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Tools for Analyzing Neural Circuits
Ioannis Pisokas*

Institute of Perception, Action and Behaviour, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom

Understanding neuronal circuits that have evolved over millions of years to control

adaptive behavior may provide us with alternative solutions to problems in robotics.

Recently developed genetic tools allow us to study the connectivity and function of

the insect nervous system at the single neuron level. However, neuronal circuits are

complex, so the question remains, can we unravel the complex neuronal connectivity

to understand the principles of the computations it embodies? Here, I illustrate the

plausibility of incorporating reverse engineering to analyze part of the central complex,

an insect brain structure essential for navigation behaviors such as maintaining a

specific compass heading and path integration. I demonstrate that the combination of

reverse engineering with simulations allows the study of both the structure and function

of the underlying circuit, an approach that augments our understanding of both the

computation performed by the neuronal circuit and the role of its components.

Keywords: robotics, neurorobotics, navigation, head direction cells, ring attractor, insect, central complex,

Drosophila melanogaster

1. INTRODUCTION

Neurorobotics attempts to derive inspiration from neuroscience on how the brain solves problems
in order to develop robust and adaptive artificial agents. The combination of neuroscience with
embodied robot agents provides a platform for testing hypotheses and deciphering the principles
on which the brain operates. One approach for deciphering the principles of neuronal circuit
operation is to implement phenomenological computational models of the neuronal circuit and
then identify and analyze similarities between the models and the neuronal circuit in the hope
of learning about the neuronal circuit’s architecture. Such an approach is exemplified by work
comparing features learned by deep convolutional neural networks with those found in the ventral
visual system of animals (e.g., Yamins et al., 2014; Cichy et al., 2016; Yamins and DiCarlo, 2016).
Phenomenological models attempt to reproduce the mapping of inputs to outputs while being only
weakly constrained with respect to the actual neuronal circuit’s architecture, thus admitting a range
of possible implementations. Therefore, this approach has the potential to provide inspiration for
hypothesis formulation and for focusing further research but does not unravel the actual neuronal
circuits of biological organisms.

Another approach for analyzing neuronal circuits is to simulate part of the connectome in
order to study the circuit’s function. This approach is faithful to the actual neuronal connectivity,
thus imposing strong constraints with respect to the biological architecture (as done for example
by Kakaria and de Bivort, 2017). This approach has the potential to provide insights about
the computation performed by the actual neuronal circuit; however, it does so based on
phenomenological observations about computation at the system level and does not provide
us with a real mechanistic understanding of the underlying neuronal circuit structure and
component interaction.
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A third approach is to reverse engineer the actual neuronal
circuit in order to decipher its organization and structure.
Reverse engineering is a technique traditionally used for
unraveling the inner workings of hardware devices (Rekoff,
1985). It aims to describe a system at the component level and
explain how its components interact with each other. Once the
structure of a neuronal circuit is reverse engineered, we can
study how its neurons interact and draw hypotheses about the
circuit’s function on the basis of its neuronal components, thereby
offering a mechanistic level of understanding.

Each of the three approaches has merits on its own, but
their combination can provide an even more powerful tool for
deciphering the function of neuronal circuits. A component-
level understanding of the neuronal circuit structure through
reverse engineering can be combined with the second approach,
that is, computational simulations in order to understand the
circuit’s function. Deriving such a mechanistic understanding
of the neuronal circuit at the neuron level will enable us to
modify and customize it for use in specific applications, including
robotics. I present here an example of this approach by reverse
engineering the head direction circuit of the fruit fly and then
utilizing simulations of a situated robotic agent to characterize
the circuit’s performance.

1.1. Insects as an Example Organism
A limiting factor in the study of any system, including the brain,
is the level of detail at which it can be scrutinized. However, where
detail is available, understanding structure and function may be
difficult because naturally evolved neural systems do not obey
an overarching structural simplicity principle. On an interesting
crossroad of complexity and available neuroanatomical detail are
insects. Insects have relatively small and simple brains compared
with vertebrates and yet solve many similar problems, such
as perception, navigation, foraging, homing, and reproduction.
Recent developments of genetic tools and methods provide us
with the unique opportunity to study insect brains at the single
neuron level. The relative simplicity, together with the fine
level of detail available about insect brains, enable us to reverse
engineer their neuronal circuits, understand their operation and
derive principles that can guide our design of solutions to
problems in robotics.

Recent research in insect neurobiology has focused on
the study of the central complex of the fruit fly Drosophila
melanogaster. The central complex is a brain structure that
has been preserved through millions of years of evolution and
exists across all insect species (Homberg et al., 2011). This brain
structure has been implicated in spatial orientation (Neuser et al.,
2008; Triphan et al., 2010; Homberg et al., 2011), locomotor
control (Strauss, 2002; Ritzmann et al., 2012; Martin et al., 2015;
Varga et al., 2017), visual memory (Liu et al., 2006; Neuser et al.,
2008; Ofstad et al., 2011), and path integration (Cope et al., 2017;
Stone et al., 2017). The central complex consists of five neural
formations: the protocerebral bridge, the ellipsoid body, the fan
shaped body, the noduli, and the asymmetric bodies (Wolff and
Rubin, 2018). The neuronal connectivity of the central complex
has an intricate and yet topographically regular structure. Tracing
the neurons of the whole central complex is still an ongoing task;

however, most of the neurons innervating two of its structures,
the protocerebral bridge (PB) and the ellipsoid body (EB), have
been traced in adequate detail in the fruit fly D. melanogaster, by
multiple labs (e.g., Green and Maimon, 2018; Wolff and Rubin,
2018; Turner-Evans et al., 2020), allowing us to reverse engineer
the underlying circuit.

Calcium imaging of the neurons that innervate both the PB
and the EB, while a tethered fruit fly is walking or flying in a
virtual reality environment, has revealed a striking relationship
between neuronal activity and behavior. Specifically, it has been
observed that the neuronal ensemble maintains localized spiking
activity—commonly called an activity “bump”—that moves from
one group of neurons to the next as the animal rotates with
respect to its surroundings (Seelig and Jayaraman, 2015; Kim
et al., 2017; Giraldo et al., 2018). The neuronal activity “bump”
is maintained even when the visual stimulus is removed, and it
moves relative to the no longer visible cue as the animal walks
in darkness (Seelig and Jayaraman, 2015). Thus, this neuronal
activity appears to constitute an internal encoding of heading,
which is strongly reminiscent of the hypothetical ring attractor
(Amari, 1977) proposed by Skaggs et al. (1995) to account for the
“head direction” cells of rats (Taube et al., 1990).

Ring attractor models typically consist of a topological ring
of neurons utilizing opposing excitatory and inhibitory synapses
to establish a unique activity “bump” around the ring, with
neurons forming lateral excitatory connections to neighboring
neuronal units and inhibitory connections inhibiting neurons on
the opposite side of the ring (Taube et al., 1990; Skaggs et al., 1995;
Zhang, 1996). The result is that the most active neurons suppress
the activity of all other neurons around the ring and a unique
“bump” of activity emerges. Adequate external stimulation of
a neuron in the ring causes the activity “bump” to move to
the new most active neuron and this new attractor state to be
maintained even after the stimulus is removed. This type of
ring attractor model can reproduce the phenomena recorded via
calcium imaging of fruit flies (Kim et al., 2017). However, this is
only a phenomenological similarity and does not reveal whether
the actual neuronal circuit in the animal’s brain has the same form
as this hypothetical ring attractor or if a different circuit structure
produces the phenomena.

In this paper, I investigate the circuit structure and function
separately. I illustrate that using reverse engineering on the
projection patterns of the fruit fly’s heading tracking neuronal
circuit is possible to reveal an underlying connectivity that has
a ring structure with eight-fold radial symmetry. I subsequently
illustrate that combining insights from reverse engineering with
simulations allows us to explore the circuit’s function and
identify some notable differences from classic ring attractor
models, which may contribute to the stability and flexibility
of its function.

2. NEURONAL CIRCUIT ANALYSIS

As an illustrative example of the usefulness of reverse engineering
of a neuronal circuit, I will present a detailed explanation of
the process applied to the fruit fly’s head tracking circuit. This
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technique was recently applied to two insect species and the
results were presented in Pisokas et al. (2020). Here, I illustrate
the reverse engineering process in detail to enable others to apply
it to different neuronal circuits and I show that this approach can
help us understand neuronal circuit structure and function.

The circuit structure will be reverse engineered at the neuron
level of abstraction, removing details about neuron anatomy,
biophysics, and location. In the particular case of the central
complex, neurons follow a topographically regular pattern, which
offers an advantage that will be exploited in the process. The
reverse engineering procedure described in the sequel consists of
three steps:

1. First, we identify neuron classes. Each neuron class follows a
particular connectivity pattern.

2. Second, we identify the neural volumes where neurons form
synapses with each other. We number these volumes so that
we can systematically inspect them.

3. Third, for each class of neurons, we record connections
between neurons in a directed graph. To this end, we focus
on each neuron in turn and add its output connections with
other neurons.

In the central complex, there is redundancy in the neuronal
circuit due to the mirrored connectivity in the left and right
hemispheres. The final graphs shown here have eight neurons
for each neuron class, which is the result of an iterative process
removing redundancy in each iteration. In the first iteration,
there were as many graph nodes as there are neurons in the
circuit. In each iteration, duplicate neurons were removed and
the same process was repeated to reach the final result.

2.1. What Is the Effective Neuronal Circuit
Structure?
A subset of neuron types in the central complex appear to be the
key elements of a circuit with a ring structure. The connectivity
of the neurons has been inferred here from anatomical data,
with overlapping neuronal terminals assumed to form synapses
between them (Wolff et al., 2015; Wolff and Rubin, 2018). The
following analysis considers four types of neurons, the E-PG,
P-EG, P-EN, and Delta7 neurons (Table 1), in accordance with
previous work (Green et al., 2017; Kakaria and de Bivort, 2017;
Kim et al., 2017; Su et al., 2017). Each of the four types of neurons
follows a particular connectivity pattern.

These neurons innervate two of the central complex
structures: the protocerebral bridge and the ellipsoid body. The
protocerebral bridge (PB) consists of nine “glomeruli” in each
hemisphere, arranged the one next to the other (Figure 1). The
ellipsoid body (EB) consists of eight sectors called “tiles.” Each tile
is further divided into two “wedges” (Figure 1). Neurons form
synapses within glomeruli of the PB or tiles of the EB. Since all
neurons considered here form synapses in the PB, we number the
neurons by the glomerulus they innervate. Since Delta7 neurons
have both their input and output terminals in the PB we number
them by the glomerulus where their output terminals are located.

The E-PG, P-EG, and P-EN neurons are assumed to have
excitatory effect on their postsynaptic neurons, while Delta7

TABLE 1 | Neuronal nomenclature.

Model neuron

name

Included neurons Systematic names (Wolff and Rubin,

2018)

E-PG E-PG and E-PGT PBG1–8.b-EBw.s-D/V GA.b and

PBG9.b-EB.P.s-GA-t.b

P-EN P-EN PBG2-9.s-EBt.b-NO1.b

P-EG P-EG PBG1–9.s-EBt.b-D/V GA.b

Delta7 Delta7 or 17 PB18.s-Gx17Gy.b and PB18.s-9i1i8c.b

Correspondence between neuron names used in the model and the neurons names used

in the literature. The first column shows the names used in this paper to refer to each group

of neurons. The other two columns provide the shorthand consensus names and the full

neuron names used in the literature.

FIGURE 1 | Schematic depiction of the protocerebral bridge and ellipsoid

body anatomy. The protocerebral bridge (PB) consists of nine “glomeruli” in

each hemisphere, arranged the one next to the other. The ellipsoid body (EB)

consists of eight sectors called “tiles” further divided into “wedges”.

neurons are assumed to form inhibitory synapses with their
postsynaptic neurons, as Kakaria and de Bivort (2017) proposed.
These assumptions are consistent with RNA sequencing,
indicating that E-PG, P-EG, and P-EN are cholinergic while
Delta7 glutamatergic (Turner-Evans et al., 2020). At this point,
we have done the preparatory work (steps 1 and 2) and we
can proceed with deriving the underlying effective circuit by
redrawing the connectivity as a directed graph, which is a
convenient representation for studying circuit topology.

2.1.1. Inhibitory Circuit
First, we will walk through reverse engineering the connectivity
of the first class of neurons, the eight inhibitory Delta7 neurons.
These neurons innervate the whole length of the PB (Figure 2A).
Anatomical evidence shows that each Delta7 neuron has output
synaptic terminals in two or three glomeruli along the PB and
input terminals across all remaining glomeruli (Wolff and Rubin,
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FIGURE 2 | Effective connectivity of the inhibitory (Delta7) neurons. (A) Schematic depiction of how the eight Delta7 neuron types innervate the glomeruli of the

protocerebral bridge. (B,C) The effective connectivity in the first and third glomeruli is depicted as directed graphs with discs representing neurons and lines inhibitory

synapses between them. (D) The effective neuronal circuit connectivity of the eight Delta7 neurons. Each Delta7 neuron inhibits all other Delta7 neurons resulting in an

all-to-all inhibition pattern.

2018). Output terminal domains of each neuron are separated by
seven glomeruli (Figure 2A).

Each Delta7 neuron forms synapses with all other Delta7
neurons in two or three glomeruli along the PB (Figure 2A).
Starting from the first glomerulus (glomerulus 1) in the left
hemisphere, we see that one neuron has output terminals
while the other seven neurons have input terminals; we add
arrows in the directed graph to indicate which neurons receive

input synapses from this first neuron (Figure 2B). This can
be systematically repeated for the synapses in each glomerulus
from left to right (glomeruli 1–8 in the left hemisphere). Then
proceeding to glomerulus 9 and through 1–9 in the right
hemisphere, we observe that the same connectivity pattern
repeats. Since we are interested only in the effective connectivity,
we do not preserve information about repeated connections
between neurons in the final directed graph (Figure 2D). As
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such, the two or three synaptic connections between pairs of
Delta7 neurons are reduced to one single connection between
each pair of nodes in the simplified effective circuit in Figure 2D.
This reduction to the essential connectivity is crucial for gaining
an understanding of the circuit structure. The directed graph
depiction of the circuit makes it evident that each Delta7 neuron
forms synapses with and inhibits all other Delta7 neurons.
Therefore, a uniform, all-to-all, inhibition pattern is revealed.

2.1.2. Excitatory Circuit
Now, we will walk through the steps of reverse engineering
the excitatory portion of the circuit. The excitatory portion of
the circuit consists of three classes of neurons, the P-EG, E-
PG, and P-EN neurons. The synaptic terminals of each neuron
are confined to one glomerulus of the PB (Figures 3–5). In the
EB, the synaptic terminals of E-PG neurons are constrained in
single wedges (half tiles) while the synaptic terminals of P-EN
and P-EG neurons extend to whole tiles. In our schematic of the
anatomy (see Figure 3), the glomeruli are numbered 1–9, left-
to-right, in each PB hemisphere, and the EB tiles are numbered
1–8 clockwise. The neurons are numbered by the glomerulus they
innervate, e.g., P-EN1. For brevity, a tile numbered n is denoted
as Tn and a glomerulus numberedm as Gm.

According to calcium and electrophysiology recordings
(Turner-Evans et al., 2017), there must be one activity “bump”
emerging around the EB and two activity “bumps” along the PB,
one in each hemisphere. Preliminary simulation of the neuronal
circuit, using the connectivity matrix derived from the neuronal
anatomy, confirmed that the two activity “bumps” are centered
around neurons innervating identically numbered PB glomeruli.
That is, if the one activity “bump” is centered around G5 in
the left hemisphere, the second activity “bump” will be centered
around G5 in the right hemisphere. This observation about
function will be used here in order to simplify the circuit structure
and derive the effective connectivity.

Under the aforementioned numbering scheme, each P-EG
neuron has synaptic terminals in identically numbered PB
glomeruli and EB tiles (Figure 3A). That is, P-EG1 has synaptic
terminals in tile T1 and glomeruli G1 in both hemispheres of the
PB. Since the two P-EG1 neurons receive equal input in glomeruli
G1, in both hemispheres, and connect to the same EB tile, T1,
they are replaced with a single effective functional unit, as shown
at the bottom of panel Figure 3A, in the form of a directed
graph. The same reasoning can be repeated for the next pair of
neurons, P-EG2, that connect glomeruli G2 to tile T2 (Figure 3B).
Figure 3C shows the resulting effective circuit if these steps are
followed all the way until P-EG8, the pair of neurons connecting
glomeruli G8 to tile T8. Finally, we consider the last pair of
neurons, P-EG9; this pair of neurons connects glomeruli G9 to
tile T1, breaking the pattern. These neurons are represented with
a new node in the graph, but as it will become apparent in the next
paragraph, the P-EG9 neurons receive the same input as P-EG1

neurons allowing us to combine them.
A second class of cells, E-PG neurons, also have synaptic

terminals in equally numbered EB tiles and PB glomeruli,
following a similar pattern with the P-EG neurons but with
their input and output terminals on opposite ends (Figure 4).

Pairs of these neurons can again be replaced by single equivalent
neuronal units because they receive input from the same EB tile
and innervate equally numbered glomeruli in both hemispheres.
The first pair of E-PG neurons, E-PG1, receive input in tile T1 and
provide output in glomeruli G1 in both hemispheres (Figure 4A).
Adding the corresponding connections results in the directed
graph shown at the bottom of Figure 4A. Repeating the same for
neurons E-PG2 to E-PG8 results in the graph shown in Figure 4C.
Here, again there is a ninth pair of cells, the E-PG9 neurons, that
connect T1 to G9 in both hemispheres. These neurons receive
the same input signal as E-PG1 neurons but provide output
to neurons in G9 instead of G1. Therefore, P-EG1 and P-EG9

neurons receive the same signal, in glomeruli G1 and G9, and
provide the same output to both E-PG1 and E-PG9 neurons, as
mentioned in the previous paragraph. This allows us to combine
the P-EG1 and P-EG9 neurons into one single unit in the graph
of Figure 4D.

Unlike the P-EG and E-PG neurons, the P-EN neurons do
not innervate the two middlemost glomeruli (G9 in the left
hemisphere and G1 in the right hemisphere, Wolff et al., 2015).
There are, therefore, eight pairs of P-EN neurons, spanning
glomeruli 1–8 in the left hemisphere and 2–9 in the right
hemisphere. P-EN2 through P-EN8 form pairs connecting equally
numbered glomeruli to two different EB tiles, one shifted to the
left and one to the right, i.e., P-EN2 would connect glomeruli G2
to tiles T1 and T3 (Figure 5B), P-EN3 would connect glomeruli
G3 to tiles T2 and T4, etc. P-EN2 neurons form synapses with
E-PG1 neurons in T1 and E-PG3 neurons in T3, which would
innervate glomeruli G1 and G3, respectively. The exceptions in
this pattern are the two P-EN neurons receiving input from
the outermost glomeruli of the PB, P-EN1 and P-EN9. P-EN1

is unpaired and connects G1 of the left hemisphere to T2
(Figure 5A). P-EN9 is also unpaired and connects G9 of the
right hemisphere to T8 (Figure 5D). Since P-EN1 and P-EN9

receive the same input from E-PG1 and E-PG9 neurons, they
constitute a pair closing the ring, as shown in Figure 5D. In
the directed graphs, each pair of P-EN neurons is preserved as
two overlapped discs because P-EN neurons not only receive
common input in the glomeruli but may also receive differential
angular velocity input depending on which PB hemisphere they
innervate (Turner-Evans et al., 2017).

It becomes apparent from Figure 5D that the E-PG neurons
provide input to the P-EN and P-EG neurons, with P-EG neurons
forming recurrent synapses back to E-PG neurons. P-EN neurons
provide input to E-PG neurons with a shift of one octant to the
left or right.

2.1.3. Overall Circuit
In each PB glomerulus, the inhibitory Delta7 neurons form
synapses with the three types of excitatory neurons. Figure 6
shows the interaction of the excitatory and inhibitory portions
of the circuit. Each Delta7 neuron makes inhibitory synapses
to P-EG and P-EN neurons, as well to all other Delta7 neurons
(Figures 6A,B). Due to their projection patterns, the Delta7
neurons provide uniform inhibition to all eight octants of
the circuit, while E-PG neurons provide input to all Delta7
neurons (Figures 6C,D). For drawing the graphs in Figure 6,

Frontiers in Neurorobotics | www.frontiersin.org 5 January 2021 | Volume 14 | Article 578803

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Pisokas Tools for Analyzing Neural Circuits

FIGURE 3 | (A–D) The connectivity pattern of P-EG neurons of the fruit fly. The top of each panel shows the connectivity pattern of a pair of P-EG neurons with their

synaptic domains and connectivity patterns (see main text for detailed description). The bottom of each panel depicts the effective connectivity of the circuit as a

directed graph. In the top portion of the panels each arrow represents a neuron. In the bottom portions of the panels, colored discs represent neurons and arrows

represent synaptic connections.
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FIGURE 4 | (A–D) The connectivity pattern of the E-PG neurons of the fruit fly. The top of each panel shows the connectivity pattern of pairs of E-PG neurons with

their synaptic domains and connectivity patterns (see main text for detailed description). The bottom of each panel depicts the effective connectivity of the circuit as a

directed graph. In the top portion of the panels each arrow represents a neuron. In the bottom portions of the panels, colored discs represent neurons and arrows

represent synaptic connections.
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FIGURE 5 | (A–D) The connectivity pattern of P-EN neurons of the fruit fly. The top of each panel shows examples of P-EN neurons with their synaptic domains and

connectivity patterns (see main text for detailed description). The bottom of each panel depicts the effective connectivity of the circuit as a directed graph. In the top

portion of the panels each arrow represents a neuron. In the bottom portions of the panels, colored discs represent neurons and arrows represent synaptic

connections.

Frontiers in Neurorobotics | www.frontiersin.org 8 January 2021 | Volume 14 | Article 578803

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Pisokas Tools for Analyzing Neural Circuits

FIGURE 6 | Connectivity of combined excitatory and inhibitory portions of the circuit. Each colored disc represents one or more neurons with the lines representing

synaptic connections. (A) The connectivity pattern of the Delta7 neurons with the P-EG neurons. (B) The connectivity pattern of the Delta7 neurons with the P-EN

neurons. (C,D) The connectivity pattern of E-PG neurons (E-PG1&9 and E-PG2). The other E-PG neurons follow the same connectivity pattern rotated around the

Delta7 neurons. Each pair of E-PG neurons excites all Delta7 neurons.

Figures 2A, 3–5 were revisited and the connections within each
glomerulus were added in the graphs.

The resulting directed graph representation removed the
details about the anatomical organization of the EB and the
PB while preserving the effective connectivity of the circuit.
This analysis revealed that even though the PB is organized in
nine glomeruli in each hemisphere, the effective circuit has an
eight-fold radial symmetry. This is because the E-PG and P-
EG neurons innervating the PB glomeruli G1 and G9, in both
hemispheres, have synaptic domains in the same EB tile, T1.
This aggregation of synaptic connections between the edges
of the PB and T1, results in the closing of the ring between
octants 1 and 8 (Figure 5D). The ring topology of the circuit
reveals the interaction between components and is indicative of
its function.

2.2. Computational Model
Now that we have reverse engineered the circuit structure, we
can use simulations to investigate its function and corroborate
the role of its components. To this end, a spiking neuron model
of the derived circuit was implemented using the connectivity
matrix and utilizing leaky integrate and fire neuron models with
refractory period (section 4). Since neurophysiological evidence
suggests a ring attractor resembling function and the effective
circuit structure has the topology and necessary elements for a
ring attractor, it was decided to impose the constraint that the
circuit should function as a ring attractor. Using this constraint,
an optimization algorithm was used to search for synaptic
weights that result in a working ring attractor (section 4).
The activity “bump” location was set by a heading stimulus
provided as incoming spiking activity directly to the E-PG
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FIGURE 7 | Response of the ring attractor to abrupt changes of stimulus azimuth. (A) The spike raster plot on top shows the stimulus provided to the E-PG neurons.

The lower part of the plot shows in color coding the spiking rate activity of each neuron in the circuit. At 0.5 s an incoming stimulus sets the initial attractor state of the

ring attractor. A “darkness” period of no stimulus follows, during which the “bump” of activity is maintained at the same location. Then a second stimulus,

corresponding to a sudden change of heading by 180o, is provided, producing a sudden change in the position of the “bump,” with this new location then maintained

after the stimulus is removed. The order of recorded neurons is the same as shown in the connectivity matrix (Figure 12). (B) The mean activity “bump” heading and

corresponding standard deviation across time when the ring attractor is stimulated with a step change of heading (80 trials).

neurons, corresponding to input from Ring neurons (Young
and Armstrong, 2010). This heading input mapped the position
of a visual cue, or retinotopic landmark position (Seelig and
Jayaraman, 2015), around the animal to higher firing rates of E-
PG neurons in the corresponding tile of the EB. The neuronal
parameters were set to values consistent with evidence from
measurements in D. melanogaster, as described in section 4.
Figure 7 shows examples of neuronal activity in the simulated
ring attractor circuit with the activity “bump” transitioning from
one attractor state to another in response to a change of the
stimulus azimuth.

2.3. Situated Agent Behavior
The stimulus used in the preceding simulation was a step
function of time, but a real fruit fly or robot would not perform
instantaneous turns between heading directions; instead, they
would exhibit smoother transitions between headings and a
generally variable angular velocity over time. It is, therefore,
important to characterize the circuit’s performance in such a
more natural scenario. For this reason, the flight trajectory
of a real fruit fly was next used to simulate an agent
turning with respect to a visual landmark. The fruit fly’s
heading over time was extracted from such a flight trajectory
and was used to generate the time series of headings the
agent adopts.

Figure 8A shows the motion trajectory of a fruit fly flying
in a circular arena (Tammero and Dickinson, 2002; Figure 2).
From the power spectral density plot of the heading over time,
we can see that the fruit fly’s heading signal has a main period of
1.092 s, corresponding to the fruit fly completing a full rotation
around the arena in approximately 1 s (spectral peak at 0.916

Hz in Figure 8B). This was confirmed with calculation of the
auto-covariance that produced a mean period of 1.087 s.

The visual landmark’s azimuth with respect to the agent was
retinotopically mapped to the E-PG neurons around the ring
attractor (section 4). The correspondence between the heading of
the agent and the heading encoded by the ring attractor circuit
is shown in Figure 8C. The ring attractor tracked the agent’s
heading with an average lag of 100 ms. The exact phase lag
depended on the frequency component of the signal, with a
trend for higher frequencies—faster heading changes—resulting
in increased lag (see bottom plot of Figure 8B). This is an
expected effect because neurons have non-zero time constants
and response times.

Overall, even though the heading encoded by the ring
attractor accumulated error during fast turns of the agent, it
caught up with the actual heading as soon as the agent’s angular
velocity was reduced (Figure 8C). This effect is due to the
ring attractor circuit being continually driven by the stimulus’
azimuthal position, so if given enough time to respond, the circuit
state is readjusted to the stimulus position. It becomes apparent
with this situated agent simulation that even though the agent’s
heading may change faster than the circuit’s ability to track it, as
soon as the agent slows down, the visual cue input corrects the
location of the activity “bump” (Figure 8C).

2.4. Role of Circuit Elements
Now that we have both the underlying circuit structure and
its computational model, we can draw hypotheses and ask
pointed questions about the role of each circuit component. We
can artificially manipulate the circuit by removing or replacing
functional elements in order to study their effect on circuit
function.We recently used this method to investigate the stability
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FIGURE 8 | Response of the ring attractor activity “bump” to the heading changes of a real fruit fly. (A) Top view of the trajectory of a fruit fly flying in a circular arena

(Modified from Tammero and Dickinson, 2002). (B) Top: the spectral content of the fruit fly heading progress over time. Bottom: the phase difference between the fruit

fly heading and the heading tracked by the ring attractor across frequency components. (C) Top: the angular velocity of the fruit fly over time. Middle: the heading of

the fruit fly (in blue) and the azimuth of the activity “bump” around the ring attractor (in red). Bottom: the heading error (absolute difference) between the fruit fly heading

and the ring attractor tracked heading.

of the activity “bump” in the absence of stimulus (Pisokas et al.,
2020). We extend this approach here and investigate the circuit’s
performance as part of a situated agent that turns with respect to
a visual cue.

Figure 9 shows the effect of heterogeneity of synaptic weights
on the ability of the circuit to track the agent’s heading when
turning with respect to a visual cue. The ability to accurately track
the agent’s heading deteriorates with increasing heterogeneity
(additive Gaussian noise) of synaptic weights.

Furthermore, when the circuit is driven by heading stimulus,

it is significantly more tolerant of heterogeneity in neuronal
membrane conductance than in membrane capacitance

(Figure 10). The circuit can successfully track the agent’s heading
even when the membrane conductance deviates 50% away from
its nominal value.

Next, we investigate the effect of heterogeneity introduced in
different neuron synapses. While Pisokas et al. (2020) found that
the P-EG neurons enhance the stability of the activity “bump,”
in Figure 11A we see that the ability of the activity “bump” to
successfully track the agent’s heading, when the circuit is driven
by heading stimulus, is unaffected by variation of the P-EG to
E-PG synaptic weights. The ring attractor successfully tracks
the agent’s heading even if the P-EG neurons are completely

silenced. This means that the P-EG neurons play an important
role inmaintaining a stable heading when no stimulus is provided
but are not necessary when such a heading stimulus is present.
Whether the inclusion of these neurons is justified in a particular
ring attractor design would therefore depend on the operational
environment and the agent’s behavioral repertoire.

We can observe that the circuit is more sensitive to variations
in the E-PG to P-EN synapses than variations of the P-EN to
E-PG synapses (Figure 11A). The circuit is also sensitive to
heterogeneity introduced in the inhibitory synapses from Delta7
neurons to P-EG and P-EN neurons since inhibition of excitatory
neurons is an essential aspect of a ring attractor circuit for the
emergence of an activity “bump” (Figure 11B).

However, the circuit is tolerant to variations of the input
weights of Delta7 neurons (Figure 11B). This is because Delta7
neurons reciprocally synapse with each other, resulting in similar
spiking activity in all of them due to averaging out the effect of
synaptic weight variation.

Such insights drawn from observations about the ring
attractor found in the brain of the fruit fly can be incorporated
in building improved ring attractors with applications in robotics
as well as in developing theoretical models. The ability to
manipulate the circuit in robotic simulations can be used
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FIGURE 9 | Effect of synaptic weights heterogeneity on heading tracking

performance. The ability of the ring attractor to track the heading of a

simulated robot, replicating the turns of a real fruit fly, deteriorates as function

of synaptic noise. Synaptic noise was introduced by adding values drawn from

the Gaussian distribution to the nominal values of all synaptic weights.

FIGURE 10 | Effect of membrane properties heterogeneity on heading

tracking performance. The ability of the ring attractor to track the heading of a

simulated robot, replicating the turns of a real fruit fly, deteriorates as function

of Gaussian noise added to the neuronal membrane conductance and

capacitance.

for testing hypotheses both at the neuron level and at the
system level.

3. DISCUSSION

The increasing availability of detail about neuronal structure,
particularly in invertebrate brains, raises the possibility
to simulate complete circuits. However, while directly

implementing and simulating a biological neuronal circuit
model allows us to understand the computation performed
by it and to potentially derive its transfer function, it does not
necessarily provide us with a real mechanistic understanding
of its principle of operation and how its components interact.
Reverse engineering the neuronal circuit can provide a real
mechanistic understanding of the underlying principles of the
computational structure. Such a mechanistic understanding
is necessary for transfer to robotic technology because it
would allow engineers to adapt the design to each application’s
particular needs.

An intriguing challenge was posed by Jonas and Kording
(2017) who asked whether the tools and methods available to a
neuroscientist would allow understanding of a microprocessor.
Here, I have used reverse engineering techniques, borrowed from
engineering, to reverse engineer the neuronal circuit that is
encoding the head direction of the fruit fly. I derived the effective
topological structure of the circuit and then determined (through
optimization) the synaptic weights that would allow it to function
as a ring attractor, mimicking the dynamics of the biological
circuit. This illustrates that reverse engineering of a neuronal
circuit with fewer than a hundred neurons is feasible.

It is worth noting that the circuit studied here, even though
highly recurrent, has a regular structure that facilitates the
systematic application of the presented procedure. It remains
to be seen how this approach would need to be augmented in
order to be tractably applied to circuits exhibiting less regularity.
This highlights the need to develop tools that would assist the
systematic analysis of larger neuronal circuits.

The availability of detailed neuron-level anatomical data and
neuronal recordings from behaving animals in combination with
computational simulations enabled the analysis and study of
the circuit’s organization and function. This level of detailed
information is currently available for a few species, mainly
insects. The fruit fly is one of these, allowing the application
of the method to it. As data become available for more species
and brain areas, we could have the opportunity to analyze more
circuit structures and their function.

3.1. Assumptions and Simplifications
As any model, the present model is a simplification of the
neuronal circuit found in the fruit fly brain; therefore, it is
important to outline the assumptions made. The presented
analysis is based on data collected using light microscopy
(Wolff et al., 2015; Wolff and Rubin, 2018). Neurons with
input and output synaptic terminals occupying the same
volume were assumed to form synapses. Analysis of recently
published electron microscopy data will allow more definite
determination of synaptic connections between neurons and
lead to more accurate models. Furthermore, all neurons in the
model were assumed to have the same nominal biophysical
property values. Of course, this will not be the case in the actual
animals, but currently, there is no adequate data available about
the biophysical properties of the individual neurons included
in the model.

It was also assumed that Delta7 neurons have a uniform
distribution of input terminals along the PB. Imaging of Delta7
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FIGURE 11 | Effect of synaptic weights heterogeneity on heading tracking performance. The ability of the ring attractor to track the heading of a simulated robot,

replicating the turns of a real fruit fly, as function of Gaussian noise added to synaptic weights for different classes of neuron synapses. (A) Effect of Gaussian noise on

excitatory synapses. (B) Effect of Gaussian noise on synapses with Delta7 neurons on the presynaptic or postsynaptic side.

neurons suggests a subtle variation of dendritic density along the
PB, but it is yet unclear how this variationmight relate to synaptic
density and efficacy. Therefore, the simplifying assumption that
the synaptic efficacy of Delta7 neurons along the PB is uniform
was made. It was also assumed that neuronal terminals are clearly
delineated and confined within the volumes of glomeruli and
tiles. However, in some cases, stray terminals are known to sprout
out to neighboring tiles of the EB (Turner-Evans et al., 2020).
Such cross-innervation and interaction of EB volumes might
have consequences for the connectivity of the circuit, potentially
allowing a smoother transition of the activity “bump” between
circuit octants. Future work will build upon the core circuit
analyzed here and incorporate more circuit detail based on new

electron microscopy data.
Occasionally neurons have mixed input and output terminals

within the same volume. Given the uncertainty in the

identification of the type of synaptic terminals, in those cases, the
predominant terminal type was used. Furthermore, the synaptic

weights of each type of synapse were assumed to be identical

across neurons. This is not expected to be the case in actual fruit

flies, especially for the neurons innervating tile T1 of the EB.
This tile is innervated by twice the number of E-PG and P-EG
neurons as other tiles; thus, some modulation of synaptic efficacy
is expected in this volume in order to maintain a functional
radial symmetry in the circuit. Such synaptic efficacy variation is
suggested by the fact that the volumes of the innermost glomeruli
of the PB are smaller than those of the other glomeruli (Wolff
et al., 2015). Future functional connectivity studies will allow
further investigation of this aspect.

It should also be noted that the ring topology of the resulting
circuit alone does suggest but does not prove a ring attractor
function. Here, the prior observation of neurobiological studies
that the circuit maintains an activity “bump” that tracks the
heading of the animal was used to impose constraints in the

search for synaptic weights. For simplifying the computational
complexity of the search for synaptic weights, it was assumed
that all synapses between each neuron pair type are identical.
Had the computational complexity of the search not been an
issue, it would have been preferable to optimize all synaptic
weights as independent parameters because that would have
potentially revealed alternative weight configurations satisfying
the objective function.

3.2. Nature as Inspiration for Theory and
Engineering
The presented analysis method allowed us to unravel that
the underlying head direction circuit has an eight-fold radial
structure forming a closed ring (Pisokas et al., 2020). Without
reverse engineering of the neuronal circuit, we would not have
been able to see this underlying circuit structure, especially
because, even though there are eight tiles in the EB, the PB
has nine glomeruli in each hemisphere. As the connectivity
results in a closed ring, it is an important aspect of the circuit,
allowing the activity “bump” tomove around the ring as the agent
changes heading.

Combining reverse engineering with simulations enabled the
identification of circuit elements that differ in several ways from
the “canonical” ring attractor described in earlier theoretical
models (e.g., Amari, 1977; Skaggs et al., 1995; Zhang, 1996).
The P-EG neurons are a novel element in a ring attractor,
forming local feedback loops within each octant of the circuit
(reciprocal synapses between P-EG and E-PG neurons). These
local reciprocal connections increase the tolerance of the circuit
to structural noise in the synaptic weights, hence reducing the
drift of the activity “bump” when no stimulus is provided
(Pisokas et al., 2020); however, they are not important if the
stimulus can be assumed at all times. This circuit component will
be a useful trick in the toolkit of neuromorphic circuit designers.
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Another difference from textbook ring attractor circuits
revealed by the presented analysis method is that the P-EN
neurons, instead of functioning as mere input neurons, are
also part of the lateral excitation circuit (Pisokas et al., 2020).
These neurons provide lateral excitation to their two nearest
neighbors. P-EN neurons’ dual function suggests a more efficient
use of neuronal resources compared with typical ring attractor
models that use separate sets of neurons for providing the lateral
excitation and for rotating the activity “bump” around the ring in
response to angular velocity input. The architecture of the ring
attractor circuit found in the fruit fly and its differences from
classical ring attractor models can inspire the design of novel ring
attractor architectures with increased stability and efficient use
of neuronal resources, both valuable aspects for applications in
neuromorphic hardware and neurorobotics.

Reverse engineering gives us a mechanistic understanding
of the underlying circuit, while computational simulations give
us the tools to study the circuit’s performance without having
an analytical description of the model. Combined reverse
engineering and computational simulations are tools that enable
us to isolate and manipulate components of the neuronal
structure in order to study their role in whole circuit. The
mechanistic understanding of how the circuit components
interact allows us to infer the circuit behavior under regimes
beyond those explicitly tested with simulations. Combining these
two tools allows us to obtain a deep understanding of neuronal
circuits and enables us to learn their principles of operation.

Furthermore, the approach illustrated here shows that
simulating the circuit as part of a robotic agent reveals aspects of
the circuit’s function that are masked when studying the circuit
in isolation. For example, we saw that even if the ring attractor’s
response time is not sufficient for keeping up with fast turns of
the agent, as long as the agent does not constantly turn faster
than the circuit’s response capability, and the heading stimulus is
available, the ring attractor can readjust to the correct heading.
We also saw that the P-EG neurons’ presence, while essential
for the stability of the activity “bump” when no stimulus is
available, is not important to the circuit’s function when a heading
stimulus is available. These findings highlight the importance of
characterizing neuronal circuits as part of behaving agents.

The studied circuit appears to be an effective means for an
animal to internally track its orientation with respect to its
surroundings and in insects appears to be a core component
of a variety of navigation behaviors spanning from long-range
migration to local path integration. The continued study of
the detailed anatomy of the insect brain provides an exciting
opportunity for the further unraveling of this circuit’s function
that evolved to support complex adaptive behavior.

4. MATERIALS AND TOOLS

4.1. Neuronal Nomenclature
Throughout this paper, I refer to neurons using their short names
for brevity. The correspondence between the nomenclature used
here and in the literature is shown in Table 1.

4.2. Neuron Model
The computational models and simulations were based on the
source code of Kakaria and de Bivort (2017). The neurons were
modeled as leaky integrate and fire units with refractory period.
The membrane potential of each neuron was modeled by the
differential Equation (1).

dVi

dt
=

1

Cm





V0 − Vi

Rm
+ Ii +

N
∑

j=1

Mj,iIj



 (1)

where Vi is the membrane potential of neuron i, Rm
the membrane resistance, Cm the membrane capacitance,
Ii the external input current to neuron i, V0 the resting
potential, Mj,i the network connectivity matrix, Ij the output
current of each neuron in the circuit and N is the number
of neurons.

The neuron properties were set to the same values as
those used by Kakaria and de Bivort (2017). These values are
consistent with evidence frommeasurements inD. melanogaster.
Cm was set to 2nF and Rm to 10M� for all neurons,
assuming a surface area of 10−3cm2 (Gouwens and Wilson,
2009). The resting potential V0 was −52mV for all neurons
(Rohrbough and Broadie, 2002; Sheeba et al., 2008) and
the action potential threshold was −45 mV (Gouwens and
Wilson, 2009). The action potential template was defined
as (Kakaria and de Bivort, 2017):
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When the membrane potential reached the threshold voltage
Vthr , the action potential template was inserted in the recorded
voltage time series. Vmax = 20 mV is the peak voltage
(Rohrbough and Broadie, 2002) and Vmin = −72 mV is
the undershoot potential (Nagel et al., 2015). tAP = 2 ms
is the duration of the action potential (Gouwens and Wilson,
2009; Gaudry et al., 2012). N (µ, σ 2) is a Gaussian function
with mean µ and standard deviation σ . α1, β1, γ1, and δ1 are
normalization parameters for scaling the range of the Gaussian
and the sinusoidal to [0,1]. No other action potentials were
allowed during the template duration in effect producing a
refractory period.

The postsynaptic current generated by the action potential was
modeled as (Kakaria and de Bivort, 2017):

I(t) =







IPSC
sin( tπ

2 − π
2 )+α2

β2
, if 0 ≤ t < 2ms

IPSC
2−(t−2)/tPSC+γ2

δ2
, if 2ms ≤ t ≤ 2ms+ 7tPSC

(3)

Excitatory and inhibitory postsynaptic currents were assumed to
have the same magnitude but opposite signs. The parameters
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FIGURE 12 | The connectivity matrix derived by the neuronal projection data of the fruit fly Drosophila melanogaster (Wolff et al., 2015; Wolff and Rubin, 2018).

Synaptic weight is denoted by color in units of postsynaptic current equivalents.

were set to IPSC = 5 nA (Gaudry et al., 2012) and tPSC = 5
ms (Gaudry et al., 2012). The postsynaptic current traces had
duration 2ms+ 7tPSC (2 ms of rise time plus 7tPSC of decay time).
α2, β2, γ2, and δ2 are normalization constants so that the range
of the sinusoidal and exponential terms is [0,1]. Our simulation
code was derived from the source code published by Kakaria and
de Bivort (2017). The simulations were implemented in Matlab
using Euler’s method with a simulation time step of 10−4s. The
source code is available at https://github.com/johnpi/Frontiers_
Neurorobotics_Pisokas_2020.

4.3. Neuronal Projections and Connectivity
Matrix
The connectivity matrix of the circuit (Figure 12) has been
inferred from anatomical data derived using light microscopy,
with overlapping neuronal terminals assumed to form synapses
between them (Wolff et al., 2015; Wolff and Rubin, 2018).

4.4. Stimuli
The heading stimulus was provided as incoming spiking activity
directly to the E-PG neurons. The heading, visual cue azimuth
(Seelig and Jayaraman, 2015) around the animal or agent, was
encoded as higher firing rates supplied to E-PG neurons at the
corresponding location around the EB ring (Figure 13). The

heading stimulus followed spatially a vonMises distribution with
mean equal to the azimuth of the stimulus and full width at half
maximum (FWHM) of approximately 90◦. This was converted
to Poisson distributed spike trains by sampling from a Poisson
distribution. The background neuronal activity level was set to 5
impulses/s and themaximum stimulus activity was set to the peak
level of activity of the E-PG neurons in the neuronal population.

4.5. Selection of Synaptic Weights
The free parameters of the model were the synaptic weights.
The synaptic weights connecting each class of neurons were
assumed to be identical, e.g., all E-PG to P-EN synapses had
identical weights. Therefore, there was one free parameter for
each synaptic class. To reduce the computational complexity
during optimization, the synaptic weights of E-PG to P-EN and P-
EG were identical as were the synaptic weights of Delta7 to P-EN
and P-EG. This was the minimum set of independent synaptic
weights that resulted in working ring attractors. The synaptic
weights were modeled as the number of IPSC unit equivalents
flowing to the postsynaptic neuron per action potential.

The simulated annealing and particle swarm optimization
algorithms were used to search for synaptic weights that resulted
in working ring attractors (Matlab Optimization Toolbox
“simulannealbnd” and “particleswarm” functions). The objective
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FIGURE 13 | Simulated agent and its environment. (A,B) The simulated agent (R) is located in the middle of its environment (large black circle), with a visual cue (gray

circle at the top of the environment). During the simulation the heading of the agent changes. (C,D) The azimuth of the visual cue with respect to the agent is mapped

retinotopically to the E-PG neurons around the ring attractor. The azimuthal location is converted to a von Mises activity distribution and then to Poisson distributed

spikes to stimulate the E-PG neurons. (A,B) Two poses of the agent with respect to the visual cue. (C,D) The corresponding stimulation of the E-PG neurons around

the ring attractor.

function optimized for solutions that produced an activity
“bump” with a full width at half maximum (FWHM) of
approximately 90◦ since this is the width that has been reported
in fruit flies (Kim et al., 2017).

The objective function used to optimize the synaptic weights
wi was:

argmin
w

4(ǫH1(w)+ ǫH2(w))+ ǫW1(w)+ ǫW2(w)+ Np0(w)

s. t. ǫH1(w) =
|Hd(t1)−Ha(w, t1)|

360◦

ǫH2(w) =
|Hd(t2)−Ha(w, t2)|

360◦

ǫW1(w) =
|90◦ −Wa(w, t1)|

360◦

ǫW2(w) =
|90◦ −Wa(w, t2)|

360◦

p0(w) =
1

N

N
∑

i=1

(e−|wi|)2

0 ≤ w1 ≤ 100

0 ≤ w2 ≤ 100

0 ≤ w3 ≤ 100

−100 ≤ w4 ≤ 0

−100 ≤ w5 ≤ 0

(4)

Where ǫH1, ǫH2, ǫW1, and ǫW2 are the error factors measured
as deviations from the desired values. Hd(t) is the desired
activity “bump” heading at time t, while Ha(w, t) is the actual
activity “bump” heading at time t given a model with synaptic
weights w. Wa(w, t) is the actual width of the activity “bump”
at time t (measured as the full width at half maximum). p0
is used to penalize synaptic weights that are too close to 0
and N is the number of synaptic weights wi. The constraints
in 4 specify that the synapses with Delta7 neurons at their
presynaptic side are inhibitory (negative) and all others are
excitatory (positive). Excitatory synaptic weights were initialized
with value 0.01 and inhibitory synaptic weights with value−0.01.
During optimization, the model was simulated to search the
space of synaptic weights. The objective function was used to
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optimize the synaptic weights separately for the two models,
the fruit fly model and the one without P-EG neurons. The
optimized synaptic weight sets were manually tested to verify
the results.

4.6. Sensitivity Analysis
For the sensitivity analysis, white Gaussian noise was added to
the synaptic weights, using the formula

wi = wnominal +
x

100
wnominalǫ,

ǫ ∼ N (µ, σ 2)
(5)

where wi is the resulting noisy value of weight i. i =

{1, 2, . . . ,M} and M is the number of weights. wnominal is the
nominal value of the weight, x ∈ [0, 100] is the percentage of
noise to be added to the nominal value, ǫ is a random variable
sampled from the Gaussian distribution with µ = 0 and σ 2 = 1.
The number of successful trials was counted in each condition.
The criterion for a successful trial was that the activity “bump”
tracked the stimulus heading with an error of <±10◦ for more
than 50% of stimulus duration.
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