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Contours produced by internal specular interreflections
provide visual information for the perception of glass
materials
James T. Todd Ohio State University

J. Farley Norman Western Kentucky University

Two experiments are reported that investigated how the
perceptual identification of glass is influenced by
banding contours formed by internal specular
interreflections within glass materials. Observers made
material categorization judgments for images depicting
glass, chrome, shiny black and shiny white objects, and
for contour drawings that were created by edge filtering
images of glass, chrome or textured objects. Observers
rated each stimulus by adjusting four sliders to indicate
their confidence that the depicted material was glass,
metal, shiny black, or something else, and these
adjustments were constrained so that the sum of all four
settings was always 100%. The results revealed that the
rendered images were all categorized correctly with a
high level of confidence. The contour drawings of glass
and textured materials were also categorized correctly
with a high level of confidence. However, the contour
drawings of chrome materials were miscategorized as
glass, with an average confidence rating that was
significantly lower than those obtained for the glass
contours. It is hypothesized that these different contour
types are perceptually distinguished from one another
based on how they align with the pattern of surface
curvature on an object and the smoothness of the
contours.

Introduction

The interreflection of light on surfaces is a largely
neglected topic in the study of visual perception.
Although there have been a few computational
analyses (Koenderink & van Doorn, 1983; Nayar,
Ikeuchi & Kanade, 1991; Langer, 1999) and some
early psychophysical investigations (Gilchrist &
Jacobsen, 1984; Bloj, Kersten & Hurlbert, 1999;
Madison, Thompson, Kersten, Shirley, & Smits, 2001;
Doerschner, Boyaci, & Maloney, 2004), the effects of
indirect illumination are still widely misunderstood
(Todd, Egan & Kallie, 2015). Moreover, the limited
research that has been performed on this topic has

focused almost exclusively on diffuse reflections on
surfaces that scatter light uniformly in all directions.

The first researchers to consider specular
interreflections on shiny surfaces were Pont &
Koenderink (2002, 2005). In an effort to derive
a theoretical bidirectional reflectance distribution
function for rough pitted materials, they performed a
detailed analysis of how light behaves inside a shiny
concave hemispherical surface. Consider the six images
shown in Figure 1, which show a single hemispherical
pit composed of a polished silver material with varying
numbers of surface interreflections. The image in
the top left panel shows the visible structure that is
produced by a single bounce of direct illumination.
Note that the image of the surrounding scene is
inverted, and that it is only visible in the central portion
of the surface where light can be directly reflected
toward the point of observation. The image in the top
middle panel shows the visible structure that emerges
after one additional indirect bounce. Note that this
structure contains two circular bands: A large inner
one where the surrounding scene appears upright,
and a smaller outer one in which the scene appears
inverted. As is shown in the remaining panels, each
additional bounce produces two additional bands of
visible structure that get progressively smaller as they
approach the outer edge of the surface.

Although this banding behavior may appear at first
blush to be counterintuitive, it can easily be explained
using geometrical optics. It is important to keep in
mind that the simulated surface in Figure 1 is perfectly
smooth. Thus, at any given point on the surface, there
is only a single direction of illumination that will reflect
light toward the point of observation, and that direction
can be determined using backward ray tracing from the
eye. Figure 2 shows three such points labeled A, B and
C on the lower half of a concave hemisphere, and the
optical paths (colored black, green, and red) that would
allow those points to reflect light toward the point
of observation. Point A is in the region where direct
reflections of the environment are visible, as shown by
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Figure 1. A concave hemispherical pit rendered with different numbers of reflective bounces. The top row from left to right shows 1, 2
and 3 bounces, respectively. The bottom row shows 4, 5, and 100 bounces. Note that if this were a real photograph, the camera
would be visible in the reflections.

A

B

C

Figure 2. The light paths that reach the point of observation
from three points on a concave hemispherical surface.

the path colored black. Note that the light that reaches
the eye from that point comes from the upper part of
the environment so that the image near A is inverted.
Point B is located further out in the periphery. It can
only reflect light toward the eye after an additional
indirect bounce, as shown by the path colored green.
Note how that path originates in the lower part of the
environment so that the image near B is upright. Finally,
point C is located even farther out in the periphery, and
it also requires an additional indirect bounce to reflect

light toward the eye as shown by the path colored red.
However, note in that case that the path originates in the
upper part of the environment, so that the image near
C is again inverted. By moving farther and farther into
the periphery, the number of required bounces to reflect
light toward the eye increases, and the alternating bands
of upright and inverted images repeat with higher and
higher frequency.

To summarize briefly, the interreflective bands within
a concave hemisphere are organized in a hierarchical
manner based on simple geometrical optics. At
one level of structure, each band is defined by the
number of reflective bounces required for light from
the surrounding environment to reach the point of
observation. At a more subordinate level, each band is
subdivided into two concentric regions: One where the
visible image is upright, and another where the visible
image is inverted.

There are a couple of other factors that can influence
the extent of this banding. One is the relative depth
of a pit. This is demonstrated in Figure 3, which
shows spherical pits of a silver material with three
different depths. As the pit becomes more and more
compressed (moving from left to right), the central
region with visible direct reflections expands, and the
banded region is pushed farther into the periphery.
Another important factor is the specular reflectance of
the surface material. Figure 4 shows hemispherical pits



Journal of Vision (2020) 20(10):12, 1–18 Todd & Norman 3

Figure 3. A concave ellipsoidal pit with different depth to width ratios. From left to right, the depth relative to the horizontal radius is
1, .75 and .5, respectively.

Figure 4. A concave hemispherical pit composed of different materials. From left to right, the depicted materials are silver, chrome
and obsidian (i.e., volcanic glass).

composed of silver, chrome and obsidian (i.e., volcanic
glass). Silver reflects almost 100% of the illumination
at all incident angles; chrome reflects approximately
50% of the illumination; and obsidian only reflects
about 5% at most incident angles. The illumination
intensity in these images has been adjusted so that
their central regions with visible direct reflections all
have the same luminance. However, as the surface
reflectance is systematically reduced, the visible banded
regions do not extend as far into the periphery of the
surface, and they have reduced contrast. This is because
a greater proportion of energy is absorbed on each
bounce.

Although the visible bands produced by specular
interreflections in concave surface regions were first
discovered and analyzed by Pont & Koenderink (2002,
2005), a similar observation was later described by
Todd and Norman (2019) for glass materials, but we
did not initially make the connection with Pont and

Koenderink’s research. Glass is an interesting material
in this regard. When light hits a boundary from air
to glass, almost all of its energy is transmitted except
at high incident angles. Conversely, when light hits
a boundary from glass to air at any incident angle
above 41°, 100% of its energy will be reflected—a
phenomenon that is referred to as total internal
reflection. As a result of this high level of internal
reflectance, glass materials can exhibit the same type of
visible banding structure as is demonstrated in Figures 1
to 4 for shiny metals. It is important to keep in mind,
however, that this behavior occurs internally within an
object such that all signs of curvature on its surface are
reversed relative to how they appear from the outside.
In other words, what appear to be ridges and bumps
from the outside are actually valleys and pits from the
inside.

The left column of Figure 5 shows two glass objects
with relatively complex patterns of concavity and
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Figure 5. Two glass objects with different rendering constraints. The left column shows the combined effects of both reflected and
transmitted light. The middle column shows only the transmitted light and the right column shows only the reflected light.

convexity. The middle column shows only the effects
of light that is transmitted inside the objects, and the
right column shows only the effects of light that is
reflected off their outside surfaces. Note that the images
of transmitted light are perceived as a glass material,
whereas the images of the outer surface reflections are
perceived as a shiny black material like obsidian (see
Todd & Norman, 2019). Let us first consider the object
in the top row that has a deep internal concavity on its
lower right. Note that this region has a complex pattern
of light and dark bands similar to the ones shown in
the left panel of Figure 3. There are also two shallower
internal pits at the top of this object, whose outer edges
are marked by thin bands similar to the ones in the
right panel of Figure 3. The object in the bottom row
contains a dense pattern of internal pits, and many of
those are also lined with a pattern of light and dark
bands. By manipulating the number of possible indirect
bounces (as in Figure 1), Todd and Norman (2019)
showed that these structures only emerge over multiple
internal reflections.

Is it possible that these banded contours provide
useful information for the perceptual identification
of glass materials? To address that issue, Todd and
Norman (2019) created a few displays in which
contours were presented in isolation without any other
variations in gray scale. This was achieved by applying
a Sobel edge filter to images of glass objects using the
Photoshop CC 2019 find edges tool. An example of
this is shown in Figure 6. The original image is shown

in the left panel, and the transformed contour pattern
is shown in the right panel. Observers categorized both
of these objects as glass with 100% confidence. It is
important to keep in mind that edge filtered images
do not completely isolate internal banding contours
from surface interreflections. They also produce edges
from occlusion boundaries and specular highlights on
the external boundary. However, those latter features
are the same or similar for all types of shiny surfaces
and are not therefore diagnostic for the perceptual
identification of glass.

Todd and Norman (2019) noticed that the banding
contours in glass materials can be quite complex.
They often create swirling patterns that resemble the
turbulent flow of fluid materials. Note in the right panel
of Figure 6 that these swirling patterns are especially
evident in the base of the object where the trunk is
attached to the leg, but there are other less prominent
examples in the middle of the back, the top of the ear,
and the front of the face. Todd and Norman described
these features as flow eddies, and they speculated that
the swirling patterns of contours could provide a useful
source of information for the perceptual identification
of glass materials.

The research described in the present article was
designed to explore this finding in much greater detail
than the simple demonstration of Todd and Norman
(2019). Its goals were twofold: First, to determine
whether observers can reliably distinguish the contours
on glass objects from those that occur on other types
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Figure 6. A glass image of an elephant, and a contour drawing of that image created using an edge filter.

of materials; and second, to determine whether objects
defined by those contours are reliably identified as glass.

Experiment 1

Methods

The methods and procedure were similar to those
used by Todd and Norman (2019) and Norman,
Todd, and Phillips (2020). Observers made material
categorization judgments for 72 possible stimuli. Half
of the stimuli depicted images of metal, glass, shiny
black and shiny white objects. These were included
to provide a baseline of performance for evaluating
observers’ judgments of the remaining stimuli that
depicted edge filtered contour drawings of the metal
and glass materials.

Stimuli
There are several practical problems that needed to

be addressed in creating the stimuli for this experiment.
Although patterns of interreflective contours were
the primary focus of this research, it was important
that those contours be generated from images of
metal and glass materials that are clearly recognizable.
The first problem we faced is that the appearance of
these materials is strongly affected by the pattern of
illumination (Todd & Norman, 2018; Todd & Norman,
2019; Norman et al., 2020). For, example, if the
illumination is too sparsely distributed, metal surfaces
can appear as shiny black, and, if the illumination is
too diffuse, metal surfaces can appear as shiny or matte
white. The appearance of glass is also particularly
sensitive to the way it is illuminated (Hunter, Biver, &
Fuqua, 2007; Todd &Norman, 2019). With nonoptimal
lighting, the image of a glass object may contain weird
looking patches of black and white, or the object may

disappear altogether as if it were invisible. This problem
is compounded by the fact that the ideal illumination
for one material may not work well for others (Zhang,
de Ridder, & Pont, 2015). For example, Figure 7
shows three images of a bumpy sphere composed of
shiny white, metal and glass materials. The lighting
in these scenes includes two large area lights, one
that illuminates the surface from the front left, and
another that illuminates it from the back right. This
is a common pattern of lighting in photography for
opaque dielectric materials because it provides good
contrast and clear definition of an object’s boundaries.
However, this does not work at all for metal or glass.
Note in Figure 7 that the metal object in the middle
panel appears as a shiny black material, and the glass
object in the right panel appears as a metal or shiny
black material.

Hunter, Biver, and Fuqua (2007) have observed that
glass objects have “grayed the hair and wasted the time
of more photographers than any other substance.”
This is because most patterns of illumination do not
produce compelling images of glass materials, and
that is also true for metals. If you pick a light map at
random to illuminate a scene, the odds of it producing
recognizable glass or metal materials are rather small.
Our solution to this problem was to use a light map of
the Charles River esplanade from the sIBL archive that
has been shown in previous research to allow accurate
categorizations of all the materials used in the present
experiment (Todd & Norman, 2019; Norman et al.,
2020).

Another important issue that needed to be addressed
concerns the multiple scale spatial structure of internal
and external surface interreflections. Note in Figure 1
how the spatial frequency of the surface reflections
becomes greater and greater in more peripheral
regions of the hemisphere, and a similar effect is also
observed within the glass images of Figure 5. For
even modestly complex surface geometries, these high
frequency variations in luminance may not be resolved
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Figure 7. A bumpy sphere illuminated by two large area lights. The depicted materials include shiny white (left), metal (middle), and
glass (right).

Figure 8. The top row contains blurred (right) and unblurred (left) light maps of the Charles River esplanade. The bottom row shows
images of a bumpy sphere rendered with these light maps.

adequately by the renderer, and this can produce a
noisy appearance in the resulting image. This can be
mitigated to some extent by rendering an image at
a very high spatial resolution, but that dramatically
increases rendering times for glass materials. The
alternative is to somehow blur the high frequency
structure. This can be achieved in several possible
ways. One is to blur (i.e., antialias) the final image,
which can create a blurry appearance. Another is
to add a small amount of roughness to the surface
material. This works well with shiny opaque materials
(Mooney & Anderson, 2014; Todd & Norman, 2018),
but it radically changes the appearance of glass (Todd
& Norman, 2019). A third alternative is to blur the
light map, so that its high frequency components are

smoothed. This is functionally equivalent to adding
roughness to opaque surfaces, but it also works well
with glass (see Todd & Norman, 2019). For example,
the top left panel of Figure 8 shows a light map of the
Charles River esplanade. The top right panel shows a
blurred version of that map. The original esplanade
light map had a spatial resolution of 3200 × 1600
pixels, and we transformed it using a Gaussian blur
filter with a radius of 15 pixels. The images in the lower
two panels of Figure 8 show bumpy chrome spheres
illuminated by the light map directly above them. To
our eyes, the blurred one on the right looks much more
natural than the unblurred one on the left, and that
is the one we employed for all of the stimuli in the
present experiment. Although it is possible to produce
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Figure 9. Three images of glass objects used in the present experiments.

polished chrome materials that produce perfect mirror
reflections, they typically become smudged by dust
or water deposits when exposed to the elements of a
natural environment.

The rendered images used in this experiment were
created using Maxwell Renderer 4 developed by Next
Limit Technologies (Madrid, Spain). Maxwell is an
unbiased renderer in that it does not use heuristics
to speed up rendering times at the cost of physical
accuracy. Although the quality of the images it
produces is quite high, this comes at a substantial cost
in rendering time, especially for materials that involve
transparency or translucency. The images were rendered
on a computer cluster with 64 cores.

There were nine different stimulus objects used in
the experiment that were all presented in front of a
dark gray background plane. All of the objects were
approximately 10 cm in height, and their widths varied
from 5 to 10 cm. Each object was rendered using a
simulated camera at a distance of 55 cm with a 171
mm lens that had a 12° field of view, and an F-stop
of 40 so that there was a large depth of field. The
simulated materials included a glass material with
a complex IOR of (1.5, 0), a chrome material with
a complex IOR of (3.2, 3.3), a shiny black material
(i.e., obsidian), whose reflections were identical to
glass, but without any light transmission, and a shiny
white material with a linear combination of diffuse
and specular components. Figure 9 shows three of the
objects with a glass material, and Figure 10 shows the
remaining six objects with metal, shiny black, and shiny
white materials. The experiment included all 36 possible
combinations of nine objects with four materials.

The rendered images were globally tone mapped
for the Apple monitor into the sRGB 2.1 color space
with a D65 white-point and a gamma of 2.2. No other
global histogram adjustments (e.g., tint or burn) or
local sharpening or contrast enhancement operators
were used. Because the intensity of the light map was
adjusted to prevent saturation of the specular highlights
and we did not compress the dynamic range of

intensities, this likely caused some loss of information
at lower intensities that might have been visible on a
display device with a higher dynamic range.

An additional 36 stimuli were created by applying a
Sobel edge filter to all of the images of glass and chrome
materials using the Photoshop CC 2019 find edges tool.
Because we suspected that the contrast polarity might
have a significant effect on observers’ perceptions, we
created two versions of these contour images, in which
the contours could be presented as either white on
black or black on white. Figure 11 shows white on black
contour images for three of the objects in both the glass
and metal conditions. Figure 12 shows black on white
contour images for three other objects. Note that the
white on black images of glass contours appear vaguely
similar to the images produced using the dark field
method that is popular in photography, in which objects
are illuminated from the top and sides against a black
background (see Todd & Norman 2019). Similarly,
the black on white contours appear vaguely similar to
images produced using the bright field method, in which
objects are illuminated with diffuse light from behind.

Apparatus
The experimental stimulus images were displayed

by an Apple Mac Pro computer (Dual Quad-Core
processors, with ATI Radeon HD 5770 hardware-
accelerated graphics) using an Apple 27-inch LED
Cinema Display (2560 × 1440 pixel resolution). The
monitor was located at a 60 cm viewing distance. The
luminous intensity of the monitor, measured over
an area of 25°, had a minimum intensity (for black)
of 1 cd/m2 and a maximum intensity (for white) of
136 cd/m2.

Procedure
On each trial, observers were presented with a single

image and were required to categorize the depicted
material by adjusting four sliders with a hand-held
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Figure 10. Six of the objects used in the present experiments composed of metal, shiny black and shiny white materials.

Figure 11. White on black contour drawings of three objects used in Experiment 1. The top row depicts chrome and the bottom row
depicts glass.
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Figure 12. Black on white contour drawings of three objects used in Experiment 1. The top row depicts chrome and the bottom row
depicts glass.

mouse. Each of the sliders represented a different
category labeled glass, metal, shiny black or something
else, and a digital readout was also provided for each
one. Observers were instructed to adjust the sliders to
indicate their confidence rating for each of the four
possible categories, and that these confidence ratings
should always sum to 100%. Any set of responses that
did not satisfy this criterion would prevent the program
from advancing to the next trial. Because of the digital
readout of their settings, observers had no difficulty
conforming to this instruction. We knew from our
earlier research that images of glass can occasionally be
misinterpreted as a metal or shiny black material (see
Todd & Norman, 2019). That is why we incorporated
those categories in the response settings. However,
we did not want the observers to feel forced to only
consider glass, metal or shiny black when evaluating
each stimulus, so we also included a “something else”
response option, and also added the shiny white stimuli
in an effort to force them to give that category a high
rating on a subset of the trials.

Observers
The displays were judged by one of the authors

(JFN) and nine other observers who were completely
naïve about the purpose of the experiment or how

the displays were generated. All observers possessed
normal or corrected-to-normal visual acuity. During
each experimental session, observers made judgments
for all 72 stimuli, and all observers participated in two
sessions. At the beginning of each session, the details
of the response task were explained, and observers were
shown real physical examples of glass, metal and shiny
black materials. However, they were also instructed
that other types of materials would be presented as
well, and that those should be categorized as something
else.

Results

Table 1 shows the average confidence ratings for all
of the different response categories in all of the different
stimulus conditions. Note that the observers’ judgments
of the original rendered images were almost perfectly
accurate: The chrome materials were categorized as
metal with an average confidence rating of 90%; the
shiny black materials were categorized as shiny black
with an average confidence rating of 94%; the glass
materials were categorized as glass with an average
confidence rating of 96%; and the shiny white materials
were categorized as something else with an average
confidence rating of 94%.
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Of course, the main focus of the experiment
concerned the contour patterns. It is important to
keep in mind that observers were given no instructions
about those. In the absence of other evidence, it might
be reasonable to expect that the contour drawings
might not appear to have any recognizable material at
all. We would expect in that case that the observers
would categorize those stimuli as something else with a
high degree of confidence, just as they rated the shiny
white materials that did not have a designated response
category—but that is not what occurred. Indeed, the
average “something else” confidence rating for all of the
contour drawings was only 7%.

One possible factor that could influence observers’
judgments of the contour stimuli is edge density.
Because the contour patterns were mostly binary, an
approximate measure of edge density can be obtained
by computing the mean luminance for each black on
white contour pattern, excluding the background.
On average, the glass contours had 5% higher edge
density than the chrome contours, but that difference
was dwarfed by the variations between the different
objects, whose edge densities ranged from 9% to 39%.
The objects listed in Table 1 are ordered with respect
to their average edge density for the glass and chrome
conditions.

Let us first consider the ratings obtained for the
contour patterns that were produced by edge filtering
the images of glass objects. The most highly rated
response category was glass in both the white on black
and black on white conditions, with average confidence
ratings of 89% and 84%, respectively, and the second
most highly rated category was something else, with
average confidence ratings of 5% and 8%.

For the contour patterns produced by edge filtering
the images of chrome objects, there was a noticeable
effect of contrast polarity, which did not occur for the
glass contours. For the stimuli with white on black
contours, the most highly rated response category was
glass, but the average confidence rating in that case was
only 50%. The second most highly rated category was
shiny black, with an average confidence rating of 43%.
It is also interesting to note that the glass ratings for the
white on black chrome contours were highly correlated
with edge density (r = .80). The low density objects were
much more likely to be rated as shiny black than the
high density ones. For the stimuli with black on white
contours, the most highly rated response category was
also glass, with an average confidence rating of 75%,
and the second most highly rated category was metal,
with an average confidence rating of 15%. For the black
on white contours there was a negligible correlation
between the glass ratings and edge density (r = 0.08).

A statistical analysis of these data is complicated
by the fact that the variance of observers’ ratings is
far from uniform across all of the different conditions.
When the average confidence rating is near 0% or

100% the variance is negligible, but it becomes much
larger when the average rating is in the middle of
that range. In order to spread out the judgments at
the tails of the distribution, we performed a logit
transformation on the data. To prevent the transform
from going to infinity, any rating of 100% was
converted to 99.5% and any rating of 0% was converted
to 0.5%.

The transformed glass confidence ratings were then
analyzed using a 2 (materials) by 2 (contrast polarity)
analysis of variance. The results revealed that there
was a significant effect of the depicted material (F(1,
9) = 17.67, p < 0.002), such that the contours from
glass materials received higher confidence ratings
than contours from chrome materials. There was no
significant main effect of contour polarity (F(1, 9) =
3.01, p > 0.1), but there was a significant interaction
(F(1, 9) = 22.09, p < .001). We also performed t-tests
to compare observers’ ratings of the glass objects to
those obtained in the contour conditions, collapsed
over variations in contrast polarity. The average rating
of the glass images was 9% higher than the ratings
obtained for the glass contour conditions, and this
effect was marginally significant (t(9) = 2.84, p < .05).
However, the average rating of the glass images was
33% higher than the ratings obtained for the chrome
contour conditions, and this effect had a much higher
level of significance (t(9) = 5.63, p < .0005).

These findings indicate that much of the visual
information in our glass images is also present in
contour drawings that are generated from those images,
and that observers can identify those drawings as glass
with only slightly less confidence than they exhibit for
fully rendered images. The results also demonstrate
that observers could reliably distinguish the contours
obtained from images of glass and chrome—at least to
some extent. It is important to keep in mind, however,
that all of the chrome contour patterns were categorized
primarily as glass. Observers’ judgments of those
patterns only differed from their judgments of glass in
terms of their reported level of confidence.

So what is the information on which these confidence
ratings are based? In order to address this question it is
useful to pay careful attention to Figures 11 and 12.
One similarity between glass and metal contours is that
they tend to cluster in regions of high slant or curvature.
The primary difference is that the glass contours have
a more complex chaotic structure. Todd and Norman
(2019) referred to these patterns as flow eddies because
they resemble the turbulent flow of fluid materials.
We suspect that both of these factors are important
sources of information for observers’ judgments.
The clustering of the contours with respect to the
surface geometry is what makes the glass and chrome
contours appear similar, and the chaotic structure
of the glass contours is what makes them appear
different.
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Figure 13. Contour drawings of six objects rendered with 3D volumetric textures from Experiment 2.

Experiment 2

Because all of the contour patterns in Experiment 1
were primarily identified as glass, one possible
explanation of the results is that observers are
inherently biased to interpret any contour pattern as
glass regardless of how they are oriented with respect
to the surface geometry. Experiment 2 was designed
to test that hypothesis using contour patterns that are
completely unrelated to those that arise from specular
reflections and interreflections.

Methods

The stimuli in Experiment 2 were the same as those
used in the previous study, except that the chrome
contour patterns were replaced by a new set of contour
patterns that were created by rendering each object with
a 3D volumetric texture. Each of the nine objects was
rendered with a different texture and then converted
into a contour pattern using the Photoshop find edges
tool with both types of contrast polarity. Six of these
texture-object combinations are shown in Figure 13
as white on black in the top row and black on white
in the bottom row. In all other respects, the methods
were identical to those described for Experiment 1.

Eight new naïve observers were recruited, and they each
participated in just one experimental session.

Results

Table 2 shows the average confidence ratings for
all of the different response categories in all of the
different stimulus conditions. As in Experiment 1, the
observers’ judgments of the rendered images were quite
accurate. The chrome materials were categorized as
metal with an average confidence rating of 97%; the
shiny black materials were categorized as shiny black
with an average confidence rating of 90%; the glass
materials were categorized as glass with an average
confidence rating of 96%; and the shiny white materials
were categorized as something else with an average
confidence rating of 84%.

Unlike Experiment 1, however, there was no
ambiguity at all between the two types of contour
patterns. The glass contours were categorized as glass
with an average confidence rating of 91% for both of the
different contrast polarities. Conversely, the volumetric
texture patterns were categorized as something else with
an average confidence rating of 97%.

It is also interesting to note in evaluating these data
that six of the eight main conditions were identical
to those used in Experiment 1 with different subjects.
Thus this makes it possible to measure the test-retest
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Figure 14. Three different light maps (top row). Images of an elephant rendered from them (middle row), and contour drawings
created from those images.

reliability of this task. The results revealed that the
shared cells in Tables 1 and 2 were almost perfectly
correlated (r = 0.99).

General discussion

It has long been known that contour drawings
without any smooth shading provide considerable
information about the 3D shapes of objects (e.g.,
DeCarlo, Finkelstein, Rusinkiewicz & Santella, 2003;
Judd, Durand & Adelson, 2007). However, the results
of the present experiments are the first to show that
contour patterns presented in isolation can provide
sufficient information to perceptually categorize glass
materials. Although it is possible that glass may have
a unique status in this regard, we suspect that is not
the case. It is important to keep in mind that many
materials such as wood or marble are defined primarily
by their patterns of texture, which remain relatively
invariant when an image is transformed using edge

filtering. Thus it is likely that those materials may also
be identifiable from contour drawings.

Our informal observations suggest that edge filtered
images of glass objects remain surprisingly invariant
over large changes in the pattern of illumination.
The top row of Figure 14 shows three light maps
that are different from the one used in the present
experiments. The middle row shows rendered images
of an elephant that were illuminated by each of those
light maps, and the bottom row shows edge filtered
versions of those images in a white on black format.
Although there are clearly noticeable differences
among the patterns of shading, the variations among
the contour patterns are more subtle. The occlusion
contours obviously do not change at all. However,
the high frequency contour patterns that are due to
internal specular interreflections are more interesting.
The precise details of those patterns vary among the
different illumination fields, but the locations of those
patterns on the object’s surface are mostly the same.
Whereas the pattern details are mostly influenced by
the structure of the surrounding scene, the pattern
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positions are mostly determined by the locations of
surface concavities along the internal boundary of an
object.

The results of the present experiments provide
strong evidence that observers can distinguish the
different types of contours from one another. This is
most clear in Experiment 2 where the glass contours
were categorized as glass with 91% confidence, and
the texture contours were categorized as something
else with 97% confidence. The perceptual distinction is
less clear for the glass and chrome contours, especially
because they were both categorized primarily as glass.
However, the glass confidence ratings were significantly
lower in the chrome contour condition, thus indicating
that those contours were less perceptually convincing as
glass than the contours that were produced from images
of glass objects.

It is interesting to note that contour labeling is one
of the oldest problems in the field of computer vision
(Guzman, 1968; Waltz, 1975). Although there are
some effective algorithms for categorizing the contours
in line drawings (Malik, 1987), they are generally
restricted to drawings that only depict sharp corners
and occlusion boundaries, and they do not work well
with images that contain other types of structure, such
as shadows, specular reflections, or surface textures.
Human observers, in contrast, can easily label all of
these features.

One important influence on the contour structures in
Experiment 1 were the specular highlights arising from
direct reflections in all of the different materials we
used. However, those structures were identical for the
glass, shiny black, and shiny white materials, so they
could not have provided the relevant information for
distinguishing those materials from one another (see
Norman et al., 2020). Reflectance contours on shiny
metal objects include all of the same ones that are
visible for dielectric materials, but because they have
higher contrast, they also include some additional ones
that are not visible on less reflective objects.

A more likely source of visual information about
glass is provided by banding contours produced by
internal specular interreflections. Banding contours can
also occur on shiny opaque surfaces, but they align
quite differently with the pattern of surface curvature.
For transparent glass, these contours surround concave
regions on the internal boundary of the surface,
whereas for opaque metals, they surround concave
regions on the external boundary. Another important
difference between glass and metal contours is that
glass contours have a more chaotic structure, with
local swirling patterns that resemble the turbulent flow
of fluid materials. Observers can apparently detect
these differences. Even though the chrome contours
in Experiment 1 were primarily categorized as glass,
the observers’ confidence ratings were significantly
lower than those obtained for the glass contours. The
difference between glass contours and the volumetric

textures is even greater, because the texture contour
alignments are completely independent of surface
curvature.

Fleming et al. (2004) have argued that specular
reflections on shiny surfaces can be analyzed in much
the same way as optical texture (e.g., see Egan, Todd,
& Phillips, 2011; Fleming, Holtmann-Rice, & Bülthoff,
2011; Todd & Akerstrom, 1987; Todd & Reichel,
1990; Todd & Thaler, 2010). The basic idea is that
reflected features of a scene stretch out in directions
perpendicular to the surface depth gradients, and are
compressed as a cosine function of the magnitudes of
those gradients. Similar ideas involving oriented flow
gradients have also been proposed for the analysis of
shading on matte surfaces (Bretan & Zucker, 1996;
Kunsberg, Holtmann-Rice, Alexander, Cholewiak,
Fleming, & Zucker , 2018; Kunsberg & Zucker, 2018;
Pont & Koenderink, 2008, Pont, van Doorn, Wijntjes,
& Koenderink, 2015).

It is especially interesting to note in this regard that
the presence of interreflections can severely distort
the scalar field of image intensities, relative to what
occurs when only direct reflections are considered. In
order to explore that phenomenon, we created maps
of the isointensity contours in our images, using a
representation from Todd, Egan and Phillips (2014)
in which bands of image intensity are replaced by
homogeneous colors that are separated by small black
bands. The flow gradients are also captured in this
representation by the spacing between bands. Figure 15
shows the results of that analysis for chrome and glass
images of three different objects. The top row shows
isointensity maps of the chrome objects. Although
these patterns are quite complex, the bands of similar
intensity have well defined boundaries. However,
that is not the case for the isointensity maps of the
glass images in the bottom row. We have tried several
different band sizes for this representation, but they all
appear as a chaotic mess. There are at least two possible
reasons for this. One is that the image resolution of 800
× 800 pixels is too coarse to resolve the high frequency
structure of the patterns. Another is that reflections
of glass can have a fractal structure that cannot be
smoothly resolved at any scale.

To test these possibilities, we rendered one last image
of our glass bunny object at a very high resolution of
8000 × 8000 pixels and a high quality level of 25. The
object was illuminated using the unblurred esplanade
light map shown in Figure 8. The processing was
performed on a dedicated computer cluster with 96
Xeon cores. It took 60 hours to render the scene, and the
resulting image file was just under 50Mb. It is obviously
not possible to present that image without down
sampling, but we can present local patches to see how
the structure is resolved at very small scales. Figure 16
shows three representative patches with a spatial
resolution of 800 × 800 pixels. Note that the patterns
are still chaotic even at that fine spatial scale, which
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Figure 15. Isointensity maps for three chrome objects (top row) and three glass objects (bottom row).

Figure 16. Three 800 × 800 pixel patches from an 8000 × 8000 pixel image of a glass bunny.

suggests reflections of glass may indeed have a fractal
structure. It should also be pointed out in this regard
that the patterns would have been even more complex if
we had not used a neutral gray background surface to
occlude the environmental structure behind the object
(see Todd & Norman, 2019).

Conclusions

The present experiments have examined how
the perceptual identification of glass is influenced
by banding contours formed by internal specular

interreflections within glass materials. The results reveal
that observers can reliably distinguish internal banding
contours from those that arise from the specular
reflections of chrome materials or 3D volumetric
textures. When edge filtered contours of glass objects
are presented without any smooth shading gradients,
the depicted objects are reliably identified as glass with
a high level of confidence. The edge filtered contours
from chrome objects are also identified as glass, but
with a significantly lower level of confidence. Finally,
the contours created from volumetric textures are never
identified as glass and are rated as something else with
a high level of confidence. These findings suggest that
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observers are sensitive to the smoothness (or chaotic
structure) of the contours and how they align with the
overall pattern of surface curvature.

Keywords: contours, interreflections, glass
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