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Previous studies have provided evidence for an alteration 
of genetic coexpression in schizophrenia (SCZ). However, 
such analyses have thus far lacked biological specificity 
for individual genes, which may be critical for identifying 
illness-relevant effects. Therefore, we applied machine 
learning to identify gene-specific coexpression differences 
at the individual subject level and compared these between 
individuals with SCZ, bipolar disorder, major depressive 
disorder (MDD), autism spectrum disorder (ASD), and 
healthy controls. Utilizing transcriptome-wide gene ex-
pression data from 21 independent datasets, comprising 
a total of 9509 participants, we identified a reproducible 
decrease of BCL11A coexpression across 4 SCZ datasets 
that showed diagnostic specificity for SCZ when com-
pared with ASD and MDD. We further demonstrate that 
individual-level coexpression differences can be combined 
in multivariate coexpression scores that show reproducible 
illness classification across independent datasets in SCZ 
and ASD. This study demonstrates that machine learning 
can capture gene-specific coexpression differences at the 
individual subject level for SCZ and identify novel bio-
marker candidates.
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Introduction

“Coexpression” describes the dependency between the 
expression levels of multiple genes. Its analysis has pro-
vided insights into fundamental regulatory processes,1,2 
the conservation, evolution, and regulation of genetic 
modules,3,4 and plays an important role in the charac-
terization of gene function.5 It has been used to identify 

properties of genetic networks and to highlight their im-
plication in schizophrenia (SCZ), bipolar disorder (BD), 
and major depressive disorder (MDD),6 but also somatic 
conditions,7 including cancer,8 diabetes,9 and cardiovas-
cular disease.10 In principle, coexpression is studied at the 
group level, since it requires quantification of expression 
coordination across multiple subjects. Coexpression is 
then typically investigated across a large number of gene 
pairs in the form of networks, in order to identify altered 
structural properties in complex illnesses (ie, refs.11,12).  
For example, weighted gene expression network analysis 
(WGCNA) has been used to provide evidence for dis-
turbed coexpression in SCZ.13–16 But again, these tech-
niques work on networks that reflect coexpression at the 
group level. To capture coexpression effects at the indi-
vidual level, previous studies have utilized the module 
eigengene (ME) of a WCGNA-derived coexpression 
module, and then identified an associated “polygenic 
coexpression index” using common genetic variants, in 
order to explore the relevance of the coexpression module 
for predicting imaging, clinical and behavioral pheno-
types relevant to SCZ.17,18 While ME gives a global indica-
tion of a given module’s coexpression, it lacks specificity 
for individual genes that may show illness-relevant dif-
ferences of coexpression. The fact that 2 given genes are 
coexpressed implies that expression levels of 1 gene can, 
to some extent, be predicted by those of the other. This 
property is exploited by an analytical approach meas-
uring “landmark genes” that are consistently expressed 
across tissues and that are predictive of other genes’ ex-
pression values.19 Such predictability turns coexpression 
from a group-level effect into a quantitatively measurable 
trait at the individual subject level. This is because a ref-
erence database can be trained to establish the commonly 
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observed expression relationship between 2 genes, and 
it can then be tested to what extent the expression levels 
in an individual subject are consistent with this relation-
ship. In this study, we used machine learning to identify 
coexpression relationships and predict these at the single-
subject level, using transcriptome-wide expression data 
obtained from 9509 individuals.

To quantify the degree to which the relationship be-
tween a given gene and its coexpression partners was dis-
turbed, we determined the deviation (henceforth denoted 
as “coexpression gap”) between its actual expression levels 
and those predicted by its typical coexpression partners. 
We explored 4 cohorts of SCZ patients (2 blood- and 
2 brain-sample derived datasets, respectively).The pri-
mary objective was to identify genes whose coexpression 
gap showed reproducible alterations in individuals with 
SCZ. In addition, 4 cohorts comprising patients with 
MDD (3 blood- and 1 brain-sample derived datasets), 
2 blood-derived datasets from individuals with autism 
spectrum disorder (ASD), and 1 brain-derived dataset 
from subjects with BD were investigated to test the illness 
specificity of the identified coexpression gaps. Finally, we 
used machine learning to combine coexpression gap ef-
fects across genes, in order to test whether a “multivar-
iate coexpression score” (MCS) could be identified that 
allowed accurate diagnostic classification.

Methods

Data Preprocessing

Expression microarray datasets were retrieved from 
the GEO database and dbGaP (supplementary table 
S1). Data acquired on Affymetrix platforms were pre-
processed using the Robust Multi-Array Average (RMA) 
function of the R package affy.20,21 Data acquired on 
Illumina platforms were preprocessed using the neqc() 
function of the R library limma.22 Multiple probes map-
ping to the same gene symbol were averaged. All datasets 
were log2-transformed and quantile normalized. Illumina 
data that were retrieved in a preprocessed form were log2-
transformed and quantile normalized using the R library 
limma. Expression data were filtered to contain only au-
tosomal genes that overlapped across all studies, resulting 
in a total number of 5801 genes.

Each dataset was then submitted to an automated 
outlier removal procedure. First, the subjects who were 
younger than 16 or older than 65 years old were excluded 
in all cohorts, with the exception of the ASD cohort due 
to the typical age of onset (1486 subjects were excluded). 
Second, multiple regression was applied, where expression 
levels of each gene for a given dataset were residualized 
with respect to age, age2, sex, and the first 10 surrogate 
variables. Surrogate variables were determined to ac-
count for the effect of unobserved confounders using the 
R library sva,23 specifying the diagnostic group (for case-
control cohorts), and known confounders (age, age2, and 

sex) as variables of interest. Using this strategy, we aimed 
to preserve the variance explained by these confounders 
and to include the confounders with the exception of di-
agnostic grouping directly as covariates in multiple regres-
sion analysis. We chose a fixed number of 10 surrogate 
variables throughout this study, to capture the majority 
of important, unobserved confounders, without the ne-
cessity of relying on automated determination of optimal 
sva numbers, which may lead to less conservative results. 
Third, principal component analysis was then applied on 
the scaled residuals. Subjects were excluded as outliers if  
they deviated more than 4 SDs from the mean of the first 
or second principal component. This removed a total of 
25 subjects across all datasets. After quality control, the 
covariate-corrected data were scaled and used for further 
downstream analysis.

Due to the low sample number of some brain-derived 
datasets, these were combined based on diagnostic 
overlap if  the number of patients was smaller than 51. 
Such combined datasets were residualized against a 
dataset indicator to account for the variation of gene ex-
pression across cohorts.

Expression Level Prediction and Coexpression Gap 
Determination

The 21 available datasets (supplementary table S1, de-
rived from previously published resources, ie, refs. 15,24–41) 
contained information on 5801 autosomal genes and 
comprised 13 datasets obtained from peripheral samples 
(whole blood, peripheral blood mononuclear cell, adi-
pose tissue, and lymphoblastoid cell lines) and 8 datasets 
obtained from postmortem brain samples. Data from pe-
ripheral and brain samples were analyzed separately, to 
explore similarities and differences of illness-associated 
coexpression differences. For peripheral and brain sam-
ples, respectively, the following procedure was employed 
to quantify such coexpression differences:

(1) � A leave-one-dataset-out validation procedure was ap-
plied to the control-only datasets (Nblood = 2748 and 
Nbrain = 274) to predict the expression level of each 
gene using linear models. The prediction was based 
on that gene’s 50 coexpression partners. The Pearson 
correlation between the predicted and the actual ex-
pression levels was used to select genes whose expres-
sion levels could be predicted well. Using a cutoff  of 
correlation larger than 0.5, this selected 273 genes 
based on the peripheral data.

(2) � Expression levels of each of the 273 genes in a given 
case-control dataset were predicted using the control-
only datasets.

(3) � The deviation of the predicted and the actual expres-
sion in a given dataset (coexpression gap) was deter-
mined using linear models. The resulting coexpression 
gap values were then explored for case-control 
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differences using univariate and machine learning 
analysis.

(4) � Univariate statistical analysis was performed to quan-
tify case-control differences of the coexpression gap 
in each dataset. These differences were explored for 
biological reproducibility in SCZ using permutation 
testing as detailed below, and for diagnostic speci-
ficity compared with ASD, MDD, and BD.

(5) � For SCZ, ASD, and MDD, machine learning models 
were built to capture the combined predictive value 
of multiple coexpression differences for diagnostic 
classification. The resulting score obtained from 
this machine learning approach is denoted as “mul-
tivariate coexpression score” (MCS). For this, 1 or 
more available cohorts per condition were selected 
as training data and the remaining dataset as inde-
pendent validation data. Details on the machine 
learning approach and performance assessment are 
further described below.

Evaluating the Quality of Identified Coexpression 
Relationships

To evaluate the biological plausibility of the identified 
coexpression relationships, we compared these against 
previously published coexpression modules. For this, 
coexpression modules calculated using Weighted Gene 
Co-Expression Analysis on the PsychENCODE brain 
RNA-seq samples were used as previously published.16 
For each given gene, it was quantified how many of the 
50 identified coexpression partners were part of the pub-
lished modules, relative to the size of the respective mod-
ules. We determined the maximum occurrence across the 
modules, to focus on scenarios where the 50 coexpression 
partners were enriched in a given module. The me-
dian of these values across all 5801 genes was used as a 
measure of overall enrichment. A  null distribution was 
generated by permuting the assignment between genes 
and coexpression modules in the PsychENCODE data 
and used to generate empirical P-values. This analysis 
was performed separately for peripheral and brain data, 
based on the control-only datasets used for gene expres-
sion prediction as described above.

Coexpression Gap Association Analysis

Gene-wise group differences in the coexpression gap were 
explored separately for data derived from brain and pe-
ripheral samples. Potential confounding factors (ie, age, 
age2, sex, and surrogate variables) were not considered at 
this stage since the coexpression gap data were already gen-
erated using data corrected for these variables (see above).

Assessing Biological Reproducibility of Expression-Gap 
Differences Using Permutation Testing

In this study, we aimed to identify genes that were sig-
nificantly altered (P = .05, uncorrected) and changed in 

the same direction across the investigated SCZ datasets. 
To access the significance of these coexpression gap dif-
ferences, a permutation testing procedure was employed. 
Specifically, diagnostic labels for each dataset were per-
muted 1000 times, and the number of genes that showed 
“reproducible” differences in SCZ was determined. The 
number of “reproducible” genes at least as high as that 
observed with nonpermuted data, divided by the number 
of permutations, was used as an empirical P-value.

Multivariate Coexpression Score

An MCS was built using the random forest machine 
learning model to not only quantify the utility of com-
bining genes with significant coexpression gap differences 
for prediction of case-control status but also take the 
epistatic relationship between genes into account. The 
largest case-control cohort for each condition (see sup-
plementary table S1) was used as training data. A 10-fold 
cross-validation procedure was applied to construct and 
evaluate the MCS. Specifically, the random forest model 
with 2000 trees and the 273 coexpression gap genes with 
predictable expression values were used for training 
during each cross-validation round. The procedure was 
repeated 10 times to yield an averaged MCS avoiding the 
effect of variability inherent to random forest predictions. 
Subsequently, the MCS was quantified in a given test 
dataset by training the random forest model on the en-
tire training data using the same features as during cross-
validation. Case-control differences of the predicted 
MCS were determined using the Area Under the receiver 
operating characteristic Curve (AUC).

Results

The Assessment of Coexpression Relationship

Across all 5801 genes, there were 273 genes showing a 
Spearman correlation between predicted and actual ex-
pression of greater than 0.5 in the combined control-only 
blood data, which were used for subsequent analyses. 
The median correlation between predicted and actual 
expression was 0.41 in blood and 0.21 in brain case-
control datasets, respectively. Cohort 6 was excluded 
since the expression values were poorly predicted (me-
dian rho = 0.004). To explore the biological plausibility 
of the identified coexpression relationships, these were 
compared against previously published coexpression 
modules. It was observed that coexpression relationships 
identified in data from peripheral as well as brain samples 
were significantly enriched in these modules (permuta-
tion P < .001 for peripheral and brain data, respectively).

Univariate Case-Control Differences of the 
Coexpression Gap

The primary objective of the analysis was to identify 
genes with coexpression gaps that were consistently 
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altered across datasets in patients with SCZ compared 
with controls. Among the 273 genes explored for this anal-
ysis, 1 gene (BCL11A) showed a consistently decreased 
coexpression gap (P < .05) in SCZ across 2 blood and 
2 brain datasets. 1000-fold permutation analysis showed 
that such reproducibility was unlikely to have occurred 
by chance (P < .001). Figure 1 demonstrates that these 
changes were specific for SCZ, compared with ASD and 
MDD in both blood and brain tissues. In patients with 
BD, a significant decrease of BCL11A coexpression was 
also found. In addition, figure  1 illustrates that univar-
iate testing of the original, covariate-corrected expression 
levels did not identify consistent group differences for any 
of the conditions.

Multivariate Coexpression Scores

Random forest machine learning was employed to iden-
tify combinations of coexpression differences that can 
differentiate individuals with psychiatric patients from 
controls. For this, the largest cohort was chosen as the 
training dataset for each condition for blood and brain, 
respectively. The resulting algorithms were then used to 
predict the MCS in all other cohorts. This demonstrated 
that patients with SCZ could be differentiated from con-
trols in the blood training data (cohort 8, using cross-
validation, AUC  =  0.64; P  =  5.35  × 10−7), and in the 
blood test data (cohort 7, AUC = 0.61; P = 6.01 × 10−4). 

Moreover, SCZ patients could be differentiated from con-
trols in the brain training data with higher accuracies (co-
hort 21, AUC = 0.77, P = 5.89 × 10−16) and brain test data 
(combined cohort 16, 17, 18, 19, AUC = 0.65; P = 1.74 × 
10−4). Notably, the blood-derived algorithm also differ-
entiated patients from controls when predicted in the lar-
gest brain dataset (cohort 21, AUC = 0.59, P = 6.53 × 
10−3). This suggests that the peripheral signature of 
coexpression gap differences was partially mirrored in the 
brain. For details, see supplementary table S2.

Similar to SCZ, peripheral coexpression gap differences 
could be successfully integrated to differentiate individ-
uals with ASD from controls (cohort 10, cross-validation 
P = 3.98 × 10−6, AUC = 0.72; cohort 9, independent val-
idation data, P  =  3.51  × 10−5, AUC  =  0.78). However, 
MDD case-control status could not be accurately pre-
dicted by machine learning during cross-validation or 
in 2 independent test cohorts. The ASD MCS showed a 
weakly significant cross-disorder prediction in the SCZ 
test cohort (cohort 7, P = 6.36 × 10−3, AUC = 0.59), but 
no significance was observed for prediction of the SCZ 
MCS into the ASD cohorts.

Discussion

Elucidating whether such genetic coexpression is dis-
turbed in an individual patient with SCZ or other 
mental disorder has the potential to uncover novel illness 

Fig. 1.  Case-control differences of the gene BCL11A, quantified as z scores for the coexpression gap and the original expression level for 
SCZ, ASD, MDD, and BD. Different cohorts are shown along the y-axis with the respective labels indicating the condition, the tissue 
type, and the cohort size (in brackets). The gray area indicates the nonsignificant case-control differences. 
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mechanisms and advance personalized medicine ap-
proaches. Here, we show that machine learning can be 
used to learn coexpression relationships and predict these 
at the single-subject level. This establishes a “boundary” 
within which physiological coexpression fluctuates, a 
concept similar to that explored in the neuroimaging 
field using normative modeling.42 There are 3 primary 
results of the present study. First, the coexpression gap 
of BCL11A was found to be consistently altered in in-
dividuals with SCZ across 4 independent datasets. The 
change was specific compared with individuals with ASD 
or MDD, while a similar, but less pronounced change 
was observed in brain samples from individuals with BD. 
Second, machine learning could be used to integrate the 
coexpression gap differences and facilitate significant dif-
ferentiation of SCZ and ASD compared with controls. 
The machine learning-derived MCS could be successfully 
predicted into independent data, supporting their bio-
logical reproducibility. Third, prediction of the periph-
eral MCS for SCZ into data acquired from postmortem 
brain samples also allowed significant differentiation of 
patients with SCZ from controls, pointing to a partial 
overlap of coexpression differences across tissue types. 
This suggests that the relationship between expression 
levels of different genes contains illness-relevant informa-
tion that may have utility as novel biomarkers.

The reproducibility of the decreased BCL11A 
coexpression gap across multiple SCZ cohorts in both 
periphery and central nervous system supports the poten-
tial role of BCL11A in the etiology of SCZ, which is also 
consistent with evidence from several previous studies. 
Common genetic variants within the intron region of 
BCL11A were found to be associated with SCZ,43,44 and 
to be shared between SCZ and educational attainment.45 
Notably, a polygenic coexpression index containing the 
rs1510480 single-nucleotide polymorphism, which is 
harbored by the BCL11A gene, was shown to predict 
SCZ-relevant brain function.46 Genome-wide signifi-
cant SCZ-associated DNA-methylation CpGs were en-
riched in the transcription factor binding sites involving 
BCL11A.47 Furthermore, a recent study has identified 
a SCZ-associated miRNA-gene interaction network 
involving BCL11A, supporting the role of miRNA in the 
regulation of altered BCL11A expression in SCZ.48

An interesting finding of the present study was that 
the peripheral MCS for SCZ could be validated in post 
mortem brain samples from donors with SCZ, suggesting 
the presence of coexpression differences shared across 
tissue types. Notably, the reverse prediction from the 
brain into peripheral data did not yield significant pre-
dictive values. This may have been due to several reasons, 
including a stronger level of residual confounding or 
postmortem effects. Notably, the MCSs also showed 
some cross-disorder predictivity from ASD to SCZ, con-
sistent with their previously reported genetic overlap (ie, 
ref. 49). This demonstrates that the utility of coexpression 

gap analysis goes beyond the identification of differen-
tially modulated coexpression networks and allows direct 
prediction at the individual subject level.

A limitation of the present study is the substantial 
cross-dataset variability that limited the degree to which 
a given gene’s expression levels could be predicted based 
on coexpression partners, and that resulted in a compar-
atively low number of genes for which expression levels 
could be predicted accurately. Notably, only microarray-
derived gene expression data were used for the present 
study. Future incorporation of RNA sequencing data, 
which is generally considered to be of superior quality, 
could potentially improve the prediction of gene expres-
sion levels. The other limitation is the fact that most pa-
tients investigated in this study were medicated, which 
may have influenced genetic coexpression, reproduci-
bility, and the prediction of the MCS. Also, we did not 
have information on disease duration, which may have an 
important impact on coexpression differences. Another 
limitation of the present study is the integration of nu-
merous datasets from partially different biological tis-
sues. While this allows the maximization of sample size, 
it may obscure tissue-specific effects.

In summary, the modeling of coexpression relation-
ships at the individual subject level led to the identifica-
tion of reproducible changes in the BCL11A coexpression 
gap that showed diagnostic specificity for SCZ when 
compared with ASD and MDD. Coexpression changes 
could further be aggregated across genes into a MCS that 
allowed significant case-control differentiation in SCZ 
and ASD. Learning coexpression relationships across 
large numbers of datasets yields more generalizable pre-
dictions than coexpression “snapshots” in individual co-
horts could allow. Understanding the temporal dynamics 
of these predictions will be essential to uncover regulatory 
processes contributing to the onset of brain disorders.

Supplementary Material

Supplementary data are available at Schizophrenia online.
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