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Abstract

Leaf-cutting ants (LCAs) are polyphagous, yet highly selective herbivores. The factors that govern their selection of food
plants, however, remain poorly understood. We hypothesized that the induction of anti-herbivore defences by attacked
food plants, which are toxic to either ants or their mutualistic fungus, should significantly affect the ants’ foraging
behaviour. To test this ‘‘induced defence hypothesis,’’ we used lima bean (Phaseolus lunatus), a plant that emits many volatile
organic compounds (VOCs) upon herbivore attack with known anti-fungal or ant-repellent effects. Our results provide three
important insights into the foraging ecology of LCAs. First, leaf-cutting by Atta ants can induce plant defences: Lima bean
plants that were repeatedly exposed to foraging workers of Atta colombica over a period of three days emitted significantly
more VOCs than undamaged control plants. Second, the level to which a plant has induced its anti-herbivore defences can
affect the LCAs’ foraging behaviour: In dual choice bioassays, foragers discriminated control plants from plants that have
been damaged mechanically or by LCAs 24 h ago. In contrast, strong induction levels of plants after treatment with the
plant hormone jasmonic acid or three days of LCA feeding strongly repelled LCA foragers relative to undamaged control
plants. Third, the LCA-specific mode of damaging leaves allows them to remove larger quantities of leaf material before
being recognized by the plant: While leaf loss of approximately 15% due to a chewing herbivore (coccinelid beetle) was
sufficient to significantly increase VOC emission levels after 24 h, the removal of even 20% of a plant’s leaf area within 20
min by LCAs did not affect its VOC emission rate after 24 h. Taken together, our results support the ‘‘induced defence
hypothesis’’ and provide first empirical evidence that the foraging behaviour of LCAs is affected by the induction of plant
defence responses.
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Introduction

Leaf-cutting ants (LCAs) are among the most polyphagous and

voracious herbivorous insects known of the Neotropics, cutting up

to 15% of the standing leaf crop [1,2] and up to 50% of the species

available in the vicinity of their colonies [2,3]. The ants use the

harvested leaf material to cultivate a symbiotic fungus that in turn

produces protein-rich food bodies - the sole food for the ants’

larvae. The sophisticated habit of cultivating a symbiotic fungus is

generally believed to be key to the LCAs’ tremendous ecological

success [2]. Although LCAs attack an enormous diversity of plant

species, their choice of food plants is highly selective. While a

number of leaf characteristics such as nutrient content, leaf

toughness and the amount of compounds toxic to the ants or the

fungus have been identified to affect their choice of plants [4-9],

several fundamental issues regarding the foraging ecology of these

ants remain obscure.

LCA colonies are largely sessile and explore their home range

via a complex system of foraging trails [10]. As central-place

foragers, LCA are expected to minimize the costs of their leaf

harvest (i.e. time spend during foraging, trail construction and

maintenance) and at the same time maximise their gain in terms of

energy intake. This idea, which is encapsulated in the so-called

‘optimal foraging theory’ (OFT, [11]), predicts for an environment

with a patchy distribution of food resources that once a suitable

food plant has been detected by scouting ants, foraging workers

will defoliate it to a point, at which the rate of food intake drops

below the average rate for the rest of the habitat. This prediction

has been termed ‘marginal value theorem’ [12]. In doing so, the ants

would maximise the growth of their symbiotic fungus, and hence

of the whole ant colony and - at the same time - reduce energetic

costs incurred by the search for new food plants such as the

establishment of new foraging trails (e.g. [13]). Another prediction

made by the OFT is that given two plant individuals with equal

leaf qualities (e.g. same plant species), foraging ants should always

select the plant individual that is closest to the nest to reduce

travelling time.

In contrast to these predictions, two observations have puzzled

researchers for decades: First, it has frequently been observed that

foraging LCA colonies stop exploiting a tree long before it has
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been completely defoliated, although it might still be a profitable

food resource [14]. Such attacks rarely last longer than one day

and only few plant individuals face persistent defoliation for more

than one week [2,10,15]. Second, LCAs often travel greater

distances to harvest leaves from trees, even though conspecific

plants with presumably equal leaf qualities are available much

closer to the nest [16,17].

Several hypotheses have been put forward to explain these

phenomena: First, the ‘resource conservation hypothesis’ [16] predicts

that LCA-colonies ‘conserve’ preferred resources by limiting the

inflicted damage. Second, the ‘nutrient balance hypothesis’ [18] argues

that LCAs should aim at selecting a variety of leaves from different

plants to provide a suitable mix of nutrients to optimize fungal

growth. Third, LCA defoliation patterns could be explained by the

OFT, given a patchy distribution of resource qualities even among

conspecific plants [15,17]. Finally, and along similar lines as the

previous hypothesis, the observed pattern could be explained by

the fact that the continuous removal of leaf material from a plant

may lead to the induction of anti-herbivore defences [19,20]. This

possibility, hereafter referred to as ‘induced defence hypothesis’, predicts

that herbivory results in an immediate or delayed activation of

plant defences, which may adversely affect the same or future

generations of the attacking herbivores. If the cutting of leaves

induced plant defences, LCA foraging would generate a dynamic

mosaic of plants at varying induction levels in their foraging area

that might explain the abovementioned pattern.

The spectrum of mechanisms plants use to protect themselves

against herbivores ranges from direct defences that immediately

affect the attacking herbivores (e.g. mechanical barriers or toxic

compounds [21]) to indirect defences that facilitate ‘top-down’

control of herbivore populations by attracting the herbivore’s

natural enemies [22]. One of the most widely distributed defence

mechanisms that can act both directly [23,24] and indirectly [25–

27] is the emission of herbivore-induced volatile organic

compounds (VOCs). Both direct and indirect plant defences can

either be expressed constitutively or be induced following

herbivore attack. Induction of plant defences is usually regulated

by the octadecanoid pathway [28,29], in which jasmonic acid (JA)

acts as the central signalling molecule [30]. External application of

JA-solution induces defence mechanisms including the release of

VOCs [31], thereby providing a convenient tool that allows

defence induction without the need to damage leaf tissues.

To test the ‘induced defence hypothesis’, we selected lima bean

(Phaseolus lunatus) as a model plant that likely is also attacked by

LCAs in nature [32,33] and is readily harvested by our laboratory

Atta colonies. This plant species is very well-known for increasing

its emission rate of VOCs following herbivore attack (for review

see [22]) and JA application. Moreover, the blend of VOCs

emitted from JA-treated plants closely resembles the one released

after herbivore damage both quantitatively and qualitatively [34].

Moreover, several compounds of the volatile blend emitted from

induced lima beans are known to be toxic to LCAs and/or their

mutualistic fungus, or exhibit a general fungicidal activity and

hence act as a direct defence in this context. For example, (E)-b-

ocimene was highly repellent against Atta cephalotes workers [35], b-

caryophyllene repelled ants of the same species and inhibited the

growth of their fungus [6,7], and both (R)-(-)-linalool and methyl

salicylate have general fungicidal properties [36,37].

Hence, we speculated that if the ‘induced defence hypothesis’ was

correct, leaf damage by LCA should induce anti-herbivore

defences in the attacked plant including the emission of VOCs.

These, in turn, might function as a direct defence against both ants

and their symbiotic fungus and therefore repel ant workers. If this

was true, two requirements should be met: i) LCA damage should

induce VOC emission in lima bean plants, and ii) LCA workers

should be repelled from induced lima bean plants. We verified

these predictions by both measuring the VOCs emitted from

LCA-damaged and JA-treated lima beans and in dual choice

assays, in which foraging workers of the LCA Atta colombica were

simultaneously exposed to differentially treated lima bean plants

and untreated control plants.

Materials and Methods

Study Species
Bioassays were conducted with three laboratory colonies of

LCAs (Formicidae: Atta colombica). The ant colonies originated

from Gamboa, Panama, were about 6 years old and their fungus

gardens occupied about 15 l each. Lima bean plants (Fabaceae: P.

lunatus) L. Ferry Morse cv. Jackson Wonder Bush were raised in a

greenhouse with a 12 h photoperiod (daylight and artificial light;

7:00–19:00) and minimal night temperatures at 20uC. Plants were

grown in plastic pots with 14 cm in diameter. Plant used for the

bioassays were 3–6 weeks old and had developed 2–5 leaves.

Experiment 1: LCA Damage (24 h)
To analyse whether LCA damage induces significantly

increased emission rates of VOCs within 24 h post ant attack

and if so, whether this affects the ants’ foraging decision, test plants

were subjected to one of five different treatments: (I) Exposure of

lima bean plants to a singular event of LCA-herbivory until the

ants had removed approximately 20% of the leaf area (duration

ca. 20 min). (II) Simulation of LCA-herbivory (i.e. removing leaf

pieces of similar size as LCA-cut fragments) with nail scissors by

removing 20% of the leaf area. This treatment was performed to

exclude potential error sources resulting from (a) ants preferring

previously visited plants, and (b) VOC induction by potential, yet

unknown, elicitors from the ants’ oral secretions. (III) Piercing of

the whole leaf area with a pincushion to disrupt a larger number of

cells without causing wounded leaf margins, that LCAs prefer as

starting points for new cuts [4, personal observation]. (IV)

Spraying the plants with a 1 mmol aqueous solution of JA until

the leaf-surfaces were completely covered [38]. (V) Exposure of

plants to LCA herbivory as described above with subsequent JA

application similar to treatment IV to test for additivity of the two

treatments. Untreated plants served as controls. All treatments

were applied simultaneously to one set of plants within 20–30

minutes. After that, plants were placed back into the greenhouse to

allow the induction of plant defences. The next day (i.e. after

24 h), the so-treated plants were used to quantify the amount and

composition of the VOCs emitted as well as for dual-choice

experiments with LCA colonies (see below).

Experiment 2: Beetle Damage (24 h)
As a control experiment that aimed at quantifying the amount

of HI-VOCs emitted from lima bean plants that have been

damaged by an herbivore with chewing mouthparts within 24 h,

16 plants were exposed to five Mexican bean beetles each

(Coccinellidae: Epilachna varivestis Mulsant). This was done by

enclosing bean tendrils for 24 h in bags made of nylon nets into

which beetles have been inserted. Sixteen control plants were left

untreated and six plants treated with JA as described above. After

24 h, beetles were removed, plants were bagged and the emitted

VOCs collected and measured as described below.

Experiment 3: Time Course of LCA Damage (0–4 d)
The question whether a prolonged LCA-defoliation of lima

beans results in significantly increased emission rates of VOCs and

Plant Defence Induction Affects LCA Foraging
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if so, whether this also affects LCA foraging was addressed by

increasing the damage level applied by LCAs to plants step-wise

over the course of four days. Plants were left untreated (control) or

exposed to LCA foragers until approximately 20% of the leaf area

of the plants has been removed (1 d). Other plants were exposed to

LCA foragers daily over the course of either 2, 3 or 4 days. On

each day, ants were allowed to remove 20% of the available leaf

area (2–4 d), which in general lasted approximately 20–30 min.

After each LCA treatment, plants were placed back into the

greenhouse to allow defence induction. After 24 h, the so-treated

plants were either treated again or used to quantify the amount

and composition of the VOCs emitted as well as for dual-choice

experiments with LCA colonies (see below).

Measurement of VOC Production
After application of the respective treatments, plants were

immediately bagged in a PET foil (‘Bratenschlauch’, Toppits,

Minden, Germany) that does not emit detectable amounts of

volatiles and placed in the greenhouse for 24 h. During this time,

the emitted VOCs were collected continuously on charcoal traps

(1.5 mg charcoal, CLSA-Filters, Le Ruissaeu de Montbrun,

France) using air circulation as described previously [39]. After

24 h, leaf areas of the plants were estimated with a leaf area

analyzer (Experiments 1 and 3; LI 3100, Li-Cor, Nebraska, USA)

or the dry weight of the leaves determined (Experiment 2).

Volatiles were eluted from the carbon trap with dichloromethane

(40 ml) containing 1-bromodecane (200 ng ml21) as an internal

standard. Samples were stored at 220uC and analyzed on a GC-

Trace mass spectrometer (Thermo Finnigan: www.thermofinni

gan.com) according to Koch et al. [40]. Individual compounds

(peak areas) were quantified with respect to the peak area of the

internal standard and related to the leaf area of the measured plant

(Experiments 1 and 3) or the dry weight of the emitting leaves

(Experiment 2).

Dual Choice Bioassays
To quantify attractiveness of treated lima bean plants to

foraging workers, bioassays were performed in an open plexiglass

arena (60660610 cm). For each replicate, two potted plants (i.e.

untreated control and treated plant) were inserted into the arena

by placing them in two holes in the base of the arena that were

equally spaced from the centre. The holes were covered with a

divided plastic disc sparing the stem of the plant. The ants entered

the arena via a tube that ended in the centre of the arena.

Harvested leaf area was estimated by outlining the leaf contours of

test and control plants before and after the feeding trial. A trial was

stopped after the ants had removed approximately 20% of the leaf

area of one of the two plants. After each trial, the arena was wiped

with 70% ethanol to remove residual ant pheromones that might

influence subsequent experiments. This bioassay was replicated at

least 11 times per plant treatment and at least two trials per plant

treatment were performed for each of the three colonies.

Preference was calculated as a ‘mean acceptability index’ (MAI). For

this purpose, the leaf area removed from the focal plant was

divided by the area removed from the sum of both test and control

plants. The resulting values range from 0 (total rejection of test

plant) to 1 (100% preference of the test plant).

Statistical Analysis
MAI data was analysed with a mixed-effect model with

‘treatment’ as fixed and ‘ant colony’ as random variable. MAI

values were rank- or squareroot-transformed to meet the test

assumption of homogeneous variances. The effect of treatments on

the total amount of VOCs emitted was evaluated with a Welch test

due to heterogenous variances. Differences between treatments

were analysed with Tamhane’s post-hoc test. A Spearman rank

correlation was applied to test the relationship between i) the

amount of volatiles emitted from a given plant and the

corresponding MAI measured, or ii) the amount of volatiles

emitted from a given plant and the amount of damage received

after feeding of Mexican bean beetles. These analyses were done

using SPSS 17.0 (SPSS Inc., Chicago, USA).

The similarity between VOC profiles emitted from differentially

treated plants was estimated as the Euclidean distance in a

multidimensional space, in which each VOC represented one

dimension. For this, a Euclidean dissimilarity matrix was

calculated from the dataset, which was then subjected to an

agglomerative hierarchical clustering method (unweighted pair-

group method with arithmetic mean, UPGMA) that can be

represented graphically by means of a dendrogram. This analysis

was performed using the R statistical package [41].

Results

Volatile Emission 24 h after LCA Damage
Lima bean plants responded to the different treatments with

strong and significant differences in the total amount of VOCs

emitted (Fig. 1A; Welch test: F5, 109 = 7.864, P,0.001). VOC

emission was small to negligible after a 20% reduction of their leaf

area by foraging LCAs (treatment I) and mechanical damage by

scissors (II) and pincushion (III) (Fig. 1A). In contrast, JA-treatment

alone (IV) or combined with LCA herbivory (V) drastically

increased (.20-fold) the amount of volatiles emitted.

The most dominant VOCs emitted from JA-treated plants or

plants that experienced a combination of LCA damage and JA

treatment were (3Z)-hex-3-enyl acetate, (E)-b-ocimene, (R)-(-)-

linalool, (3E)-4,8-dimethylnona-1,3,7-triene (DMNT), (3E,5E)-2,6-

dimethyl-1,3,5,7-octatetraene (C10H14), 2,6-dimethylocta-3,5,7-

triene-2-ol (C10H16O), (3E,7E)-4,8,12-trimethyltrideca-1,3,7,11-

tetraene (TMTT) (Table 1).

According to a cluster analysis of all plants that had received

one of the five treatments and of which the amounts of each of

eight most dominantly emitted VOCs had been quantified

(Table 1), the VOC profile emitted from LCA-damaged plants

(treatment I) clustered together with undamaged controls and

mechanically damaged plants (treatments II and III). In contrast,

the JA-treated and ‘JA + LCA-damage’-treated plants (treatments

IV and V) that showed the highest emission levels of VOCS

(Fig 1A) formed a separate cluster that was distinct from all other

treatments (Fig. 2).

Food Plant Preference 24 h after LCA Damage
Determination of food plant preferences revealed a highly

significant response that strongly depended on the different

treatments applied (Fig. 1B; univariate ANOVA: F4, 103 =

10.065, P,0.001), while colony identity did not affect the model

(‘ant colony’ as random factor, univariate ANOVA: F2, 103 =

0.315, P.0.05). LCAs clearly preferred plants they had cut 24 h

before over undamaged control plants (treatment I). Mechanical

damage of plants by either scissors (II) or a pincushion (III) elicited

a similar, yet weaker preference over control plants (Tamhane’s

post-hoc test: P,0.05). Finally, foraging workers strongly discrim-

inated against plants that either had been treated with JA alone or

in combination with LCA damage (treatments IV and V) relative

to control plants. Analysis of the statistical relationship between the

MAIs measured and the amount of VOCs emitted revealed a

highly significant negative correlation between these two param-
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eters (Fig. 1; Spearman rank correlation: R = 20.766, n = 37,

P,0.001).

Volatile Emission 24 h after Beetle Feeding
The level of VOCs induced in the lima bean after damage of

herbivores with chewing mouthparts was measured after plants

have been exposed to five Mexican bean beetles for 24 h. On

average, beetles had consumed 14.263.5% (mean695% CI) of

the plants’ total leaf area during this time and there was a

significant positive correlation between the leaf area damaged and

the total amount of HI-VOCs emitted (Spearman rank correla-

tion: R = 0.538, n = 18, P = 0.021). Moreover, beetle damage

significantly increased the total amount of VOCs emitted after

24 h relative to control plants and to a level that was indis-

tinguishable from JA-treated plants (Fig. 3, Welch test: F2, 37 =

33.152, P,0.001). Also the quantitative composition of the VOC

blend emitted from beetle-damaged and JA-treated plants strongly

resembled each other (Table 2). The only exception was the

emission rate of b-caryophyllene from plants that have been

damaged by beetles, which was ca. 10-fold increased over the

emission rates of JA-treated plants (Table 2).

Time Course of LCA Damage over 4 d: Volatile Emission
and Food Plant Preferences

The amount of VOCs emitted from LCA-damaged plants 24 h

post ant damage was statistically indistinguishable from undamaged

controls (Fig. 4A; Welch test: F4, 52 = 13.172, P,0.001; Tamhane’s

post-hoc test: P.0.05). However, a further increase of the damage

level inflicted by LCAs over the course of four days resulted in a

gradual increase of the amount of VOCs emitted from LCA-

damaged plants (Fig. 4A). The total amount of VOCs emitted from

the so-treated plants was significantly elevated over emission levels

from undamaged control plants starting at day three after the onset

of the LCA damage treatment (Welch test: F4, 52 = 13.172,

P,0.001; Tamhane’s post-hoc test: P,0.05). Correspondingly,

when subjected to bioassays, LCA workers distributed their foraging

effort equally among two undamaged plants as well as between an

undamaged plant and a plant from which LCAs had removed 20%

of its leaf area 24 h before (Fig. 4B). However, offering plants that

had been damaged repeatedly by LCAs over a period of three or

four days prompted foraging workers to significantly discriminate

against these plants relative to undamaged controls (Fig. 4B;

univariate ANOVA: F4, 35 = 6.084, P,0.01, Tamhane’s post-hoc

test: P,0.05). As before, the identity of the colony did not influence

the test result (‘ant colony’ as random factor, univariate ANOVA:

F3, 35 = 0.041, P.0.05). Finally, testing the statistical relationship

between the MAIs measured and the amount of VOCs emitted

revealed a significant negative correlation between these two

parameters (Fig. 4; Spearman rank correlation: R = 20.294,

n = 46, P,0.05).

Discussion

The aim of the present study was to verify whether the

induction of anti-herbivore defences in plants affects the foraging

behaviour of LCAs. To test this ‘induced defence hypothesis’, we used

the emission of VOCs from lima bean as a model system. This

plant species increases its VOC emission upon herbivore feeding

[22,34] and some of the emitted compounds have a demonstrated

ant-repellent or fungicidal effect [6,7,35–37]. In fact, dual-choice

bioassays indicated that foraging workers discriminated signifi-

cantly against JA-treated plants, which emitted particularly high

VOC levels (Fig. 1). The supposed link between the focal induced

defence and the LCAs’ foraging decision was further corroborated

by a strong correlation between the MAIs measured and the

amount of VOCs emitted. Both findings not only support our a

priori assumption that the VOC blend emitted from induced lima

bean plants should have a detrimental effect on ants and/or their

mutualistic fungus, but are also in line with the ‘induced defence

hypothesis’.

Few studies so far have investigated whether the LCAs’ foraging

decision is altered in response to previous plant damage and/or

herbivory. In field experiments, Howard [42] detected a slight

decrease in the attractiveness of experimentally scissor-cut leaves

of Spondias mombin and Bursera simaruba towards Atta colombica

workers, which, however, could not be explained with induced

changes of the leaves’ chemistry. Moreover, Oliveira et al. [43]

observed that Atta sexdens rubropilosa cut significantly smaller

fragments from Eucalyptus plants, which were previously damaged

by Thyrinteina arnobia relative to control plants. The authors of this

study interpreted this finding as a possible response to the

induction of the plant’s defence system. In contrast, Vasconcelos

[44] did not detect a discrimination against plants that had been

attacked by Atta laevigata in the five preceding months. Unfortu-

nately, these studies did not provide unambiguous evidence to

either support or reject the ‘induced defence hypothesis’.

Figure 1. Volatile emission from plants and behavioural
response of ants upon different treatments of lima bean
plants (Phaseolus lunatus). (A) Mean total amount (695% CI) of VOCs
emitted from plants. Bars represent the total peak area relative to the
peak area of an internal standard per 24 h and per 100 cm2 leaf surface.
The following compounds have been included: (3Z)-hexen-1-yl acetate,
(E,Z)-b-ocimene, (R)-(-)-linalool, DMNT, C10H14, C10H16O, indole, and
TMTT. Treatments were: C) untreated control, I) LCA damage, II) scissor
damage, III) pincushion damage, IV) JA-treatment, and V) LCA-herbivory
and subsequent JA-treatment. Sample sizes were 8, 4, 8, 8, 13, and 4
respectively. Different letters above bars indicate significant differences
(Tamhane’s post-hoc test, P,0.05). (B) Mean acceptability index
(MAI695% CI) of Atta colombica workers for differentially treated test
plants relative to untreated controls. Treatments like in (A). Sample sizes
were 16, 15, 26, 40, and 15 respectively. Different letters indicate
significant differences (Tamhane’s post hoc-test: P,0.05).
doi:10.1371/journal.pone.0022340.g001
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Here we demonstrated for the first time that the experimental

induction of plant defences can significantly affect the ants’

foraging decision. Moreover, the emitted VOCs have been

identified as one plausible mechanism that can exert this defensive

effect. Even though no other inducible direct defence besides

VOCs is known to contribute to the lima bean’s defence syndrome

[34], our experimental design does not allow to rule out the

Table 1. Qualitative and quantitative comparison of the VOC profiles emitted from lima bean plants after different treatments.

Relative emission of VOCs (AVOC AIS
21 100 cm22 24 h21)

Treatment C I II III IV V

Sample size/Compound/ n = 8 n = 4 n = 8 n = 8 n = 13 n = 4

(3Z)-hexen-1-yl acetate 0 0 0 0 0.8160.74 0.1760.14

(E,Z)-b-ocimene 0 0 0 0 2.4160.82 3.4763.19

(R)-(-)-linalool 0 0.0260.03 0 0 0.1460.04 0.1160.11

DMNTa 0.0160.01 0.0460.05 0.0160.01 0.0160.01 0.2760.26 0.1960.24

C10H14
b 0 0 0 0.0160.01 0.2460.11 0.0860.07

C10H16Oc 0 0.0160.02 0.0160.01 0.0560.05 0.8760.32 0.3960.34

Indole 0 0 0 0 0.0260.02 0

TMTTd 0 0.0160.02 0.0160.01 0.0160.01 0.0260.02 0.0160.01

a = (3E)-4,8-dimethylnona-1,3,7-triene,
b = (3E,5E)-2,6-Dimethyl-1,3,5,7-octatetraene,
c = 2,6-dimethyl-octa-3,5,7-triene-2-ol,
d = (3E,7E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene.
VOC amounts shown are mean peak areas (695% CI) relative to the peak area of an internal standard per 24 h and per 100 cm2 leaf surface. Treatments were: C)
untreated control, I) LCA herbivory, II) scissor damage, III) pincushion damage, IV) JA-treatment, and V) LCA-herbivory and subsequent JA-treatment.
doi:10.1371/journal.pone.0022340.t001

Figure 2. Hierarchical clustering (UPGMA) of the volatile
blends emitted from differentially treated plants. Each tip
corresponds to one replicate. Plant treatments were: untreated control
(%); LCA herbivory (X); scissor damage (m); pincushion damage (N);
JA-treatment (w); LCA-herbivory with subsequent JA-treatment (&).
doi:10.1371/journal.pone.0022340.g002

Figure 3. Comparison of the total amount of VOCs emitted
from differentially treated lima bean plants. Plants were left
undamaged (C), herbivore-damaged (H, Mexican bean beetle (Epilachna
varivestis)), or treated with the phytohormone JA (JA). The total of the
following emitted volatiles are given as mean peak area (695% CI)
relative to the peak area of an internal standard per 24 h and per gram
dry weight: (3Z)-hexen-1-yl acetate, (E,Z)-b-ocimene, (R)-(-)-linalool,
DMNT, C10H14, methyl salicylate, C10H16O, (Z)-jasmone, b-caryophyllene,
TMTT. Plants of the herbivore treatment were exposed to five beetles
for 24 h, which had consumed 14.263.5% (mean695% CI) of the plants
total leaf area (5 leaves). Sample sizes were 16, 16, and 6 respectively.
Different letters indicate significant differences between treatments
(Tamhane’s post-hoc test: P,0.05).
doi:10.1371/journal.pone.0022340.g003
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possibility that also other inducible defences may have been

operating. In any case, the LCA behaviour during the dual choice

bioassays (experiments 1 and 3) suggested a chemical plant-derived

factor causing the observed preference/rejection response: after

entering the arena used for the bioassays, a larger number of LCA

foragers visited both plant individuals offered in approximately

equal proportions without cutting. After a certain time, ants

suddenly started to leave one plant and began to cut the respective

other one. In future, it will be very interesting to further study

whether VOCs are responsible for the observed repellence and if

other induced plant defences can have a similar effect.

Given that LCAs were repelled from JA-induced plants, our

next question was whether also their own attack could induce the

plant’s defence responses. Surprisingly, an individual cutting event

of LCAs did not affect a plant’s VOC emission rates detectably.

Instead, this treatment resembled mechanically damaged rather

than induced plants (Figs. 1 and 2, Table 1) both in terms of the

total amount of VOCs emitted (Fig. 1A) and the qualitative and

quantitative composition of the emitted blend (Table 1, Fig. 2).

Consequently, the strong induction that was observed when JA

treatment and LCA damage were combined, was likely due to the

phytohormone treatment and not caused by the LCA damage

inflicted. An analogous pattern emerged from behavioural

observations in dual-choice bioassays, in which foraging workers

were attracted to plants that had experienced LCA damage the

previous day.

Our observation that LCA defoliation of approximately 20%

did not induce significantly increased emission levels of VOCs is

quite unusual and in stark contrast to previous studies. For lima

bean and many other plants species such as tobacco, corn or

cotton it is well-documented that herbivore damage causes a more

or less pronounced increase in the emission of VOCs (for review

see [45]). For example, removal of 20% leaf area by feeding

Spodoptera littoralis larvae induced the emission of VOCs in Zea mays

plants [46]. We could confirm this observation in control

experiments with Mexican bean beetles that were allowed to feed

on lima bean plants for 24 h. During this time, beetles removed on

average 14% of the plants’ leaf surface and induced emission levels

Table 2. Qualitative and quantitative comparison of the VOC profiles emitted from lima bean plants after different treatments.

Relative emission of VOCs (AVOC AIS
21 g21 24 h21)

Treatment C H JA

Compound/Sample size n = 16 n = 16 n = 6

(3Z)-hexen-1-yl acetate 0.0360.02 0.560.2 0.460.3

(E,Z)-b-ocimene 0.0260.02 2.961.0 2.561.2

(R)-(-)-linalool 0.0560.04 0.960.3 0.360.2

DMNTa 0.0860.04 2.560.9 1.961.0

C10H14
b 0.0560.04 1.660.3 1.160.5

methyl salicylate 0.1260.1 0.760.2 0.160.1

C10H16Oc 0.0960.07 4.360.9 2.160.9

(Z)-jasmone 0.0160.01 0.660.2 1.760.9

b-caryophyllene 0.0260.01 6.361.8 0.460.3

TMTTd 0.0460.02 1.160.5 0.961.0

a = (3E)-4,8-dimethylnona-1,3,7-triene,
b = (3E,5E)-2,6-Dimethyl-1,3,5,7-octatetraene,
c = 2,6-dimethyl-octa-3,5,7-triene-2-ol,
d = (3E,7E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene.
VOC amounts shown are mean peak areas (695% CI) relative to the peak area of an internal standard per 24 h and per g dry weight. Treatments were: C) untreated
control, H) herbivory by five Mexican bean beetles for 24 h, and JA) JA-treatment.
doi:10.1371/journal.pone.0022340.t002

Figure 4. Time-course of defence induction in lima bean plants
(Phaseolus lunatus) during 4 days of repeated LCA damage and
behavioural response of ants upon exposure to LCA-damaged
plants. Plants were undamaged (0 d) or ants were allowed to remove
20% of the plant’s total leaf area per day for one or several days. (A)
Mean total amount of VOCs (695% CI) emitted from plants. Bars
represent the total peak area relative to the peak area of an internal
standard per 24 h and per 100 cm2 leaf surface. Compounds included
are: (3Z)-hexen-1-yl acetate, (E,Z)-b-ocimene, (R)-(-)-linalool, DMNT,
C10H14, C10H16O, indole, and TMTT. Samples sizes were 20, 6, 12, 12,
and 7 respectively. (B) Mean acceptability index (MAI 695% CI) of Atta
colombica workers for differentially treated test plants (i.e. same
treatments as in A) relative to untreated controls. Sample size was 11
for all comparisons. Different letters indicate significant differences
(Tamhane’s post hoc-test: P,0.05).
doi:10.1371/journal.pone.0022340.g004
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of VOCs that were statistically indistinguishable from JA-treated

plants (Fig. 3). Moreover, mechanical damage of lima bean plants

by a computer-controlled device (‘MecWorm’) indicated that the

removal of 20% of the plant’s total leaf surface was sufficient to

significantly increase the emission rates of many blend constituents

to a level that is quantitatively comparable to the one emitted from

herbivore-induced plants (i.e. feeding of Spodoptera littoralis and

Cepaea hortensis) [47].

Why then did LCA damage not result in increased VOC

emission rates after 24 h? The answer to this question may lay in

the fact that in most previous studies herbivores with either

chewing (e.g. caterpillars, beetles) or piercing (e.g. aphids, mites)

mouthparts have been used. Also, the mechanical device

mentioned above (i.e. ‘MecWorm’) has been programmed such

that its mode of action mimics a chewing herbivore both in terms

of leaf area damaged and damage time [47]. The amount of

VOCs emitted 24 h after LCA damage, however, resembled the

emission pattern after a singular event of mechanical damage

(Figs. 1A and 2), rather than prolonged feeding of an herbivore

with chewing or sucking mouthparts. Another reason for the

lacking plant response could be either the absence or an

insufficient contact with plant-inducing chemical factors in the

ants’ saliva as they are known from the regurgitate of many

lepidopteran larvae [48]. Even though it is known that LCAs

ingest plant juices from cut leaves [49], they may introduce less

oral secretions and hence less potential VOC elicitors into the

damaged leaf than e.g. Mexican bean beetles. This factor may

explain why the plants’ response to LCA attacks resembled

mechanical damage more than induction by chewing herbivores.

Since it is known that the VOC emission after leaf damage

correlates positively with the damage level inflicted ([46,47], beetle

feeding in this study), we tested whether increasing both the

duration and the amount of LCA damage can induce VOC

emission. Indeed, increasing LCA damage levels stepwise over the

course of four days resulted in significantly increased emission

rates of VOCs after three and four days relative to undamaged

controls (Fig. 4A). Moreover, foraging ant workers were

significantly repelled from these LCA-damaged plants (Fig. 4B)

to an extent that was comparable to JA-treated plants (Fig 1B).

This means that compared to e.g. chewing insect herbivores, the

way LCAs damage their food plants [50] allows foraging workers

to harvest larger quantities of leaves before they are recognized by

the food plant. This interpretation is consistent with field

observations reporting that mature leaf-cutting ant colonies focus

their foraging effort on a relatively small number of plant

individuals that are heavily attacked for a short period of time,

until the plant is abandoned and the colony switches to use a new

food plant [2,10].

Taken together, we could demonstrate for the first time that LCA

damage can induce the emission of VOCs in attacked plants.

Moreover, LCA workers were strongly repelled from plants that

emitted high amounts of VOCs. Hence, these observations support

prior predictions made by the ‘induced defence hypothesis’. Given

the taxonomically widespread distribution of inducible anti-

herbivore defences in plants [20], it appears reasonable to assume

that the LCA foraging activities generate a dynamic mosaic of plants

at different induction stages within a colony’s home range. The

spatio-temporal distribution of plants at different induction levels

should in turn affect the ants’ foraging decisions and may thus

account for several unexplained phenomena, such as the premature

abandonment of still profitable leaf sources. Whether the emitted

VOCs are causal for the observed ant-repellence as well as to which

extend LCA defoliation can also induce other direct or indirect

defence responses in the attacked plants are interesting questions

that should be addressed in future studies.

Another key finding of this study is that leaf-cutting of Atta

colombica workers did not induce VOC emission until three days

after the first treatment, despite considerable leaf loss. This is in

contrast to what is known from herbivores with chewing or piercing

mouthparts, where the removal of even less leaf area is already

sufficient to significantly induce VOC emission within 24 h. Hence,

our results suggest that the ants’ mode of leaf-cutting allows them to

maximize the amount of leaf area removed before being recognized

by their food plants. This finding represents a novel mechanism of

how generalist herbivores thwart the recognition system of their

food plants and contributes to our understanding of the polyphagy

and drastic herbivorous impact of leaf-cutting ants.
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23. Paré PW, Tumlinson JH (1999) Plant volatiles as a defense against insect

herbivores. Plant Physiol 121: 325–331.

24. Takabayashi J, Dicke M (1996) Plant-carnivore mutualism through herbivore-

induced carnivore attractants. Trends Plant Sci 1: 109–113.

25. Bernasconi ML, Turlings TCJ, Ambrosetti L, Bassetti P, Dorn S (1998)

Herbivore-induced emissions of maize volatiles repel the corn leaf aphid,

Rhopalosiphum maidis. Entomol Exp Appl 87: 133–142.

26. Dicke M (1986) Volatile spider-mite pheromone and host-plant kairomone,

involved in spaced-out gregariousness in the spider mite Tetranychus urticae.

Physiol Entomol 11: 251–262.

27. Turlings TCJ, Tumlinson JH (1991) Do parasitoids use herbivore-induced plant

chemical defences to locate hosts? Flo Entomol 74: 42–50.

28. Dicke M, van Loon JJA (2000) Multitrophic effects of herbivore-induced plant

volatiles in an evolutionary context. Entomol Exp Appl 97: 237–249.

29. Gols R, Roosjen M, Dijkman H, Dicke M (2003) Induction of direct and indirect

plant responses by jasmonic acid, low spider mite densities, or a combination of

jasmonic acid treatment and spider mite infestation. J Chem Ecol 29:

2651–2666.

30. Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants.

Annu Rev Plant Physiol Plant Mol Biol 48: 355–381.

31. Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for

defense gene expression. Curr Opin Plant Biol 1: 404–411.

32. Vieira RF, Vieira C, de Andrade GA (1992) Agronomic comparison of beans

Phaseolus and Vigna genera with the common bean (Phaseolus vulgaris l.). Rev Pesq

Agropec Bras 27: 841–850.

33. Hill DS (2008) Major tropical crops and their pest spectra. In: Hill DS, ed. Pests

of crops in warmer climates and their control: Springer Netherlands. pp
511–658.

34. Kost C, Heil M (2008) The defensive role of volatile emission and extrafloral

nectar secretion for lima bean in nature. J Chem Ecol 34: 2–13.
35. Chen TK, Wiemer DF, Howard JJ (1984) A volatile leafcutter ant repellent from

Astronium graveolens. Naturwissenschaften 71: 97–98.
36. Hammer KA, Carson CF, Riley TV (2003) Antifungal activity of the

components of Melaleuca alternifolia (tea tree) oil. J Appl Microbiol 95: 853–860.

37. Zhang ZZ, Li YB, Qi L, Wan XC (2006) Antifungal activities of major tea leaf
volatile constituents toward Colletorichum camelliae Massea. J Agric Food Chem 54:

3936–3940.
38. Kost C, Heil M (2006) Herbivore-induced plant volatiles induce an indirect

defence in neighbouring plants. J Ecol 94: 619–628.
39. Donath J, Boland W (1995) Biosynthesis of acyclic homoterpenes: Enzyme

selectivity and absolute configuration of the nerolidol precursor. Phytochemistry

39: 785–790.
40. Koch T, Krumm T, Jung V, Engelberth J, Boland W (1999) Differential

induction of plant volatile biosynthesis in the Lima bean by early and late
intermediates of the octadecanoid-signaling pathway. Plant Physiol 121:

153–162.

41. R Development Core Team (2007) R: A language and environment for
statistical computing. 2.5.1 (2007–06–27) ed Vienna. Austria: The R Foundation

for Statistical Computing.
42. Howard JJ (1990) Infidelity of leaf-cutting ants to host plants: resource

heterogeneity or defense induction? Oecologia 82: 394–401.
43. de Oliveira HG, Lacerda FG, Marinho CGS, Della Lucia TMC (2004) Atta

sexdens rubropilosa attractiveness to Eucalyptus plants previously attacked or not by

Thyrinteina arnobia. Pesq Agropec Bras 39: 285–287.
44. Vasconcelos HL (1997) Foraging activity of an amazonian leaf-cutting ant -

responses to changes in the availability of woody plants and to previous plant
damage. Oecologia 112: 370–378.

45. van Poecke RMP, Dicke M (2004) Indirect defence of plants against herbivores:

Using Arabidopsis thaliana as a model plant. Plant Biol 6: 387–401.
46. Gouinguene S, Alborn H, Turlings TCJ (2003) Induction of volatile emissions in

maize by different larval instars of Spodoptera littoralis. J Chem Ecol 29: 145–162.
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