24 
and CCL26 expression in airway epithelial cells are associated 
with lower forced expiratory volume in 1 s (FEV1), more asthma 
exacerbations, and increased sputum eosinophil counts (92, 121). 
It is not clear whether one chemokine is more important than the 
others and if we could target these chemotactic proteins to limit 

eosinophil recruitment and asthma exacerbation. In that regard, 
different studies evaluated the expression of these chemokines 
during allergen challenges, and the obtained data rather indicate 
that eosinophil-recruiting chemokines are not necessarily present 
at the same time and might have different as well as overlapping 
roles. CCL5 levels correlate with eosinophil counts in BAL 4 h 
after the challenge (122), but not 24 h after the challenge (123). 
CCL11 levels are increased in BAL, induced sputum and bron-
chial biopsies of asthmatics, and are associated with eosinophil 
numbers 4 and 24  h after the challenge (104, 124, 125). That 
being said, one study reported that CCL11 levels are similar in 
bronchial biopsies from asthmatics before and 24 h after allergen 
challenge (103). CCL24 expression is significantly increased in 
bronchial mucosa from asthmatics 48 h after allergen challenge 
(126), but is similar before and 24 h after allergen challenge (103). 
As for CCL26, its expression in bronchial biopsies increases 24 
and 48  h after allergen challenge (103, 126), but its expression 
in bronchial submucosa did not correlate with eosinophil counts 
48 h after allergen challenge (126). Additionally, some research 
groups documented the impact of these chemokines on eosino-
phil migration in asthma in cellulo. CCL11 and CCL26 induce 
a greater migration of eosinophils from asthmatics than from 
healthy subjects (65, 127). Finally, while most evidence reflects an 
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important role of CCL5 and the eotaxins in asthma, some studies 
reported that there was no increase in CCL5 or eotaxin expres-
sion in BAL, airway epithelium brushings, or bronchial biopsies 
between asthmatics and healthy controls (92, 103, 121, 128, 129).

Studies on CCL3, CCL7, CCL8, CCL13, and CXCL12 in 
relation with asthma are limited. Among the latter, CCL13 is 
better associated with eosinophils and asthma. Its expression is 
higher in BAL, bronchial biopsies, induced sputum, and plasma 
samples from asthmatics than from healthy controls (99, 100, 105,  
130, 131). One study reported increased CCL3 levels in BAL 
from asthmatics compared to healthy controls (93). Increased 
CCL7 levels and CCL7-expressing cells are found in bronchial 
biopsies and BAL from asthmatics compared to healthy controls  
(94, 95, 100), and serum CCL8 levels are higher in asthmatics 
compared to healthy controls (132). CXCL12 levels in bronchial 
mucosa and BAL are greater in asthmatics than in healthy controls 
(133, 134), and CXCL12 levels in BAL correlate with eosinophil 
numbers (134).

LipiD MeDiAtOrs AND OtHers

Other soluble mediators might also participate in the recruit-
ment of eosinophils in asthma. In that regard, CysLT1 receptor 
blockade usually decreases eosinophil counts, although it is not 
clear whether this is a direct or indirect effect (135–144). LTB4, 
histamine, C5a, and PGD2 are all associated with asthma, but 
their involvement in eosinophil recruitment in asthma is not well 
defined. Even if LTB4 levels in blood and exhaled breath condensate 
are increased in asthma (145–147), the LTB4 receptor antagonist, 
LY293111, decreases neutrophil but not eosinophil counts in BAL 
from asthmatics (148). As for PGD2, some studies demonstrated 
similar PGD2 levels in BAL or induced sputum of asthmatics, 
atopics, and healthy subjects (149–152), but its levels can increase 
in the BAL after an allergen challenge (149, 153, 154). Of note, the 
antagonism of the PGD2 receptor 2 (DP2/CRTH2) improves lung 
function and the quality of life of asthmatics compared to placebo 
(155, 156). Finally, C5a levels are increased in BAL and in induced 
sputum from asthmatics compared to healthy controls after an 
allergen challenge (157, 158), and a haplotype of the C5a gene was 
identified to be protective against asthma (159).

As for PAF, 5-KETE, fMLP, and 2-AG, their association with 
asthma is not well documented and this requires further investi-
gations. For example, we have no idea to which extent 2-AG and 
5-KETE levels are modulated in asthma and its severity.

AstHMA severitY

As underscored with the data from the allergen challenges 
presented in the previous section, it is not possible to pinpoint 
one chemoattractant explaining the recruitment of human 
eosinophils. They rather indicate that they collaborate together 
and that they might be involved at different times during the 
asthmatic response. In addition, it is possible that the mediators 
responsible for eosinophil recruitment might also change as the 
disease worsens. For example, CCL11 and/or CCL26 levels are 
greater in induced sputum from severe or moderate asthmatics 
than from mild asthmatics or healthy controls (92, 160). In plasma 

samples, CCL11 levels are associated with asthma severity and 
are not significantly affected by corticosteroid treatment (161). 
Coleman et  al. demonstrated that CCL24 and CCL26, but not 
CCL11, mRNA expression in bronchial epithelium increases 
with asthma severity and is associated with sputum eosinophil 
counts, lower FEV1, and more asthma exacerbations (121). In 
contrast, subjects with severe eosinophilic asthma have lower 
CCL24 levels in bronchoalveolar lavage fluids and similar CCL24 
levels in bronchial epithelial cells compared to healthy controls 
(92, 121). For CCL5, Saad-El-Din demonstrated that serum CCL5 
levels are greater in subjects with severe or moderate asthma as 
compared to subjects with mild asthma and are associated with 
blood eosinophil number (114). As for CXCL12, it induces a 
greater migration of corticosteroid-treated eosinophils than 
untreated eosinophils and that the expression of the CXCL12 
receptor, CXCR4, increases in corticosteroid-treated eosinophils 
(80), raising the possibility that CXCL12 plays a more important 
role in unstable severe eosinophilic asthmatics which are taking 
large doses of corticosteroids.

In asthma, CysLTs levels in induced sputum are increased 
in moderate asthmatics compared to severe asthmatics and 
healthy controls (162). Also, similar sputum CysLTs levels were 
found in severe eosinophilic and non-eosinophilic asthmatics 
(162). In contrast, exhaled breath condensate levels of CysLTs 
correlate with asthma severity (163). In mild-to-moderate 
asthmatics or eosinophilic asthmatics, the CysLT1 antagonist 
montelukast, alone or in combination with corticosteroids, 
decreases sputum or blood eosinophil counts (136, 138, 141, 
164). On the other hand, severe eosinophilic asthmatics, severe 
non-eosinophilic asthmatics, and moderate uncontrolled 
asthmatics have similar sputum or blood eosinophil counts 
between montelukast-treated and placebo-treated individuals or 
between montelukast/corticosteroid-treated and corticosteroid-
treated asthmatics (165–167). Of note, PGD2 and DP2/CRTH2 
levels are increased in asthma severity in BAL (151, 152), and 
the DP2/CRTH2 antagonist OC000459 improves FEV1 and the 
quality of life of subjects with eosinophilic uncontrolled asthma 
and steroid-free subjects with moderate persistent asthma  
(155, 156). Finally, C5a receptor expression on bronchial epithe-
lium is greater in subjects with fatal asthma than mild asthmatics 
and healthy controls (168).

OF Mice AND MeN

The potential and/or documented roles of multiple chemoattract-
ant involved in eosinophil recruitment in asthma underscore the 
need to revisit this concept and to establish when and how those 
actors are involved. The development of experimental asthma 
models with mice, rats, or guinea pigs has been very helpful 
to broaden our knowledge about asthma pathogenesis and to 
identify some eosinophil and ILC2 chemoattractants in allergic 
asthma. However, eosinophils and their functional responses are 
very different between species (169). In that regard, some chem-
oattractants and their receptors in humans are not expressed in 
mice. For instance, the 5-KETE receptor OXE is not expressed 
in mice (170, 171), resulting in an absence of 5-KETE-induced 
eosinophil migration (170). Additionally, CCL26 is not expressed 
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tABLe 1 | Eosinophil chemoattractants and their receptors of human and mice.

eosinophil chemoattractants Human Mice

receptors efficiency receptors efficiency

CCL11/eotaxin-1 CCR3 (177–179) ++ (55, 56, 64, 66) CCR3 (172, 180) ++ (181)
CCL24/eotaxin-2 CCR3 (179, 182) ++ (55, 56) CCR3 (172, 180) + (172, 173)
CCL26/eotaxin-3 CCR3 (68, 69) +++ (65, 68, 69) CCR3 (172, 180) − (172, 173)
CCL5/RANTES CCR1, CCR3 (58, 177, 178, 183, 184) ++ (47, 52, 55, 56) CCR1, CCR3, CCR5 (172, 180) − (172, 174, 175)
PAF PAFR (185, 186) ++ (29, 37, 39, 41) PAFR (187) + (181)
C5a C5aR (188–190) ++ (29, 47, 52) C5aR (191, 192) ++ (174, 193)
2-AG CB2 (89, 194) + (66, 90) n/a n/a
5-KETE OXE (171, 195, 196) +++ (41, 43, 66) n/e − (170)
LTB4 BLT1 (197, 198) + (29, 37, 64) BLT1 (197) + (199)
PGD2 DP2/CRTH2 (82, 87) + (87) DP2/CRTH2 (200, 201) + (202, 203)
fMLP FPR (204–206) + (29, 37, 52) n/a + (193, 207)
CCL3/MIP-1α CCR1, CCR3 (58, 177, 178, 183, 184) ± (47, 48, 52, 57) CCR1, CCR3 (172, 180) ± (172, 173, 181, 208)
CCL7/MCP-3 CCR1-CCR3 (178, 183, 209) + (52, 55) CCR1–CCR3 (172, 180) n/a
CCL8/MCP-2 CCR1–CCR3 (183, 184, 209) + (52) CCR1–CCR3 (172, 180) n/a
CCL13/MCP-4 CCR1–CCR3 (177, 183, 209) + (56) CCR1–CCR3 (172, 180) n/a
CXCL12/SDF-1 CXCR4 (80, 210) ++ (65, 80) CXCR4 (172) n/a
LTD4 CysLT1, CysLTE? (211, 212) + (74–77) CysLT1, CysLTE? (213) − (199)

−: no migration, ±: weak or no migration, +: migration usually between 10 and 30%.
++: migration usually between 30 and 50%, +++: migration over 50%.
2-AG, 2-arachidonoyl-glycerol; fMLP, N-formylmethionyl-leucyl-phenylalanine; n/a, not available; n/e, not expressed; PFA, platelet-activating factor; PG, prostaglandin.
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in mice (170) and human CCL26 does not induce the migration 
of mouse eosinophils (172, 173). Furthermore, CCL5 does not 
induce the migration of mouse eosinophils (172, 174–176). 
Globally, three of the most efficient human eosinophil chemoat-
tractants described so far (CCL5, CCL26, and 5-KETE) do not 
induce the migration of eosinophils from mice, illustrating major 
differences in eosinophil recruitment between mice and humans 
and underscoring that transposing eosinophil recruitment data 
from mice to humans might be hazardous. The impact of the 
different chemoattractants on the migration of eosinophils from 
humans and mice is summarized in Table 1 in which the number 
of migrated eosinophils in different migration assays is compared. 
It should be kept in mind that the presented data involve different 
eosinophil migration assays and that a true comparison between 
the presented chemoattractant is somewhat subjective. This is why 
we defined the different efficiencies using %migration intervals.

MeDiAtOrs prOMOtiNG iLc2 
recrUitMeNt

First identified in 2010, ILC2 are defined as lymphoid cells 
lacking specific lymphocytes lineage markers and the expres-
sion of the DP2/CRTH2 and ST2, the IL-33 receptor (214–218). 
They produce, in response to IL-25, IL-33 or thymic stromal 
lymphopoietin (TSLP), large amounts of the TH2 cytokines 
IL-5, IL-13 and, to a lesser extent, IL-4. Of note, the number of 
ILC2 correlate with sputum eosinophils in allergic asthma (219). 
This suggests that ILC2 might play an important role in asthma  
(220, 221), especially by directly or indirectly modulating eosino-
phil survival/recruitment. However, the cellular mechanisms by 
which ILC2 are recruited to the lungs remain poorly defined and 
few studies addressed the impact of chemokines or bioactive 
lipids on the migration of ILC2.

Since IL-25, IL-33, and TSLP are potent activators of ILC2, 
their ability to induce the migration of ILC2 was first evalu-
ated. IL-33 and TSLP induce a weak migration of human ILC2  
(218, 222, 223). However, the impact of IL-25 remains a matter of 
debate, as one study reported a weak IL-25-induced ILC2 migra-
tion (223), while another found no effect of IL-25 (218). PGD2 and 
CysLTs are defined as potent chemoattractants of ILC2. Indeed, 
PGD2 is almost five times more potent than IL-33 (218, 224), 
and the PGD2-induced migration is greater in ILC2 from allergic 
subjects compared to healthy subjects (224). Furthermore, mice 
lacking DP2/CRTH2 or treated with a DP2/CRTH2 antagonist 
have lower ILC2 levels in the lungs after intranasal administra-
tion of PGD2 (225). As for CysLTs, ILC2 express the receptor 
CysLTR1 and its expression is increased in atopic subjects  
(223, 226, 227). Interestingly, a research group recently dem-
onstrated that all CysLTs induce the migration of human ILC2 
in vitro, LTE4 ≫ LTD4 > LTC4 ≈ IL-33, indicating that perhaps 
another CysLT receptor might be involved in this process (223).

Although only IL-33, TSLP, PGD2, and the CysLTs have been 
identified as chemoattractants of ILC2, some studies reported that 
human ILC2 express the chemokine receptor CCR4 and mouse 
ILC2 express the LTB4 receptor BLT1 (222, 227). Furthermore, 
TGF-β increases the basal migration of murine ILC2, which 
suggests that it could enhance their response to other chemoat-
tractants (228). Other studies are thus needed to delineate how 
ILC2 migrate to the bronchial tissue.

cONcLUDiNG reMArKs AND FUtUre 
DirectiONs

This review highlights that many chemokines and soluble 
mediators are very good to excellent at inducing the migra-
tion of eosinophils ex vivo and their recruitment in vivo. This 
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underscores that targeting eosinophil recruitment as a thera-
peutic approach in asthma might not be readily successful, as 
suggested with the attempt at blocking the eotaxin receptor 
CCR3 (229). Additionally, many questions remain unanswered. 
For instance, it remains unclear when all those chemoattract-
ants actually play a role during the asthmatic response and this 
needs to be addressed, notably by defining the presence of all 
eosinophil and ILC2 chemoattractants in the same samples and 
at different stages of the disease/exacerbation. Experimental 
restrictions such as specie (mouse vs. humans) or the number 
of chemoattractants being investigated in a given study make the 
obtained data a little blurry, sometimes raising more questions 
than answering them. In addition, the involvement of the differ-
ent chemoattractants as the disease worsens remains anecdotal. 
Given that severe asthmatics are frequently older than mild and 
moderate asthmatics, it is possible that the set of chemoattract-
ant changes with age and perhaps, with gender as well [keeping 
in mind that aging modulates sex hormones, which could affect 
the synthesis of the different chemoattractants as it is the case for 
5-lipoxygenase derivatives (230)]. Another important aspect of 
this review is the illustration that some of the best chemoattract-
ants for human eosinophils are not present or are effectless in 
murine models (Table 1), raising the question that perhaps data 
obtained from animal models should be taken cautiously until 

they are validated in humans. Finally, if ILC2 play a prominent 
role in asthma as it is proposed from mouse data, it will be of 
crucial importance to rapidly understand the regulation of their 
recruitment into the airways, by defining which chemokines, 
lipids, and other chemoattractants are promoting their recruit-
ment both in mice and humans, as well as all the receptors 
involved in that process.
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