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The ability to inhibit unwanted movements and change motor plans is essential for
behaviors of advanced organisms. The neural mechanisms by which the primate motor
system rejects undesired actions have received much attention during the last decade,
but it is not well understood how this neural function could be utilized to improve
the efficiency of brain-machine interfaces (BMIs). Here we employed linear discriminant
analysis (LDA) and a Wiener filter to extract motor plan transitions from the activity of
ensembles of sensorimotor cortex neurons. Two rhesus monkeys, chronically implanted
with multielectrode arrays in primary motor (M1) and primary sensory (S1) cortices, were
overtrained to produce reaching movements with a joystick toward visual targets upon
their presentation. Then, the behavioral task was modified to include a distracting target
that flashed for 50, 150, or 250 ms (25% of trials each) followed by the true target that
appeared at a different screen location. In the remaining 25% of trials, the initial target
stayed on the screen and was the target to be approached. M1 and S1 neuronal activity
represented both the true and distracting targets, even for the shortest duration of the
distracting event. This dual representation persisted both when the monkey initiated
movements toward the distracting target and then made corrections and when they
moved directly toward the second, true target. The Wiener filter effectively decoded
the location of the true target, whereas the LDA classifier extracted the location of
both targets from ensembles of 50–250 neurons. Based on these results, we suggest
developing real-time BMIs that inhibit unwanted movements represented by brain activity
while enacting the desired motor outcome concomitantly.

Keywords: motor cortex, sensorimotor transformation, volitional inhibition, neurophysiology, decision making,
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INTRODUCTION
Neurophysiological studies conducted during the last two decades
have revealed a complex representation of spatial information
in the brain, including the representation of multiple motor
targets (Cisek and Kalaska, 2002, 2005), sequences (Mushiake
et al., 1990; Isoda and Tanji, 2004), spatial attention (Lebedev
and Wise, 2001; Lebedev et al., 2004; Ikkai and Curtis, 2011),
and gaze (Boussaoud et al., 1993; Baker et al., 1999; Boussaoud
and Bremmer, 1999; Balan and Ferrera, 2003)—all in differ-
ent reference frames, depending from which brain area neural
activity was sampled (Lacquaniti and Caminiti, 1998; Cohen and
Andersen, 2002; McGuire and Sabes, 2009). These representations
underlie rich behavioral repertoires of advanced organisms, pri-
mates in particular, that can flexibly control their attention and
motor processing to meet demanding challenges of their envi-
ronments (Wise et al., 1996; Wise and Murray, 2000; Lebedev
and Wise, 2002). In particular, advanced organisms can inhibit

and reprogram movements once the corresponding neural plan-
ning or even the movement itself have been initiated (Matsuzaka
and Tanji, 1996; Band and van Boxtel, 1999; Schall et al., 2002;
Mostofsky and Simmonds, 2008; Verbruggen and Logan, 2008;
Stinear et al., 2009; Mirabella et al., 2011).

An adaptive neural framework can enable the planning stages
of potential movements to begin in parallel with preparations for
an alternative motor plan (Resulaj et al., 2009; Cisek and Kalaska,
2010). As a result, neural representations of distinct motor plans
may compete prior to movement onset in behavioral tasks with
several potential targets of movement (Cisek and Kalaska, 2005;
Rickert et al., 2009; Mirabella et al., 2011). Studies of reaching
movements have identified populations of neurons that represent
multiple potential motor plans throughout the dorsal premotor
(Cisek and Kalaska, 2005; Pesaran et al., 2008; Mirabella et al.,
2011), supplementary motor (Chen et al., 2010), and posterior
parietal cortices (Snyder et al., 1998; Scherberger and Andersen,
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2007). A bounded-accumulation model (Resulaj et al., 2009) pro-
poses that when multiple motor outcomes are presented, neural
networks prepare for the most likely upcoming movement. The
network accumulates noisy evidence over time until a bound
threshold is reached, at which point an initial decision is reached,
which is then either reversed or reaffirmed.

In the present study, we investigated the representation of
multiple potential movement targets and the specification of a
change in motor plan by neuronal ensembles simultaneously
recorded in primary motor (M1) and sensory (S1) cortical areas.
We approached neural representation of motor plan transitions
from a brain-machine interface (BMI) perspective. BMIs extract
motor commands from the brain and convert them into move-
ments of external actuators, such as computer cursors and robotic
devices (Andersen et al., 2004; Lebedev and Nicolelis, 2006; Fetz,
2007; Birbaumer et al., 2008; Nicolelis and Lebedev, 2009; Chase
and Schwartz, 2011; Lebedev and Nicolelis, 2011; Lebedev et al.,
2011). At the current stage of the BMI field, up to several hun-
dred neurons in the brain can be recorded simultaneously by
chronically implanted multielectrode arrays (Nicolelis et al., 2003;
Chapin, 2004; Churchland et al., 2007; Miller and Wilson, 2008;
Lebedev and Nicolelis, 2011; Lebedev et al., 2011; Stevenson and
Kording, 2011). Recording from large neuronal populations is
essential because the range of information extracted from neu-
ral activity and accuracy of extraction improves with the number
of recorded neurons (Wessberg et al., 2000; Carmena et al., 2003;
Lebedev et al., 2005; Lebedev and Nicolelis, 2006; Fitzsimmons
et al., 2009; Nicolelis and Lebedev, 2009). Notwithstanding the
successes of the BMI field, signals extracted from the brain are
typically noisy (Lebedev and Nicolelis, 2006; Tonet et al., 2008).
BMI algorithms are usually trained to reproduce one particu-
lar behavior and do not generalize well when a transition to
a new set of rules and conditions is needed (Santucci et al.,
2005; Fitzsimmons et al., 2009). This is why many improve-
ments are needed: from a significant increase of the number of
simultaneously recorded neurons to the development of better
extraction algorithms capable of approximating natural behav-
iors.

Although some work has been done on the extraction of
behavioral parameters during delay intervals, during which mon-
keys prepare movements but withhold their execution (Musallam
et al., 2004; Lebedev et al., 2008; Afshar et al., 2011), the prob-
lem of motor plan transitions has not yet been fully investigated
from a BMI perspective. We examined cortical representation of
motor programming in a reaction-time task in which monkeys
had to rapidly reprogram their center-out reaching movements.
The monkeys had been previously overtrained to move a hand-
held joystick toward computer screen targets. In this study, we
introduced distracting targets that flashed on the screen for a
short period (50–250 ms) and triggered motor preparation on
75% of the trials. This motor preparation had to be canceled when
a true target appeared at a new screen location. Both the distract-
ing and the true targets were represented by neuronal ensemble
activity recorded in the M1 and S1 cortices. We used ensemble
modulations to extract target locations using a linear discrimi-
nant analysis (LDA) classifier. In addition, a Wiener filter was used
to make continuous extractions offline.

METHODS
CORTICAL IMPLANTS
All studies were conducted with approved protocols from the
Duke University Institutional Animal Care and Use Committee
and were in accordance with the NIH guidelines for the Care
and Use of Laboratory Animals (National Research Council et al.,
2011).

Two rhesus monkeys (one male and one female, monkeys M
and N, respectively) were chronically implanted with multielec-
trode arrays in M1 and S1 of both right and left hemispheres using
previously described surgical methods (Nicolelis et al., 2003).
Within each hemisphere, two 96 channel microelectrode arrays
were placed in cortical areas corresponding to cortical repre-
sentations of the arm and leg (Figure 1B), but in this study,
neural activity was recorded only in the arm representation area
of right hemisphere M1 (in both monkeys) and S1 (only in
monkey M). Each array consisted of two 4 by 4 grids of inde-
pendently movable electrode triplets. Triplets were comprised
of electrodes of different lengths, in 0.3 mm intervals, which
allowed us to sample neuronal activity from different depths in
the cortical tissue. Recorded signals were amplified, digitized, and
filtered by a multichannel recording system (Plexon Inc, Dallas,
TX, USA). Neuronal spikes were sorted using waveform tem-
plate matching algorithm built into the real-time spike-sorting
software.

BEHAVIORAL TASK
Each monkey was trained to move a hand-held joystick to control
the two-dimensional location of a computer cursor on a screen
(Figure 1A). X(left-right) and Y(forward-backward) position of
the joystick were translated to X(left-right) and Y(up-down) cur-
sor position on the screen. The joystick was affixed to the chair at
the waist level of the monkey on the side of the working hand (left
hand in both monkeys). During the task, the display screen was
positioned in front of the monkey, at 45 cm from the monkey’s
eyes. The cursor diameter was 0.5 cm.

To begin each trial, the monkey placed its left hand on the
top of the joystick, causing a cursor to appear on the screen.
A trial was immediately canceled if the monkey removed its
hand from the joystick at any time. Next, a 5 cm diameter circle
appeared at the center of the screen. The monkey moved the cur-
sor inside this circle and held it for a random interval between
1 and 2 s. After this hold period, the center target disappeared
and a single peripheral target became visible. The peripheral
target appeared as a thickened 40◦ arc on a thin boundary cir-
cle aligned on the center of the screen (Figure 1C). Reaching
the target required the cursor to pass over the thickened arc
from the inside of the circle, moving outwards (Figure 1D). If
the cursor crossed the circle, but missed the target, trial was
terminated without reward delivery. Both monkeys had been pre-
viously overtrained to perform center-out movements toward
the targets, triggered by target appearance and characterized by
reaction times (RTs) of 0.49 ± 0.17 s (mean ± standard devia-
tion) in monkey M and 0.44 ± 0.18 s in monkey N (Ifft et al.,
2011).

In this study we introduced target switches to produce dual tar-
get representation in the sensorimotor cortex. This design was to
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FIGURE 1 | Experiment and location of neural recordings. (A) Rhesus
monkey controlled joystick with left hand which translated to movements
on computer screen. (B) Electrode arrays in arm representation regions of
M1 and S1 cortex were implanted prior to data collection. (C) During task,
peripheral targets appeared at one of four potential locations on the screen:
0, 90, 180, 270◦. Workspace was divided into four quadrants, centered on
each target location as divided by dashed diagonal lines. (D) Typical task
sequence begins with cursor inside central target. After a random hold
time, the target appears an as an arc on the gray boundary circle. On 25%
of trials, this target persists and the cursor must be move through the
target for reward. On the remaining trials, the target moves after a brief
delay and the cursor must be move toward the new target to obtain a
reward. (E) Shown are timelines of the presence of each target and joystick
position. SSD is defined to be the time between when the first target
appears and when the target is switched to the second location.

mimic the momentary preparations followed by changes in motor
plans. In switch trials, initial targets served as distractors. They
appeared on the screen and were then replaced by a second target
at different locations after a short interval, termed the switch sig-
nal delay (SSD). A similar switching task was previously reported
(Georgopoulos et al., 1981, 1983) with a difference that monkeys
were overtrained in those studies and M1 neurons were recorded
serially. Our distracting and true targets always appeared at one

of four locations on the screen, at angles 0, 90, 180, or 270◦ rela-
tive to the center of the screen (Figure 1C). Initial targets switched
in 75% of trials. The SSD for a given trial was either 50, 150, or
250 ms, with each occurring with equal probability. When the dis-
tracting target disappeared, a second target appeared at one of
the remaining three potential locations. We call this second tar-
get the true target because a juice reward was obtained only by
moving the cursor through this target. In the remaining 25% of
trials, the first target remained on the screen throughout the trial
and a reward was obtained by passing the cursor through this
target location. Once the true target appeared, the monkey had
2.5 s to complete each trial before timing out. The experiment was
repeated over two daily recording sessions in both monkey M and
monkey N.

Single trial trajectories were categorized depending on the
degree of deviation made toward the distracting target. For switch
trials, a threshold distance was set at 1.5 cm along the axis between
the center target and the distractor. Joystick movements which
surpassed this threshold in the direction of the distractor were
categorized as distracted trials. Remaining trials were categorized
as direct if, in addition to not moving toward the distractor, the
path to the true target deviated less than 1.5 cm in the direction
orthogonal to the ideal trajectory. Strict criteria were enforced for
direct trials to ensure that the only movement made was to the
true target, isolating the role of movements with a singular goal
from the onset. Direct trials could, however, be unrewarded if
they were near misses and the cursor did not move toward the
distractor. Violation of these criteria on a given trial resulted into
classification as a distracted trial and later analyses evaluated these
two trial groupings separately. Furthermore, trials where the ini-
tial center target was held but no movement was made to any
target (beyond the 1.5 cm threshold distance) were not consid-
ered in the present analysis. Trial movement onset was computed
using a previously implemented algorithm where movement ini-
tiation was detected based on the analysis of specific patterns in
velocity and acceleration (Ifft et al., 2011). To perform statistical
testing on performance accuracy measured as proportion of tri-
als, such as fraction direct trials (Figure 2C) or fraction correct
for different target location, trials were subdivided into groups of
15 trials. Number of outcomes of each type per 15 trials was com-
puted for each group, and their statistical sample for all groups
was entered in an appropriate statistical test (e.g., unpaired t-test
that could be used either directly to compare two outcomes,
or post-hoc following analysis of variance for comparing several
outcomes).

RT was defined as the time from either the distractor or true
target onset until movement onset. The RT measured from dis-
tractor onset was elongated by the SSD during which an initial,
false, target was presented. At the same time, it could be addi-
tionally shortened for some SSDs because the distractor primed
the appearance of the true target. That is, when the true tar-
get was presented, a shorter response latency could indicate that
the transient distractor presence expedited pre-movement pro-
cesses with respect to the true target. For the RT measured from
true target onset (Figure 1E), the priming effect of the distrac-
tor is more clearly demonstrated. Each definition yields its own
interpretation thus we included both in our analysis.
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POPULATION RESPONSES
All neural analyses were performed using recordings from
Monkey M M1 and S1 neurons, and Monkey N M1 neurons.
Population-level analyses were conducted separately for each of
these three cortical areas. Neural activity was analyzed using
peri-event time histograms (PETHs) (Awiszus, 1997) aligned on
distractor target onset. Recorded timestamps of action poten-
tials were counted in bins of 50 ms width. The PETH from 0.5 s
before to 1.0 s after distractor target onset (true target onset
in the case of no-switch trials) for each neuron was computed
separately for each combination of distractor and true target loca-
tion (four no-switch combinations and 12 switch combinations),
for each of the four SSD conditions. For single neuron analy-
sis (Figures 4, 5), single trial spike rasters were constructed over
the same 1.5 s epoch aligned on distractor onset. Corresponding
PETHs represent the bin counts of total spikes that occurred
within each of the 50 ms bins, summed across trials in the same
SSD category as well as matching the same combination of dis-
tractor and true target locations. Bin counts were then divided
by the fixed 50 ms bin width to represent firing rate in units of
spikes/second.

To analyze population-level modulations, the average modu-
lation profile for each neuron was normalized by subtracting the
mean bin count of the neuron (over all conditions) and dividing
by the standard deviation of the neuron’s bin count. This normal-
ized quantity represented modulations as a fraction of the overall
modulations, or statistically, the z-score. The directional tuning of
each neuron was computed from normalized PETH data on trials
where there was no switching of the peripheral target. The mean
normalized firing rate was computed within the 750 ms window
following target onset for each target direction. The four direc-
tions were then ranked from most preferred to least preferred in
subsequent analyses reflecting the directional preference of the
each neuron (Figure 6A). Next the mean PETH over the entire
population of neurons was computed for each of the sixteen dis-
tractor/true target configurations and for each of the three SSD
groups (Figure 6B).

To further understand the neural representation of the dis-
tractor target and the true target, the population mean firing
rate (MFR) was computed during different epochs for each of
the 12 distractor-true target combinations, and four no-switch
trial categories (Figure 7). Furthermore, we separated the trials
by SSD to elucidate the effect of an elongated distractor presence
(Figures 7A–C). For each neuron, the MFR was computed for
each of the 16 positions on a 4 × 4 grid, with rows representing
preference ranking of the true target location (ranks 1 through 4)
and columns representing the preference ranking of the distrac-
tor target (ranks 1 through 4). The layout is clarified in Figure 7D.
Firing rate was normalized and the directional preferences of each
neuron were determined from most to least preferred direction
as in Figure 6. Population MFR was obtained by averaging the
MFR across all neurons in the given area. This procedure was
repeated for six temporal epochs: the epoch when the distrac-
tor was present, and five consecutive 100 ms epochs following
true target appearance. To evaluate the specific contribution of
the distractor and true target neural representations on MFR, we
fit MFR as a linear function of the preference ranking of each

target preference combination (1–4) for each 4 × 4 grid, show in
Equation 1 (Lebedev and Wise, 2001; Lebedev et al., 2004):

MFR = A · PDtrue + B · PDdistractor + C (1)

Coefficients A and B represent the contribution of the true target
and the distractor target, respectively.

We also separated trials depending on whether the monkey
correctly switched to the true target (Figure 8). In this analysis,
trials were separated into two groups depending on the monkey
behavior: (1) trials where the true target was reached (rewarded
trials) and (2) trials where the monkey was distracted (as defined
earlier) and failed to reach the true target. Trials outside of these
two categories were not included in the Figure 8 analysis.

To evaluate the variation in neural activity profile between the
different SSD groups, single neuron normalized PETH data from
each of the 12 switch conditions were subtracted from the PETH
data from the corresponding no-switch condition and this value
was squared. The mean of the 12 difference-squared terms was
computed over the −0.5 to 1 s trial epoch for each neuron and
for each SSD group, and the square root of this value was com-
puted, yielding a root-mean-square (RMS) difference, shown by
Equation 2:

RMScell =

√√√√√mean

⎧⎨
⎩

∑
i �=j

(
PETHjj − PETHij

)2

⎫⎬
⎭ (2)

where PETHij represents the normalized neural activity profile
for a single neuron when the distractor is at position i and the true
target is at position j. PETHjj represents the normalized activity
profile of the same neuron on a no-switch trial. Both i and j have
four possible values resulting in 12 differences to be computed for
each neuron. This procedure was repeated for data collected in
each of the four SSD groups.

The difference profile across the population was thus com-
puted by taking the mean difference across neurons, while main-
taining temporal information (Figure 9A). Lastly, the population
average for each of the SSD groups was compared to identify the
relevant interval during the trial where modulations reflect the
transient distractor representation (Figure 9B).

To assure that the differences arose as a result of the distrac-
tor, and not due to increased variance during elevated neural
activity during movement, trials were shuffled amongst distractor
location groups and the analysis was repeated, however, the SSD
categorization remained intact. Once shuffled, the single neu-
ron and population RMS differences were computed in the exact
method as performed for the unshuffled data. The shuffled RMS
difference profile for each SSD was generated five times and the
average of these profiles was subtracted from the unshuffled pop-
ulation RMS difference profile, thus reflecting the true difference
accounted for by the distractor presence.

CLASSIFIER
To extract the location of both the first (distractor) target loca-
tion and the second (true) target locations, LDA (Fisher, 1936)
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was used to decode neural activity offline and make categorical
predictions of each target location (Figures 9–11) (Ifft et al.,
2011). In no-switch trials, the locations of the distractor and
true targets were considered the same. Neural activity aligned
on distractor onset was used to train the classifier on 60% of
randomly selected trials. Training data for each time point was
provided by neural discharges within a 150 ms window slid across
the task interval from 0.5 s before to 1 s after distractor target
onset. Predictions of both target locations were made using sam-
ple data from the remaining 40% of trials. The same 150 ms
sliding window was used to obtain predictions. For each ses-
sion, sliding LDA predictions were computed five times, each with
randomly redrawn training and sample subsets. Overall reported
predictions represent the average of these five runs per session.
Neural activity used to train the decoder was separated into exclu-
sively M1 or S1 recorded neurons in the case of monkey M, and
just M1 neurons in monkey N. LDA predictions were also made
with shuffled data; that is, when the group information is ran-
domly permutated prior to training the LDA classifier. For each
LDA figure (Figures 10–12), we computed the fraction correct
prediction of each parameter minus fraction correct of the LDA
predictions from shuffled data. The chance level performance
(0.25 because of four potential targets) was then added to this
amount to again return to the conventional [0, 1] scale. The y-
axis thus becomes fraction correct with unrelated modulations
removed. For each analysis, confidence intervals were computed
using the 1-proportion z-test from Equation 3:

z = p̂ − p0√
p0(1 − p0)

√
n (3)

where p0 is 0.25 (four potential targets) and n is the number of
trials used for testing (40% of total trials). All confidence intervals
were constructed at α = 0.05.

Trial types were then divided according whether the movement
was direct to the true target or revealed a deviation toward the
distractor (see Behavioral Task section above) as a way to test
whether the transient representation of the distractor target is
explained by motor movements. LDA was trained on both trial
types combined and was then utilized to make predictions of
the first and second target location separately for each trial type
(Figure 11).

A separate analysis was performed using LDA to decode the
presence of the switching of target location (Figure 12A). Again,
a 150 ms sliding window of neural activity trained the decoder. At
each time step, LDA made a prediction of whether the trial was a
switch or no-switch trial. Data were again aligned on the time of
distractor onset and all switch-trials were grouped together. First
target in this case means distractor target in the case of switch
trials, or true target (only target) in the case of no-switch trials.
The 150 ms sliding window was incremented along the time axis
in 25 ms steps from 0.5 s before to 1 s after first target onset. The
fraction of correct predictions was computed at each time step as
described for previous sliding window LDA analyses. As this anal-
ysis involves a binary classification procedure, a second metric
was used to quantify extraction of event information from neu-
ral activity (Figure 12B). The Matthews correlation coefficient

(MCC) is a common measure of classifiers for binary outcomes
(Matthews, 1975; Baldi et al., 2000). MCC is computed as shown
in Equation 4:

MCC = TP × TN − FP × FN√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

(4)

where TP is the count for true positives predictions, TN for true
negatives, FP for false positives, and FN for false negatives. Similar
to the conventional correlation coefficient, the values of MCC
range from −1 to 1 depending on the strength and directionality
of the prediction. At each shift, the MCC was computed five times
as a result of randomly redrawing the training and sample data,
as was done in each LDA analysis. With two sessions per monkey,
MCC at each time step of the sliding window represents the mean
of 10 values.

Concurrent to prediction of trial type (switch or no-switch)
at each time step, location of the first and second targets was
also decoded. Although the training data included both switch
and no-switch trials, LDA performance in terms of fraction cor-
rect locations only included prediction data from switch trials.
This was necessary because if the no-switch target was identified
as the distractor, the LDA predictions may have been artificially
improved due to the prolonged presence of that target on the
screen. If it was identified as the true target, the prediction may
have also been improved because of the absence of interference
from a distractor.

CONTINUOUS OFFLINE PREDICTIONS USING WIENER FILTER
To mimic continuous, real-time BMI predictions, we used a sim-
ple Wiener filter with six 100 ms taps of neural data to predict
cursor X and Y coordinates, and true target X and Y coordinates
at a 10 Hz output rate (Figure 13). For monkey M, both M1 and
S1 neurons were used to improve predictions of these parameters
(Figures 13A–E). To reject noisy neurons and reduce overfitting,
we computed weights that reflected each neuron’s contribution
toward kinematic predictions. We selected the 80% of all neurons
which had the highest weights.

The Wiener filter weights were fit using 60% of the session
length and predictions were made using the remaining 40%. Due
to variable durations of all targets in the session, we inflated the
true target duration to 1000 ms to ensure targets could be repre-
sented despite a low 10 Hz rate of prediction. To reduce the effect
of noisy predictions, the predicted radius of movement, r, was
computed at each time as shown in Equation 5:

r =
√

X2
p + Y2

p (5)

where Xp and Yp are the predicted X and Y position of the cursor
at a given time (Figure 13B). A threshold for r was chosen at 5 cm
(screen coordinates) such that when r surpassed this threshold,
a reach had been predicted. Time of threshold crossing was thus
recorded and predictions of target locations relative to this time
were made. At each time from when r exceeded rthreshold, predic-
tions of cursor and true target position were made and compared
to actual. To quantify performance in terms of fraction correct,
the screen was divided into four (90◦) quadrants surrounding
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each target (see Figure 1C). For example, quadrant 1 would occur
from −45◦ to 45◦ relative to the center of the screen. A prediction
of cursor X and Y was correct if the Wiener prediction was in the
correct quadrant as the actual cursor (X, Y). True target location
predictions were evaluated in the same way. Predicted true target
quadrant was compared with the target locations. The fraction
correct was computed at each time step beginning at threshold
crossing until 800 ms after threshold crossing, during all thresh-
old crossings in the last 40% of each session. If during this 800 ms
window, r became less than rthreshold, predictions were no longer
made. If r was greater than rthreshold, but the true target was not
on the screen (with all durations fixed at 1 s, as stated before), this
was counted as incorrect.

RESULTS
BEHAVIOR
While the monkeys had been previously overtrained in the sin-
gle target task, no prior training was performed in the task with
switching targets. We chose to avoid excessive training on the
two target sequence because we wanted to obtain the maximum
effect of the switching target and avoid the monkeys developing
alternative behavioral strategies, such as timing their responses
in a way such that the initially presented target is wholly ignored.
We suppose that previous overtraining in reaction-time responses
toward single targets helped to enhance the representation of
the distractor target because that was the target toward which
monkeys were accustomed to moving in a RT manner. However,
neither the contribution of prior training nor the effect of con-
tinued training with switching targets were examined in this
study.

As it would be expected, the introduction of switching targets
resulted in erroneous responses on a portion of trials (Figure 2),
more so for monkey N. We consider reaching movements that
crossed into the true target to be correct trials. Incorrect trials
consisted of movements that crossed distracting targets, move-
ments that missed both targets, canceled and time-out trials
(Figure 2B). The overall proportion of correct trials was higher
in monkey M than in monkey N: 88% in monkey M and
only 27% in monkey N (p < 0.001; Wilcoxon rank sum test)
(Figures 2B,C). Monkey N compensated for this inaccuracy by
making many more trials per recording session (1519 and 1072 in
each of two sessions, respectively) than monkey M (594 and 418
trials). This difference in accuracy is seen in the example trajec-
tories for a particular target configuration (Figure 2A). Monkey
M produced straight and carefully targeted reaching trajecto-
ries, whereas monkey N’s trajectories were less accurately directed
and often missed the target. Monkey M made errors only for
the longest, 250 ms, SSD (Figure 2C). Another observation was
that 90◦ switch trials were less frequently direct, compared to
180◦ switch trials (78.4% vs. 90.3% of trials for monkey M and
55.9% vs. 70.2% of trials for monkey N, p < 0.01, unpaired
t-test). In other words, the distractor had a stronger effect on the
cursor trajectory when it was closer to the true target.

To separate accurate and inaccurate reaches toward the true
target, trials were divided into two groups consisting of direct
trials and distracted trials. Classification of trials is described in
detail within Methods. In the separation of all monkey M’s trials,

505 trials were classified as direct, 145 classified as distracted,
compared against a total of 214 no-switch trials. Joystick trajec-
tories for these types of trials are shown in Figure 3 for monkey
M. Trials are grouped by target configuration: with 90◦ separa-
tion between the initial and true targets (left panels), and with
180◦ separation (right panels). Our data show reach trajectories
that deviate toward the distractor on the infrequent distracted
trials. Inaccurately performed trials for long presentations of dis-
tracting targets can be also seen in the examples of Figure 2A.
The trial-averaged traces reveal the largest deviation during the
longest, 250 ms, SSD (Figure 3E). In both monkeys, the frac-
tion of trials categorized as “direct” decreased with longer SSDs
(Figure 2C, P < 0.001, Kruskal–Wallis test). More precisely, there
was a decrease in fraction direct trials for 150 ms and 250 ms dura-
tions for monkey N (p < 0.05; post-hoc unpaired t-test) and for
250 ms duration for monkey M (p < 0.05) in comparison with
no-switch trials. Previous studies of an overtrained switching task
reported mostly distracted trials where monkeys initiated move-
ments toward the distractor and then curved the trajectory toward
the true target (Georgopoulos et al., 1981, 1983).

The effect of SSD on RT was dependent on how RT was defined
(see Methods). When defined from distractor target appearance
until movement onset, longer SSDs caused a lengthening in RT
in both monkeys (p < 0.001, One-Way Kruskal–Wallis test). This
is somewhat expected because with longer SSDs, the longer the
monkey must wait for the true target, thus inflating the RT.
However, when RT was defined relative to true target appearance
(Figure 2D), longer SSD caused shorter RTs (p < 0.001, One-
Way Kruskal–Wallis test). Thus, the appearance of the distractor
on the screen primed the response to the true target, even though
the directional information that it provided was incorrect. Post-
hoc analysis revealed significant differences from no-switch trial
RT among both the 150 and 250 ms SSD groups for monkey N
(p < 0.001; Wilcoxon rank sum test) and among all three SSD
groups in monkey M (p < 0.001). Mean RTs for monkey N (0.52
± 0.24 s; mean ± sd) were significantly longer than the RTs for
the single target task (0.44 ± 0.18 s; p < 0.001; Wilcoxon rank
sum test), however, monkey M performance was similar in both
experiments (two-target sequence RT: 0.46 ± 0.10 s; single target
task 0.49 ± 0.17 s for monkey M). Overall, monkey N behavior
was more erratic in the present experiment, as evidence by cur-
sor trajectories (Figure 2A) and RT standard deviation more than
twice that of monkey M. In the previously overtrained reaches to
single targets both monkeys performed well (e.g., 84% and 74%
correctly performed trials in monkeys M and N, respectively) (Ifft
et al., 2011). Note that data from the previous study represents
center-out movements to a target less than half the size of the
target used in the present study.

NEURONAL RESPONSES
The initial distracting targets were represented by M1 and S1
modulations even when they appeared for a brief 50 ms inter-
val. This representation became more pronounced with longer
presentations of distracting targets.

Figure 4 shows a representative M1 neuron recorded in mon-
key M that had a clear directional preference for the 90◦ and
180◦ target location and was modulated in response to both the
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FIGURE 2 | Behavioral results from both monkeys. (A) Typical movement
traces from one combination of distractor and true target locations. The
columns show different cursor trajectories on trials with different SSDs. The
first row is data from monkey N and the second row from monkey M. (B) Pie
chart shows the breakdown in trial outcomes by monkey. (C) The fraction of
direct trials shown for each SSD group in both monkey M (left) and N (right).

One-Way Kruskal–Wallis test followed by post-hoc unpaired t-tests were
performed. ∗denotes p < 0.001 relative to no-switch group. (D) Mean
reaction time shown for both monkeys for each SSD group with error bars
that represent standard error. Reaction time is defined as the time from
true target appearance to movement onset. Same statistical procedure
as (C).

distractor and true targets. Data are arranged in a 4 by 4 matrix
representation (Lebedev and Wise, 2001; Lebedev et al., 2004)
where columns of panels correspond to the distractor target loca-
tion and rows correspond to the true target location. The panels
on the diagonal (shaded in gray) correspond to trials where the
first target did not disappear and was the true target to which
the monkey had to move. Modulations reflecting the distractor
location can be appreciated from the comparison of the responses

within the same rows of panels, but for different columns.
Modulations reflecting the true target location are seen within
the same columns, but for different rows. With the exception
of the diagonals, which are identical in both Figures 4A and B,
Figure 4A shows data for the 50 ms duration of the distractor, and
Figure 4B shows data for the 150 ms duration. The responses to
the distractor target are mostly clear in Figure 4B where bursts
of activity are seen in response to that target appearing at the
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FIGURE 3 | Raw cursor trajectories for two sessions (1018 total trials)

from monkey M. (A) X and Y position of cursor versus time during
no-switch trials. Offline, all targets were moved to (X,Y) position (5,0) and
the associated coordinate transform was made to all kinematic data. Y
indicates movement orthogonal to the ideal trajectory. (B) For switch trials,
two categories of trials shown separately for clarity: trials with a 90◦ switch
(left) and trials with a 180◦ switch (right). The coordinate systems for a
given trial were rotated such that the true target was in the positive X
direction and the Y direction was orthogonal to this axis. (C) X and Y cursor
positions versus time for direct trials among 90◦ switch (left) trials and 180◦
switch trials (right). (D) Same as (C) except looking at only distracted trials.
(E) Average X and Y trajectory of cursor separated by SSD (see Legend)
and by switch angle (columns same as C,D).

preferred location (90◦, less clear for 180◦). Responses to the dis-
tractor target are not as clear in Figure 4A, but it still can be
noticed that this neuron’s rate was higher following the distrac-
tor target appearance at the preferred locations (90◦ and 180◦)
compared to the non-preferred locations (0◦ and 270◦).

Figure 5 illustrates, using the same neuron as shown in
Figure 4, that the distractor target influenced neuronal pat-
terns even when the monkey moved directly to the true tar-
get (Figures 5B,C, left panels) as it did in the no-switch trials
(Figure 5A).

Figure 6 shows neuronal activity patterns for the entire pop-
ulation of M1 neurons recorded in monkey M. The format is
similar to Figure 4 with the difference being that target locations
were ranked for each neuron according to the firing rate exhibited
for each location. Trials without distracting targets (no-switch tri-
als) were used to rank directions into the first preferred direction
(Pref 1), second preferred direction (Pref 2) and so on for each
neuron. As in Figure 4, no-switch trials are shown on the diag-
onal (denoted by gray boxes). The off-diagonal panels show the
switch trials with 250 ms SSDs. Figure 6B shows average PETHs
for each SSD. Population PETHs (Figure 6A) and their averages
(Figure 6B) indicate that M1 firing rates reflected both the dis-
tractor (modulations for different columns of panels with the
same row) and the true (different rows within the same column)
target locations. It can be also seen that each configuration of the
distractor and true target locations was associated with a unique
pattern of population activity. Here, as in Figure 4, the initial
component of the response is modulated across panel columns
(i.e., representation of the distractor target), and the late compo-
nent is modulated across panel rows (representation of the true
target). Average PETHs of Figure 6B indicate that the duration
of the distractor was clearly reflected by the population activity—
both as the average PETH shape and (e.g., bottom row of panels)
and its amplitude (e.g., top row of panels). One can also notice the
location of the true target was clearly reflected as average PETH
amplitude for all conditions, and the location of the true target
was better reflected by average PETHs for longer SSDs—both as
PETH shape and amplitude. Because of these differences between
PETHs for different conditions, we were able to extract informa-
tion about target locations from neuronal ensemble activity using
a discrete classifier.

The results from Figure 6 are additionally clarified in Figure 7
that shows the evolution of neuronal rates using 4 × 4 dia-
grams. In the diagrams, vertical and horizontal bands correspond
to neuronal tuning to the distractor and true target location,
respectively. The diagrams are shown for different time with
respect to true target onset (left to right) and for different SSDs
(Figures 7A–C). The most prominent result seen in all SSD
groups is the emergence of the true target location (bottom hor-
izontal band of the 4 × 4 grid) as the strongest modulator of
population MFR. The effect of the distractor is weaker. Early in
the trial, most clearly in the 0 to 200 ms epochs, the distrac-
tor location is the primary modulator of neural activity. This is
especially prominent when following a long SSD (Figure 7C).
Notably, the effect of the distractor continues well into the true
target presentation epoch. This is clear from the regression coeffi-
cients shown above each panel indicating the strength of the role
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FIGURE 4 | Representative M1 neuron from Monkey M. (A) PETH
aligned on distractor target onset from trials with SSD of 50 ms.
Position within the 4 × 4 grid determined by the position of the distractor
and true target. Along the diagonal (shaded), these PETHs are generated
from no-switch trials. Units are in terms of firing rate, where the bin count

is divided by the bin width (50 ms in each case). Spike rasters below
each histogram indicate time stamps of spikes from all trials of this
particular combination. (B) Same cell and analysis as (A), with
only difference being that data collected from trials with SSD of
150 ms.
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FIGURE 5 | PETH of a single M1 neuron during specific transitions

after 250 ms SSD. (A) Neural activity from no-switch trials separated
by target location shows directional preferences with PETH and
single-trial raster plots (below PETH) aligned on distractor target onset.
Inset shows cursor trajectory from trials to the specified target.
(B) Among switch trials, PETH and raster plots generated from trials

with distractor in one of the neuron’s preferred direction (90◦ ) and
the true target in a non-preferred direction (0◦). Data from both direct
(left) and distracted (right) shown, with inset showing cursor traces.
(C) Same as (B) except data drawn from trials where both the distractor
and true target are in preferred directions (90◦ and 180◦,
respectively).

of true target and distractor target preference ranking on MFR
(see Methods). At short SSDs (Figure 7A), the distractor coeffi-
cient never reaches the level of significance (p > 0.05), however,
the true target is strongly represented. At both 150 ms and 250 ms

SSDs (Figures 7B,C), the distractor contributes a smaller, but still
significant amount to the MFR. The MFR, even 400 ms after the
distractor disappears, is still influenced by both targets as seen
by the lower left corner triangle seen in the 400–500 ms epoch in
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FIGURE 6 | Population activity from M1 neurons in Monkey M

aligned on distractor target onset. (A) Normalized firing rate for each
cell and each pairwise combination of distractor and true targets
shown for the SSD of 250 ms condition. Amplitude of firing shown by
color scale (on right) interpreted as the z-score. Position within the
4 × 4 grid for each cell determined separately according to directional

preference order. Data along the diagonal is from no-switch trials.
(B) Population mean PETH for each of the three SSD conditions.
Time-series data averaged across neurons within a specific condition
(within one box on the 4 × 4 grid) organized by neuron directional
preference ranking. Along the diagonal is mean population PETH for
no-switch trials.

Figures 7B,C. More generally, a transition occurs from distractor
representation to true target representation.

Average PETHs were also used to analyze the difference in
neuronal patterns between correctly and incorrectly performed

switch trials. The strategy for separating trials into these two
groups is described in the Methods. Average PETHs were calcu-
lated in the following steps. First, PETHs for each neuron were
computed for each of 12 possible combinations of distractor and
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FIGURE 7 | Mean population firing rate as a function of distractor

and true target locations. 4 × 4 grids showing population MFR for
each target combination. Targets for each cell were ranked in terms of
preferred direction as shown in Figure 6. 4 × 4 grids were computed
for epochs throughout the trial, beginning with presence of the
distractor. Six epochs are reflected by six time columns proceeding from

left to right. Data from each of the SSD conditions was shown separately
for 50 ms (A), 150 ms (B), and 250 ms (C). MFR within each 4 × 4 grid was
fit by a linear function of true and distractor preference ranking. Coefficients
for true target and distractor target, respectively, are shown above
each panel. (D) Layout of 4 × 4 grid, color scale, and linear regression
equation.

true target locations. This computation was performed separately
for correctly and incorrectly performed trials. Then, PETHs for
correct trials were grouped together for all combinations and all
neurons, and an overall average PETH was calculated. An average
PETH for incorrect trials was calculated, as well. This computa-
tion assured that the averages were not biased by the proportions
of correct and incorrect trials for different conditions. We chose
to average across all conditions because the differences for such
averages were not specific to certain combinations of target direc-
tions. As seen in Figure 8, the average PETHs differed depending
on whether the monkeys successfully switched to the true target.
More specifically, trials where the monkeys switched to the true
target had lower initial slopes of firing rates than trials where the

monkeys failed to reach to the true target. This effect was observed
in both monkeys, both in M1 and S1 neurons. In monkey M,
the neural activity in both M1 and S1 clearly rose before the tar-
get switch and more steeply in trials where the monkey failed to
switch to the true target. In monkey N, the difference in FR slopes
was more subtle and occurred later than in monkey M, which
was likely related to the more variable behavior of that monkey
(Figure 2).

Among rewarded trials, we analyzed neuronal representation
of the target switch (Figure 9). To do this, the trial-averaged
PETH for switch trials was directly compared with the PETH of
no-switch trials (see Methods). As the metric for the neuronal
representation of the switch, we used RMS differences between
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FIGURE 8 | Average population PETH differs depending on

whether a switch is successfully made. Single neuron activity was
averaged across all trials where the distractor was presented. Each such
trial was categorized as either a successful switch (solid line), where the
true target was reached, or unsuccessful (dashed line) when the monkey

failed to reach the target and the trial was categorized as distracted
(see Methods). Single neuron PETHs aligned on the true target onset,
for both behavioral categories were then normalized to z-score and
averaged across the population of monkey M M1 (A), monkey M S1
(B), and monkey N M1 (C).

PETHs for the trials with no target switches (diagonal data in
Figures 4 and 6) and the trials with target switches. Figure 9A
shows RMS differences averaged across all possible locations of
the distractor and true targets for each individual neuron, and
Figure 9B shows the result of additional averaging across neurons
in particular cortical areas. These averages depict the intervals
when neuronal activity started to reflect the target switch from
its initial position.

It is clear from Figures 9A and B that neurons represented
target switch in M1 and S1 of both monkeys. Monkey M M1 pop-
ulation represented the timing of target switch for all tested SSDs,
as evident from the latencies of the average curves (Figure 9B,
left). S1 population of monkey M resolved the timing of the
switch at 250 ms from the switches at 50 and 150 ms. The dif-
ference in switch timing was less clear in monkey N. Because of
these representations of both the distracting and true targets by
M1 and S1 neurons, we were able to extract target information
from neuronal population activity.

EXTRACTION OF TARGET POSITION WITH LDA CLASSIFIER
An LDA classifier extracted the position of distractor
(Figure 10A) and true (Figure 10B) targets from ensemble
activity of M1 and S1 neurons. In the analysis depicted in
Figure 10, predictions of target position were obtained from a
short (150 ms) window slid along the task epoch. Behavioral
trials were aligned on the distractor target onset in this analysis,
and the LDA classifier was trained anew for each window
position. Prediction accuracy was calculated as a fraction of
correctly predicted target locations. The analysis was performed
separately for 50, 150, 250 ms SSDs (red, green, and cyan traces,
respectively) and no-switch trials (black trace). The LDA classifier
revealed the changes in the representation of the distractor and
true target locations as a function time. Note that the true target

could be decoded with high accuracy despite the appearance of
a distracting target. This accuracy approached 90% correct in
monkey M and could be decoded nearly as fast with a distractor
as without a distractor (Figure 10B). With longer SSDs, the
ability to decode the true target remained similar but occurred
at a longer latency. Such good decoding of the true target is
not surprising given that the monkeys’ overt behavior consisted
of reaching movements to the true target. Future work should
probe this decoding under real-time BMI control without overt
behavior. The LDA model used for Figure 10 included training
data from all SSD conditions, as described in the Methods.
We found that limiting training data to only no-switch trials
reduced the fraction correct over all SSD groups and predicted
parameters in monkey M M1 by 19.9% (p < 0.01, paired t-test),
monkey M S1 by 6.8% (p < 0.01), and monkey N M1 by 4.2%
(p < 0.01).

Consistent with the results of Figure 7, we observed that the
representations of both the distractor and true targets outlasted
the duration of target presence on the screen. In particular, the
representation of the distractor lasted much longer than SSD
(Figure 10A). Monkey M M1 ensemble provided the best predic-
tions of the distractor target location, as it detected SSDs as short
as 50 ms. SSDs of 150 and 250 ms were clearly represented by the
M1 and S1 ensembles in monkey M and the M1 ensemble in
monkey N. The duration of the distractor location representation
increased with the increased SSD, and for all SSDs it extended well
into the true target epoch when the distractor target was turned
off. The onset of the representation of the true target matched
the true target onset, and the prediction accuracy was higher for
the true target than for the distractor target in all cases. The peak
LDA predictions for distractor location from the monkey M M1
ensemble were 20.2% more accurate than those for monkey N
M1 and 34.3% more accurate when predicting the true target.
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FIGURE 9 | Effect of a target switch on the firing rate in each of the three

neuronal populations. (A) RMS difference computed for each cell (see
Methods) at each time step from 0.75 s before to 1.0 s after distractor target
onset. Data shown separately for three SSD groups, with rows 1–3 the cell
RMS difference for trials SSD of 50, 150, and 250 ms, respectively. Within

each panel, the rows of the color plot indicate one single cell and the row
height was fixed in all three cell groups (the three columns). The panel
size is thus a reflection of the number of neurons in this population.
(B) The population average RMS difference was computed from each
panel in (A).

To clarify whether this was the effect of different ensemble sizes,
we repeated the analysis of Figures 10A,B for monkey M and
N M1 populations using equally-sized subsets of each (n = 35
neurons; not shown in figure). We found that the prediction
performance disparity in Figure 10A between the two monkeys
became less pronounced (monkey M M1 now only 9.9% more
accurate in predicting distractor location), but still existed, when
using n = 35 neurons for both. The difference between the two
groups in Figure 10B remained approximately the same (monkey
M M1 now 33.1% more accurate than monkey N M1 in pre-
dicting true target location). From this we conclude that the size
of the neuronal population was one contributing factor to LDA
performance, but there were other factors as well, such as more
erratic performance of monkey N and characteristics of recorded
neuronal populations.

Since the predictions of the distractor target location by M1
and S1 ensembles could simply reflect the fact that in a portion

of trials monkeys initiated movements to that target, we sepa-
rately analyzed the trials in which the monkeys moved directly
toward the true target (direct trials; Figures 11A,C,D) and those
in which the presence of the distractor affected the movement tra-
jectory (distracted trials; Figures 11B,E,F). After the direct trials
were separated, the predictions remained similar to those shown
in Figure 10, indicating that cortical populations represented
the distractor target even when the monkey did not produce
movements toward that target. Curiously, monkey M M1 and
S1 ensembles predicted the distractor target location even better
when that monkey made straight movements to the true target.
This was likely related to the predominance of such direct trials
in the training data, resulting in a better prediction model. An
opposite effect was observed for monkey N, presumably because
it produced less direct movements. The predictions of the true
target were similar for direct and distracted trials, and similar to
the predictions shown in Figure 10. Note that the predictions of
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FIGURE 10 | Prediction of distractor and true target locations using

neural activity and LDA classification over all trials. (A) Prediction of
distractor location for each of the three neuronal populations (columns).
Within each panel, fraction correct data represents LDA fraction correct
minus the same predictions with the trial data shuffled, then again adding
chance level performance (0.25) (see Methods). (B) Prediction of true target

location, which is the second target in the case of switch trials but the first in
no-switch trials. In addition to three SSD groups, the no-switch prediction is
shown for comparison. Gray horizontal bands indicate the 95% confidence
intervals as determined by the 1-proportion z-test. On x-axis are four ticks
representing the distractor onset (largest tick) and the three SSDs
(50, 150, 250 ms).

the distractor location for the shortest, 50 ms, SSD were much
less accurate compared to the difference plots of Figure 9. This
was because the LDA training data, unlike the Figure 9 data,
included all possible SSDs, as well as no-switch trials. The model
had to generalize to all these conditions, which led to less accu-
rate predictions for less represented cases. When 50 ms SSDs were
analyzed separately by an LDA, the predictions improved (not
shown).

In addition to the distractor and true target location, we
trained an LDA classifier to predict the target switch signal as a
binary variable (Figure 12). Along the task interval, predictions
of the distractor and true target locations were made concur-
rently to serve as a temporal reference. As shown in Figure 12A,
the strongest predictions made by LDA were for the true target
in each case. Both monkey N and M M1 populations repre-
sented the distracting target with approximately equal facility
relative to the true target representation. Overall, the predictions
were less robust that those predicted when separated by SSD
(Figure 10) and behavior (Figure 11). This was a result of com-
puting the fraction correct of all three SSD groups collectively,
rather than separately. This caused the less strongly predicted
50 ms SSD trials to reduce the classifier performance overall.
As shown in Figure 9, the temporal profile of neural activity is
strongly dependent on the SSD of a given trial. Target switch was

moderately decoded in all three populations, each time with the
peak occurring in the span between distractor and true target
representations. The exact timing of the switch signal represen-
tation is dependent on the SSD and thus the peaks that are
present in Figure 12 represent approximate event epochs. The
variation on when the target switch occurs relative to the dis-
tractor onset—the time which all data is aligned to—is likely a
contributing factor to the low fraction correct. If a single SSD
were to be used, the switch event detection would likely occur in
the SSD-dependent windows found in Figure 9B. The strongest
representation of both the distractor and the switch event (note
the scale difference) were obtained from monkey M M1 neurons.
This is consistent with our previous data and strongly correlates
with the higher number of quality recorded neural units in the
Monkey M M1 population. Furthermore, the binary classifica-
tion of switch vs. no-switch trial was evaluated in terms of the
MCC (Figure 12B). In all three neuronal populations, the peak
MCC for the switch detection occurred within 700 ms of the dis-
tractor onset, although MCC begins to rise as early as 300 ms in
monkey M M1. The performance of detecting the switch event
was strongest among M1 cells, with peak MCC of 0.19 (monkey
M) and 0.23 (monkey N), respectively. Thus, the neural basis for
motor plan switching can itself be decoded from ensembles of M1
and S1 neurons.
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FIGURE 11 | LDA prediction of distractor and true target separated

by movement type. (A) Example of a direct trial. (B) Example of a
distracted trial—see Methods for more details. For (C–F), the prediction
methods and display are the same as Figure 10. All reported data is actual
fraction correct minus fraction correct from shuffled data, plus chance
level fraction correct (0.25). (C,D) Predictions of distractor (C) and true (D)

target location made using data only drawn from direct trials for
monkey M M1, monkey M S1, and monkey N M1 (left to right).
Different SSD groups denoted by colors, see Legend. (E,F) Same as (C,D)

except data reflects only predictions made for distracted trials.
Horizontal gray bands indicate 95% confidence intervals generated by
1-proportion z-test.

DECODING OF CURSOR AND TARGET POSITION USING WIENER FILTER
We next utilized a continuous linear decoding algorithm, the
Wiener filter, to predict cursor and true target position at a 10 Hz
output rate throughout the session (Figure 13). A representative

25 s window of predicted parameters, along with actual parameter
values is shown in Figures 13A–D for Monkey M. Cursor X and
Y were predicted with high correlation to actual movements in
monkey M (X: R = 0.84; Y: R = 0.86) and moderate correlation
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FIGURE 12 | Decoding of target location and switch/no-switch

occurrence from neural activity during task interval, not separated by

SSD. (A) Linear discriminant analysis predictions of location of distractor
target (black) and second target (cyan) as well as switch/no-switch (red). Data
aligned on distractor onset shown with vertical black line. Values shown are
fraction correct prediction at each time step of the sliding window. Gray

horizontal band is the 95% confidence interval generated using the
1 proportion z-test. (B) Matthews correlation coefficient shown over the task
interval. Data are aligned on the distractor appearance. Confidence interval
generated from mean ± 2 standard deviations obtained from distribution
of MCC from data with shuffled group information prior to LDA
predictions.

in monkey N (X: R = 0.49; Y: R = 0.33). Computing the pre-
dicted radial movement, r, resulted in clear peaks indicating
predicted reach events (Figure 13B). True target location was
decoded very effectively (Figure 13C). To quantify this, predic-
tions aligned on threshold crossing of r were made (see Methods).
We found that the threshold crossing event occurred often
within 700 ms after the true target appeared in both monkeys
(Figures 13D,E). Performance of cursor and true target location
predictions remained consistent for approximately 500 ms after
threshold crossing, before declining. (Figures 13D,E, insets). In
both monkeys, the cursor position was predicted highly effec-
tively (up to 99%, monkey M; 59% monkey N). Prediction of
true target position was strong from Monkey M (up to 59%),
but was much weaker for monkey N (up to 26%). Chance level
prediction in this case was 20% due to four potential target loca-
tions and one condition where the target was not on the screen.
The results from this continuous approach agree with the find-
ings using a discrete LDA classifier. Furthermore, the analysis of
Figure 13 provides evidence that the results of this study could be
implemented into BMI systems to continuously extract intended
reach locations.

DISCUSSION
In this study we examined M1 and S1 ensemble activity recorded
in a motor task that required reprogramming of center-out reach-
ing movements to visual targets. This was achieved by changing
the target location in the midst of the RT period (Georgopoulos
et al., 1981, 1983). We hypothesized that BMI decoding algo-
rithms could dissociate representations of potential and selected
motor targets from the activity of sensorimotor cortex ensembles.

We found that locations of distracting targets presented shortly
before the true targets of movements were indeed represented
by M1 and S1 ensembles and could be extracted by an LDA
classifier. The LDA results were recapitulated using a contin-
uous Wiener filter which extracted cursor and target location.
These results suggest that real-time BMI decoders could be
implemented in the future to decode motor programming and
decision making under the conditions of multiple potential
choices.

Despite the behavioral differences between the two monkeys
in this study, as is common in primate studies, both helped
to elucidate behavioral responses and the neural basis for tran-
sient distractors. In our previous study (Ifft et al., 2011) we
overtrained these monkeys to perform center-out movements
with high accuracy when no distractor was used. In monkey N,
the distractor markedly changed movement trajectories. Thus
the distractor and true target locations were represented by both
the overt behavior and cortical modulations. Monkey M was less
distracted and the cortical effect of a change in motor plan could
be studied, even when movements to the first target were wholly
absent.

SENSORIMOTOR CORTEX AND REPROGRAMMING MOVEMENTS
Neural processes of motor program selection and cancellation has
received much attention during the last two decades of research.
The summary of this body of work suggests that different aspects
of sensorimotor transformations that involve multiple potential
choices are processed by multiple cortical and subcortical areas
(Crammond and Kalaska, 1994; Shen and Alexander, 1997; Lee
and Assad, 2003). Here we recorded ensemble activity in M1

Frontiers in Neuroengineering www.frontiersin.org July 2012 | Volume 5 | Article 16 | 17

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Ifft et al. Reprogramming movements by cortical ensembles

FIGURE 13 | Offline Wiener filter predictions of cursor and

target locations. (A–D) A 25 s epoch of trials during a session with
monkey M. (A) Cursor X and Y positions (black) and corresponding
Wiener predictions (red) during selected epoch. (B) The radial
distance of the predicted cursor location was computed and
plotted versus time. Reach threshold level of 5 cm is shown as

horizontal gray line. (C) True target X and Y position during selected
epoch (black) and Wiener predictions (red). (D,E) Probability distribution
of the time of true target onset relative to threshold crossings from
monkey M (D) and monkey N (E). Inset: fraction correct predictions of
cursor and true target location during the 0 to 0.8 s epoch beginning
with threshold crossing.

and S1—the areas most closely reflecting the final motor out-
put that results from decision making. Consistent with previous
work (Alexander and Crutcher, 1990) we observed M1 activity
that represented potential motor targets even when no movement
was initiated toward those targets. This representation persisted
well beyond distractor disappearance and the termination of this
encoding coincided with the onset of the robust second (true) tar-
get representation. Somewhat surprisingly, we observed moderate
movement and pre-movement modulation in S1—an area whose
primary function is commonly assumed to be related with sen-
sory processing, but also known to be activated in advance of
movements (Soso and Fetz, 1980; Nelson et al., 1991; Lebedev
et al., 1994) and encode information about potential reach targets
(Ifft et al., 2011).

Here we cannot resolve whether representation of potential
targets that we observed in M1 and S1 merely reflected inputs
from associative areas that were the primary players in target
selection (Thaler and Goodale, 2011) or M1 and S1 consti-
tuted an integral part of a distributed network with less clearly
defined hierarchy (Shen and Alexander, 1997; Hernandez et al.,
2010). Visuomotor information has been shown to be encoded
by cortial visual processing networks in parietal (Kertzman
et al., 1997; Wise et al., 1997; Baumann et al., 2009), premo-
tor (Crammond and Kalaska, 1994; Lebedev and Wise, 2000;
Cisek and Kalaska, 2002), and prefrontal (Genovesio et al., 2005;

Lebedev et al., 2005) areas. These associative areas could act as
filters of sensory information that is subsequently signaled to M1
output areas. The exact mechanisms of interactions between non-
primary and primary areas will have to be elucidated by future
investigations.

Our previous unpublished observations indicate that certain
initial stages of target selection for a movement goal have to take
place for target information to start to be represented in M1 and
S1. In that experiment, animals had to deal with two targets that
appeared on the screen simultaneously instead of in rapid succes-
sion. One of the targets was large, and the other was small. The
monkeys would be rewarded for reaching to either of the targets,
but they typically selected the larger target because it was easier
to hit with the cursor. In contrast to the results from our distrac-
tor experiments reported here, in the unpublished study M1 and
S1 neurons represented the non-chosen target in a much more
subtle way, with less than 10% of recorded cells exhibiting any
significant directional tuning to its location. This observation, in
the context of the results of the present study, suggests that M1
and S1 representation of movement direction is much stronger
when the motor goal is chosen, even if only for several hundred
milliseconds.

Serial activation of M1 during motor sequences has been well-
studied (Fu et al., 1995; Tanji, 2001) and the results of our study
suggest that the manifestation of change-of-decision in the motor
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cortex is a sequential, but somewhat overlapped representation of
distinct motor plans. In other words, sensorimotor cortex repre-
sents selected motor targets, but movements to those targets can
still be canceled. Such movement cannot be canceled if M1 activ-
ity is already elevated and has reached a certain motor initiation
threshold (Figure 8) (Hanes and Schall, 1996; Wong-Lin et al.,
2010).

A prominent model to describe the change-of-decision is a
bounded form of the accumulator model (Vickers and Smith,
1985), drift-diffusion model, or race model with criterion bound-
aries for both initial decision and change of decision events
(Resulaj et al., 2009). Applying this model to neurophysiology
of sensorimotor neurons, one hypothesis would be that the fir-
ing rate of a single neuron or entire neuronal populations would
encode the degree of commitment to the specific motor plan.
Lower levels of activity would elongate the decision window while
additional evidence is accumulated, even if a different move-
ment had been initiated. To address this hypothesis our study
compared population activity between a subset of trials where
the true target was successfully reached versus trials where an
error in behavioral outcome was caused by the transient distrac-
tor presence. Whether this lower population activity is causal
to the behavioral differences is beyond the scope of this study.
However, our results reinforce this model by showing lower
initial population activity and more gradual FR slope between
distractor target presentation and movement initiation on tri-
als where the switch was successfully made (Figure 8). Such
differences in population activity may provide intuitive under-
standing for the ability to detect the switch/no-switch event
using neural activity from single trials (Figure 12B) with high
fidelity.

DECODING MOTOR REPROGRAMMING
Here we used a rather simple LDA decoder that extracted tar-
get and target switch information from both cortical activity and
the timing of the distractor target onset. This decoder was use-
ful to describe the representation of targets by neuronal activity
as a function of time. A practical decoder will have to extract
target onset, as well. Our BMI approach added an interesting
twist to our experiments because information extracted from dif-
ferent parts of sensorimotor hierarchy could be used to retrain
brain circuitry. For instance, learning a BMI task that involves
extraction of target information may result in an enhanced repre-
sentation of such information in M1. Additionally, non-primary
areas should be considered as sources of information about mul-
tiple potentials targets (Snyder et al., 1998; Cisek and Kalaska,
2002, 2005) for a practical real-time decoder. With the cur-
rent approach, we were able to extract the location of distractor
targets from the primary sensorimotor cortical activity even if
those targets were presented for a brief period of time (as short
as 50 ms) and if no movement was initiated to that target. It
is important to emphasize that under this same condition, the
true target to which the monkeys moved was also decoded very
accurately.

As the BMI field advances, practical, versatile neuroprosthet-
ics based on BMI technology become a real possibility (Lebedev
and Nicolelis, 2006; Nicolelis and Lebedev, 2009; Gilja et al.,

2011; Jackson and Fetz, 2011; Lebedev et al., 2011). The need
for practical clinical applications that provide higher degree of
freedom control (Velliste et al., 2008) and expanded decod-
ing strategies (Zacksenhouse and Nemets, 2008) will drive BMI
research to expand into more complex motor programs. Naturally
enacted movements require the flexibility to rapidly modify
upcoming motor plans. Such a behavior capability was reflected
in the neuronal data we collected in the present study. The
ability to decode such changes has critical implications for
not only accuracy but also safety in the execution of every-
day movements by a prosthetic device controlled by brain
activity.

Our present experimental approach, based on a discrete rather
than continuous decoder, adds to previous literature where sim-
ilar ideas were evaluated under the framework of a potential
cognitive neuroprosthetic (Musallam et al., 2004; Pesaran et al.,
2006). A cognitive neuroprosthetic extracts from brain activ-
ity information that is different from motor execution signals
and utilizes it to improve the performance. For example, a
high-performance BMI proposed by Santhanam et al. (2006)
extracted target location from delay-period activity recorded in
dorsal premotor cortex and thereby obtained information trans-
fer rate of up to 6.5 bits per second. Additional improvements
may come from hybrid BMI designs that utilize both single-unit
recordings and local field potentials (LFPs). Thus, Hwang and
Andersen (Hwang and Andersen, 2009) decoded movement onset
from LFPs while decoding movement direction from single-unit
activity.

Hasegawa et al. (Hasegawa et al., 2006, 2009) implemented
decoding algorithms that served a similar purpose that we
describe here. They decoded go/no go decisions from the activ-
ity of 2–5 neurons recorded in monkey superior colliculus and
were able to extract multidimensional decisions (e.g., go/no go
for two potential movement directions). The information was
accessed approximately 150 ms after cue onset, which is consis-
tent with our present results and the results of Santhanam et al.
(2006). Given a high interest to neurophysiological mechanisms
of response inhibition (Hanes and Schall, 1995; Pare and Hanes,
2003; Chen et al., 2010; Scangos and Stuphorn, 2010; Mirabella
et al., 2011), it is reasonable to expect that BMIs that extract
response inhibition and response reprogramming information
will continue to develop.

VERSATILE BMIs OF THE FUTURE
The original conception of BMI systems strive to mimic normal
functions of the brain as closely as possible (Nicolelis, 2001). The
approach that we propose here can be generally characterized as
a BMI with impulsivity control. Impulsivity is a person’s inabil-
ity to inhibit unwanted actions (Basar et al., 2010; Kim and Lee,
2011). Prefrontal mechanisms are normally responsible for such
inhibition in primates (Miller, 2000; Krawczyk, 2002; Kim and
Lee, 2011). It is conceivable that practical BMIs of the future will
need an inhibition control module to operate properly. Moreover,
such a module may become one of the essential elements of
the design. It may not only examine potential actions and select
those that fit the context and are wanted by the user, but also
set the limits to volitional control. In the past, we have already
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proposed that such an optimal design may be based on a shared-
control BMI, i.e., one that gives the user control over higher-
order goals and delegates lower-order controls to the robotic
controller (Kim et al., 2006). A prominent role of prefrontal
cortex is executive function, such as the one required for inhi-
bition of potential actions. Future work could seek to exploit
the multiple levels of control within the brain to not only recre-
ate naturalistic movements, but at the same time streamline the
transitions and selections from the many possible behavioral
outcomes. Certainly this goal is challenging, but we remain opti-
mistic in light of recent developments in the fast growing field of
neuroprosthetics.
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