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Abstract

Since anatomic MRI is presently not able to directly discern neuronal loss in Parkinson’s Dis-

ease (PD), studying the associated functional connectivity (FC) changes seems a promising

approach toward developing non-invasive and non-radioactive neuroimaging markers for

this disease. While several groups have reported such FC changes in PD, there are also sig-

nificant discrepancies between studies. Investigating the reproducibility of PD-related FC

changes on independent datasets is therefore of crucial importance. We acquired resting-

state fMRI scans for 43 subjects (27 patients and 16 normal controls, with 2 replicate scans

per subject) and compared the observed FC changes with those obtained in two indepen-

dent datasets, one made available by the PPMI consortium (91 patients, 18 controls) and a

second one by the group of Tao Wu (20 patients, 20 controls). Unfortunately, PD-related

functional connectivity changes turned out to be non-reproducible across datasets. This

could be due to disease heterogeneity, but also to technical differences. To distinguish

between the two, we devised a method to directly check for disease heterogeneity using

random splits of a single dataset. Since we still observe non-reproducibility in a large fraction

of random splits of the same dataset, we conclude that functional heterogeneity may be a

dominating factor behind the lack of reproducibility of FC alterations in different rs-fMRI stud-

ies of PD. While global PD-related functional connectivity changes were non-reproducible

across datasets, we identified a few individual brain region pairs with marginally consistent

FC changes across all three datasets. However, training classifiers on each one of the

three datasets to discriminate PD scans from controls produced only low accuracies on the

remaining two test datasets. Moreover, classifiers trained and tested on random splits of the

same dataset (which are technically homogeneous) also had low test accuracies, directly

substantiating disease heterogeneity.
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Introduction

Although Parkinson’s disease (PD) is the second most common neurodegenerative disease

after Alzheimer’s disease, its diagnosis is still difficult, especially in the early premotor stages, as

it is mainly based on clinical evidence. To date, there is still no unique standard diagnostic test

for PD, despite the intense research efforts to develop accurate biomarkers based on blood tests

or imaging scans. The best current objective tests for PD evaluate dopaminergic function in

the basal ganglia by using various PET or SPECT radiotracers (e.g. DaTSCAN). But these tests

make use of radioactive substances, are performed only in specialized imaging centers and

can also be very expensive [1]. Moreover, the loss of dopaminergic nigro-striatal neurons is a

delayed pathological event in the evolution of the disease, corresponding to Braak stages III-IV.

On the other hand, conventional (CT or MRI) brain scans of PD patients usually appear

normal or with minor non-specific changes, so that conventional imaging techniques are only

useful for ruling out other diseases that can be secondary causes of parkinsonism.

Therefore, since anatomic MRI is presently not able to directly discern (dopaminergic) neu-

ronal loss in PD [2], studying the associated functional connectivity (FC) changes seems to

be a promising approach toward developing non-invasive and non-radioactive neuroimaging

markers for this disease.

While many groups have reported such FC changes in PD (see Table A in S1 File for a list

of such studies), an in-depth analysis of existing literature revealed significant discrepancies

between studies. Investigating the reproducibility of PD FC changes on independent datasets is

therefore of crucial importance.

A comprehensive review and analysis of the literature related to resting-state fMRI studies

of Parkinson’s disease is out of the scope of the present paper [3–25] (Table A in S1 File; see

also the review by Tahmasian et al. [26]). We only mention some important inconsistencies of

reported functional connectivity changes in PD. Due to the crucial importance of the striatum

in PD, we first discuss some inconsistencies involving striatal seeds [26]:

• Contrary to Hacker et al. [14], Helmich et al. [10] observed no significant difference in cau-

date functional connectivity in PD.

• On the other hand, contrary to the study Helmich et al. [10], Luo et al. [12] did not observe

increased FC of the anterior putamen.

• In contrast to Hacker et al. [14], Luo et al. [12] did not find a FC decrease between the striatal

seeds and the brainstem.

There are also inconsistencies involving non-striatal seeds. For example, Wu et al. [7]

found disrupted FC between the pre-SMA and the left putamen, as opposed to Helmich et al.

[10], who did not find a decreased FC between the putamen and pre-SMA in PD.

Since the motor symptoms are the most striking clinical manifestations in PD, many rs-

fMRI studies of PD concentrate on the sensorimotor system, including the basal ganglia, while

disregarding any other FC changes. On the other hand, other more unbiased studies tried to

determine a more global picture of the FC changes in PD. Some even tried to develop classifi-

ers for the disease based on rs-fMRI data [4,5,18,23], but most studies were not validated on

independent datasets.

There are also some gross discrepancies involving even the sign of the main FC changes

in PD. For example, Luo et al. [12] found only decreased FC in early stage PD, whereas most

studies also find FC increases.

The general picture one gets from the literature is complex and at times somewhat confus-

ing due to the numerous inconsistencies. Of course, these inconsistencies could be due to the
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different disease stages analyzed, to the inherent functional heterogeneity of the disease, but

also to technical differences, or to the differences in the complex data (pre)processing work-

flows. Therefore, it is crucial to use the same data processing workflow to check the reproduc-

ibility of PD-related FC changes on as many independent datasets as possible.

In this work, we report a comparison between three different datasets obtained by

completely independent research groups. More precisely, we acquired resting-state scans for

43 Romanian subjects (27 patients and 16 normal controls, with 2 replicate scans per sub-

ject) and compared the observed functional connectivity changes with those obtained in two

independent datasets, one made available by the PPMI consortium in the US (91 patients,

18 controls) and a second one by the group of Tao Wu in China (20 patients and 20 normal

controls).

This is the first study investigating the reproducibility of functional connectivity changes in

Parkinson’s disease on more than two datasets. Given the paucity of publicly available rs-fMRI

PD datasets, we advocate the critical importance of data sharing for enabling the discovery of

reproducible rs-fMRI biomarkers of PD. All the data from the present study are publicly avail-

able at FCP/INDI (http://fcon_1000.projects.nitrc.org/indi/retro/parkinsons.html).

Materials and methods

We briefly describe our approach in Fig 1A to better guide the reader through the remainder

of the paper. We started by comparing the PD-related global functional connectivity changes

in the 3 datasets and found them to be non-reproducible. Of course, this could be due to dis-

ease heterogeneity, but also to technical differences. To better distinguish between these two

possibilities, we present a simple method to check for disease heterogeneity using random

splits of a single dataset. On the other hand, we search for individual brain region pairs with

consistent connectivity changes across all three datasets. Finally, to more directly discriminate

PD scans from controls, we train multivariate machine learning classifiers on one dataset and

test them on the remaining two. We also train and test classifiers on technically homogeneous

random splits of the same dataset, to more directly check for disease heterogeneity.

Datasets

Three resting-state fMRI datasets of Parkinson’s disease were compared in this study (see also

Table 1 and the Supporting Information for more details):

• the NEUROCON rs-fMRI study of 27 PD patients and 16 normal controls (with 2 replicate

scans per subject) of the Neurology Department of the University Emergency Hospital

Bucharest (Romania),

• a dataset of 20 PD patients and 20 normal controls provided by the group of Tao Wu (China),

• a publicly available dataset of 91 PD patients and 18 controls of the Parkinson’s Progression

Markers Initiative (PPMI) study in the US.

The datasets are somewhat similar, except for PPMI, which involved patients with a diagno-

sis of PD for two years or less and who are not taking PD medications, while most patients

from the other two studies have been under treatment (most under levodopa). Also, PPMI

patients were scanned in the ‘eyes open’ condition. Still, we argue that our findings were not

affected by these differences. Since the datasets were compared in a pairwise manner, any puta-

tive discrepancies due to the shorter disease durations in the PPMI dataset would only show
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up in the NEUROCON-PPMI and Tao Wu-PPMI comparisons, but not in the NEUROCON-

Tao Wu comparison. This was not observed in reality.

The NEUROCON study has been approved by the University Emergency Hospital Bucha-

rest ethics committee in accordance with the ethical standards of the 1964 Declaration of

Fig 1. Overview. (A) Main steps of the analysis. (B) Using random splits of a dataset with replicate scans to

check for disease (group) heterogeneity: (right) by placing different subjects (with all their replicate scans) in

the two splits (“split subjects”) and respectively (left) by splitting the replicates of the same subjects in the two

splits (“split replicates”). (a,b,c,. . . correspond to subjects, while, for instance, a’ and a” are replicate scans for

subject a).

https://doi.org/10.1371/journal.pone.0188196.g001

Table 1. The 3 PD datasets compared in the present study (PD = Parkinson’s disease, NC = normal controls).

Dataset PD

subjects

NC

subjects

PD

scans

NC

scans

age PD

mean

(SD)

age NC

mean

(SD)

p(age

NC-PD)

H&Y

mean

(SD)

disease

duration

mean (SD)

Scanner Voxel(mm)

TR(s)

Scan time

(min)

(#vols)

NEUROCON 27

(16 M)

16

(5 M)

54 31 68.7

(10.6)

67.6

(11.9)

0.76 1.92

(0.33)

4.6

(6.5)

Siemens

Avanto 1.5T

3.8x3.8x5

3.48

8.05

(137)

Tao Wu 20

(11 M)

20

(12 M)

20 20 65.2

(4.4)

64.8

(5.6)

0.78 1.88

(0.63)

5.4

(3.9)

Siemens

Magnetom

3T

4x4x5

2

8

(239)

PPMI 91

(63 M)

18

(14 M)

134 19 61.3

(10.2)

64.7

(9.7)

0.17 1.72

(0.48)

1.9

(1.0)

Siemens Tim

Trio 3T

3.3x3.3x3.3

2.4

8.4

(210)

https://doi.org/10.1371/journal.pone.0188196.t001
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Helsinki and its later amendments. All patients gave their written informed consent to partici-

pate in the study.

Preprocessing. All datasets were preprocessed in a uniform manner. The raw scanner

data in DICOM format was converted to NIfTI using dcm2nii (https://www.nitrc.org/

projects/dcm2nii/) and further preprocessed using FSL (FMRIB Software Library v5 http://fsl.

fmrib.ox.ac.uk/fsl/) as follows: motion correction using MCFLIRT, brain extraction with BET,

spatial smoothing (Gaussian kernel FWHM 5mm) and denoising using nonlinear filtering

(SUSAN), temporal high-pass filtering (with a cutoff frequency of 0.01 Hz), registration to

the standard Montreal Neurological Institute MNI152 template via the anatomical T1 image

(more precisely, BBR registration of the BOLD image to the T1 image, followed by 12 DOF lin-

ear+nonlinear registration of the latter to the 2mm MNI template). Nonlinear registration was

performed at a resampling resolution of 4mm.

Besides the above ‘standard’ preprocessing workflow, we also considered alternative work-

flows involving global signal regression (GS) and respectively a temporal bandpass filter (0.01–

0.1Hz—an ideal low-pass 0.1Hz filter was used in addition to the default FSL 0.01Hz highpass

filter).

Since subject motion in the scanner has been observed to have significant influence on the

functional connectivity computed from rs-fMRI data, despite motion correction (e.g. [27]),

we also considered subsets of scans with low in-scanner motion (marked by the suffix ‘0’, e.g.

‘NC0’ and ‘PD0’–see also Table B in S1 File).

PD-related functional connectivity changes

Functional connectivity [28] is a rather loosely defined term, which encompasses many differ-

ent methods used to reveal temporal correlations of BOLD activity across the brain. The sim-

plest method consists in computing the correlations between all pairs of regions of a given

brain parcellation, but more sophisticated data decomposition methods, such as Independent

Component Analysis (ICA) are also widely used. Such data decomposition methods do not

assume a given brain parcellation, but instead construct spatial maps grouping voxels with

highly correlated timecourses. (Still, instead of being given a parcellation, such methods need a

target number of components.)

In our study of the reproducibility of functional connectivity changes in PD, we used brain
parcellations constructed independently of the datasets under comparison, rather than applying

data decomposition methods, such as group-ICA, since the latter would be inherently biased

towards the “training dataset”. Group-ICA may obtain a better functional parcellation for the
training dataset, but that parcellation would be less appropriate for any other independent

dataset (“overfitting”), thereby introducing a bias in the analysis. To avoid these problems, we

have chosen to use brain parcellations constructed independently of the datasets under com-

parison, including functional brain parcellations obtained by group-ICA on completely inde-

pendent sets of subjects (such as the ‘Stanford’ functional parcellation [29]).

Moreover, to compensate for potential biases of any specific parcellation, we extended our

analyses to a number of 13 different parcellations employed in other rs-fMRI studies, two ana-

tomical (AAL, Talairach) and 11 functional (see Table 2 for more details).

For each parcellation, we computed average timecourses for each region of interest (ROI)

and the resting state functional connectivity between each pair of ROIs (ROI1,ROI2) as the

Fisher z-transform of the temporal correlation between the corresponding ROI timecourses:

FCðROI1;ROI2Þ ¼ zðcorrðROI1;ROI2ÞÞ:
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For each dataset, we determined significant PD-related FC changes by applying two-sam-

ple t-tests (with unequal sample sizes and unequal variances) to the functional connectivities

of all ROI pairs. ROI-pairs with significant group differences (NC versus PD) represent

regions whose functional connectivity was found to be significantly different in PD patients

in that particular dataset. The main aim of this study is to determine whether these changes

are reproducible across datasets, to enable the development of functional imaging biomark-

ers for PD.

Reproducibility of global functional connectivity changes in PD

Comparison of 3 different PD datasets. We first compared the global PD-related func-
tional connectivity changes across the three independent datasets NEUROCON, Tao Wu and

PPMI to check to what extent these changes are reproducible. More precisely, we performed

pairwise comparisons for all dataset pairs as follows.

For each pair of datasets (i,j) and a fixed parcellation, we checked the extent to which the

PD-related FC changes in one dataset are correlated to the changes in the second dataset.

PD-related FC changes were quantified using t-values t(ROIk,ROIl) from group comparisons

(unpaired two-sample t-tests between NC and PD) of the functional connectivities between

pairs of regions of interest FC(ROIk,ROIl).

Then the reproducibility Rij across the two datasets i and j was determined as the correlation

between the corresponding t-values (viewed as a vector over all ROI pairs) for the two data-

sets:)

Rij ¼ corrðTi;TjÞ ð1Þ

where

Ti ¼ ti ROI1;ROI2ð Þ; ti ROI1;ROI3ð Þ; ti ROI1;ROI4ð Þ; . . .ð Þ

with ti(ROIk,ROIl) the t-value corresponding to PD-related FC changes between ROIk and ROIl
with respect to dataset i (and similarly Tj for dataset j).

For a more intuitive graphical depiction of reproducibility across two datasets, we also con-

structed the scatter-plot of ROI-pair t-values corresponding to group comparisons in the two

datasets (see Fig 2 for an example of such a scatter-plot).

Table 2. The brain parcellations used in the functional connectivity comparisons.

Parcellation Reference Number of regions Comments

AAL Tzourio-Mazoyer et al. [30] 116 anatomic atlas

Craddock 130 Craddock et al. [31] 130

Craddock 260 260

Craddock 500 500

Craddock 950 950

Shen 100 Shen et al. [32] 93

Shen 200 183

Shen 300 278

OASIS Marcus et al. [33] 97

Power Power et al. [34] 264 spherical regions with a 10mm radius

Gordon_surface Gordon et al. [35] 333

Talairach Talairach and Tournoux [36] 695 anatomic atlas

Stanford Shirer et al. [29] 90 functional parcellation obtained by group-ICA

https://doi.org/10.1371/journal.pone.0188196.t002
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Comparing PD-related FC changes (t-values) in the two datasets amounts to plotting for

each ROI-pair the t-value in dataset 1 against the t-value in dataset 2. We thereby obtain a scat-

ter-plot with a point for each ROI pair. The comparison of the FC changes in the two datasets

thus involves analyzing the distribution of points in the scatter-plot: ideally, perfect reproduc-

ibility would entail a diagonal distribution of points in the scatter-plot, corresponding to per-

fectly correlated t-values in the two datasets. Fig 4 depicts examples of good reproducibility,

while Fig 2 shows cases of non-reproducibility across datasets.

Fig 3. Inconsistent reproducibility of PD-related FC changes in random heterogeneous dataset splits and

consistent reproducibility in random homogeneous dataset splits. (A) Complementary cumulative distribution

function (CCDF = 1-CDF) of the reproducibility p-values for Ns = 2510 random heterogeneous splits and Ns = 325

random homogeneous splits. (B) CCDF of the reproducibility measure R. (C) A scatter-plot of ROI-pair t-values for a

random heterogeneous split. (D) A scatter-plot of ROI-pair t-values for a random homogeneous split.

https://doi.org/10.1371/journal.pone.0188196.g003

Fig 2. Scatter-plots of ROI-pair t-values for the three dataset pairs indicate non-reproducibility of

global PD-related FC changes.

https://doi.org/10.1371/journal.pone.0188196.g002
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The correlation of t-values for the two datasets Rij = corr(Ti,Tj), as introduced above in (1),

can be viewed as an aggregate measure of the reproducibility across the two datasets i and j.
To obtain a more quantitative measure of the statistical significance of such a correlation Rij

between datasets, we performed permutations of the group labels (NC and PD) independently
for the two datasets and computed the p-value of the Rij value as the fraction of permutations σ
for which the dataset correlation w.r.t. the permuted data Rij(σ) exceeds the real one (Rij):

pij ¼ jfpermutation sjRðsÞij � Rijgj=N ð2Þ

where N is the total number of permutations. All our permutation tests involved N = 1000

permutations.

Various factors have been mentioned in the literature to affect functional connectivity

measures:

• subject motion in the scanner [27],

• global signal regression (with or without) [37,38],

• the choice of the parcellation.

To study the influence of these factors on our reproducibility results, we also considered

subsets of scans with low in-scanner motion (marked by the suffix ‘0’, e.g. ‘NC0’ and ‘PD0’),

repeated our analyses with global signal regression, bandpass filtering and performed the com-

parisons using all 13 brain parcellations previously mentioned. Since the PPMI data has been

acquired in several different imaging centers, we also considered a potentially more homoge-

neous subset of scans acquired in a single center (center number 32, with the largest number

of PD patient and normal control scans), referred in the following by the suffix ‘center32’.

Comparison of random splits of the same PD dataset. As already mentioned in the

Introduction, the observed lack of reproducibility of global FC changes across datasets could

be due to disease heterogeneity, but also to technical differences. To distinguish between these

two possibilities, we devised a method to directly check for disease heterogeneity using ran-

dom splits of a single dataset with replicate scans. Technical differences can then be excluded

since all the scans have been acquired under identical technical conditions. More precisely,

since in the NEUROCON study we acquired two replicate scans for each subject, we con-

structed two homogeneous dataset splits simply by using (different) scans of the same subjects.

Additionally, two heterogeneous dataset splits can be obtained by placing different subjects

Fig 4. Reproducibility when changing various technical factors or preprocessing options.

https://doi.org/10.1371/journal.pone.0188196.g004
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(with all their scans) in each split. In other words, instead of comparing two distinct datasets,

we compared two random splits of the same dataset, either:

(a) by placing different subjects in the two splits, with all the replicate scans of a subject in the

same split (“split subjects”, heterogeneous split), or

(b) by placing each replicate scan of the same subject in a different split, so that the two splits

contain (different) scans of the same subjects (“split replicates”, homogeneous split).

Dataset splits (b) are homogeneous since they contain scans of the same subjects, while

splits (a) are heterogeneous since they contain scans of different subjects. Therefore, consistent
reproducibility across all random heterogeneous splits would indicate disease homogeneity,
while non-reproducibility in a large fraction of random heterogeneous splits would imply dis-
ease heterogeneity. (In both cases, we expect to observe consistent reproducibility across the

homogeneous splits, at least as long as the technical noise is not dominating the biological sig-

nal.) A diagram of our method is shown in Fig 1B.

As in the pairwise comparisons between different datasets, we used permutation tests and

formula (2) to compute p-values of the reproducibility across split datasets, for both the hetero-

geneous (“split subjects”) and the homogeneous (“split replicates”) datasets. Due to the random

nature of the splits, we repeated the analysis forNs> 1000 different random splits of the original

data. To assess the fraction of (non-)reproducible splits, we determined the empirical cumula-

tive distribution function (CDF) of the reproducibility p-values for the Ns random splits.

The analysis was also repeated for the data with global signal regression.

Influence of technical factors, preprocessing and parcellation. We also studied the

influence on reproducibility of certain key technical factors and preprocessing steps, such as:

• the repetition time (TR),

• linear vs. nonlinear registration,

• global signal regression,

• the specific brain parcellation used for evaluating functional connectivity.

The AAL parcellation (which is typical) was used whenever not specified otherwise.

The repetition time might, in principle, influence the measured low-frequency rs-fMRI

fluctuations and indirectly the functional connectivities (which are temporal correlations). To

study the influence of the repetition time on reproducibility, we constructed a synthetic dataset

with a double TR by leaving out every second time-point from the NEUROCON timeseries

data (for each scan and each voxel). We then analyzed with our method the reproducibility of

group changes in functional connectivity between the original NEUROCON dataset and the

synthetic one with a double TR.

To study the impact of registration on reproducibility, we preprocessed the NEUROCON

data both with linear and nonlinear registration to the MNI 152 template and determined the

reproducibility of group changes in functional connectivity between the two resulting datasets.

Since global signal regression (GSR) has been observed to be very effective at removing

scanning artifacts [38], including motion artifacts, we also studied the reproducibility of FC

changes between the NEUROCON dataset processed with GSR and the same dataset processed

without GSR.

To avoid potential biases of any specific parcellation, we repeated our pairwise compari-

sons between the 3 PD datasets using all 13 different parcellations mentioned above, includ-

ing functional and anatomic parcellations, with a wide range of numbers of regions of

interest (90 to 950).
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Reproducibility of the individual differentiating FC changes

The reproducibility analysis performed above involves global functional connectivity changes,

i.e changes in the FC of all ROI pairs, not just the ones that differentiate PD from normal con-

trols. Even with non-reproducible global FC changes, it might be in principle possible that

only a very few brain region pairs might still reproducibly differentiate PD patients from con-

trols. To this end, we also studied individual brain region pairs with FC changes that are signifi-

cant w.r.t. all datasets.

More precisely, for each ROI-pair, we computemax(p), the largest (least significant) of the

three p-values obtained in the three datasets (separately for the FC increases and respectively

decreases) and sort the ROI-pairs in increasing order of thismax(p). The most significant min
(max(p)) of thesemax(p) corresponds to the ROI-pair with the best overall significance with

respect to the 3 datasets, as all other ROI-pairs have larger (less significant) p-values with

respect to at least one dataset.

Finally, to assess the statistical significance of such a best ROI-pair, we use a permutation

test (of the disease labels in each dataset) to check the fraction of random permutations with a

more significant (smaller)min(max(p)) than the real data (we performed N = 1000 random

permutations).

pðminðmaxðpþÞÞÞ ¼ jfpermutation sj � minðmaxðpþÞÞgj=N

wheremin(max(p+)) corresponds to FC increases in NC versus PD. A similar relation holds

for the FC decreasesmin(max(p−)).

The analysis was repeated for all 13 parcellations considered in this study (Table 2).

Learning classifiers for discriminating PD-related FC changes

We used machine learning techniques to learn classifiers that discriminate PD from controls

using functional connectivities between ROI pairs as features.

First, we trained classifiers on each one of the 3 datasets (NEUROCON, Tao Wu, PPMI)

and tested them on the other two datasets. Both Linear Support Vector Machines (SVM)

and Gaussian Naïve Bayes (GNB) classifiers were tested, with progressively increasing num-

bers of features: N = 10,50,100,500,5000 (functional connectivities between ROI pairs). The N
features selected were the best discriminating ROI pair functional connectivities, based on

unpaired t-tests between normal and PD scans. As the two classes (NC-Normal Controls and

PD-Parkinson’s Disease) are not balanced in all 3 datasets, we employ the average accuracy
Aacc = (acc(NC)+acc(PD))/2 for assessing the performance of the classifiers (a random classi-

fier is expected to have an average accuracy of 0.5).

Since the different datasets are not technically homogeneous, we also trained and tested

classifiers on random splits of the same dataset, to check to what extent the low accuracies are

due to technical differences, or to disease heterogeneity. More precisely, we performed 10,000

random splits in half of each dataset, trained a classifier on one half and tested it on the other.

Results

ROI-pairs with significant group differences (NC versus PD) in functional connectivity were

found in all three PD datasets: NEUROCON, Tao Wu and PPMI (Tables C and D in S1 File).

However, these changes seemed at first sight to be distinct in each dataset. Our main aim in

this paper has been to systematically investigate the reproducibility of the PD-related FC

changes across independent validation datasets.
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PD-related FC changes are non-reproducible across 3 datasets

The reproducibility of global PD-related functional connectivity changes was determined by

pairwise comparisons between three independent datasets: NEUROCON, Tao Wu and respec-

tively PPMI. Fig 2 shows the scatter-plots of ROI-pair t-values (corresponding to the group

comparison NC-PD) for the three dataset pairs, indicating a lack of reproducibility of global

FC changes in PD. (Perfect reproducibility would correspond to a diagonal distribution of

points corresponding to ROI pairs with perfectly correlated t-values with respect to both data-

sets.) Moreover, discriminating ROI-pairs situated in the upper right and respectively lower

left corners of one plot are not discriminating in the other plots.

For a more quantitative measure of the reproducibility of FC changes between two datasets,

we computed the Pearson correlation between t-values (viewed as vectors of over all ROI

pairs) with respect to each dataset (R values shown in Fig 2.) We also estimated the statistical

significance (p-values) of these reproducibility measures by permutation tests of the group

labels independently for the two datasets–Table 3 shows the reproducibility measure and asso-

ciated p-value for various pairwise comparisons between the three datasets, with standard

highpass preprocessing (>0.01Hz), global signal regression (GS) and respectively bandpass fil-

ter (0.01–0.1Hz). Since in-scanner motion may influence FC measures, we present not only a

comparison between the full patient and normal control cohort, but also that corresponding

to a subset of scans with low in-scanner motion (denoted by the suffix ‘0’). Moreover, since

PPMI data were acquired at many different centers, we also considered the restriction of the

PPMI data to the scans from a single center (suffix ‘center32’). The AAL parcellation was used

in this case, but we also study the influence of the parcellation later on.

A clear lack of reproducibility of global PD-related FC changes is observed in all the three

dataset pairs. This is the first study comparing three independent rs-fMRI datasets of PD. The

fact that we compare 3 datasets is very important, as it lowers the probability that the lack of

reproducibility is due to a dataset that may be “faulty” in some sense—in that case, with 3 data-

sets we might still observe reproducibility with respect to the remaining dataset pair (which we

do not see in reality).

Inconsistent reproducibility of FC changes in heterogeneous dataset

splits indicates disease heterogeneity

The non-reproducibility across 3 datasets mentioned above seems to be due to disease

heterogeneity, but it could also be due to technical differences. To exclude the latter

Table 3. Reproducibility measure R and associated p-value p for various pairwise comparisons between datasets with standard highpass prepro-

cessing (‘standard’), global signal regression (GS) and respectively bandpass filter (BP) (‘0’–‘low in scanner motion’, ‘center32’–scans performed

at a single PPMI center).

Dataset 1 Group contrast 1 Dataset 2 Group contrast 2 standard GS BP

R p R p R p

NEUROCON NC-PD Tao Wu NC-PD -0.145955 0.949 -0.0679698 0.804 0.000845579 0.476

NC0-PD0 NC0-PD0 -0.0832455 0.847 0.035725 0.300 0.0132475 0.437

NEUROCON NC-PD PPMI NC-PD 0.0692377 0.257 0.10039 0.138 -0.163251 0.937

NC0-PD0 NC0-PD0 0.0401831 0.352 0.0308243 0.373 -0.0824776 0.800

NC-PD NC_center32-PD_center32 -0.0122797 0.526 0.0188561 0.430 -0.142598 0.914

NC0-PD0 NC0_center32-PD0_center32 -0.0873994 0.813 -0.0894912 0.832 -0.152545 0.945

Tao Wu NC-PD PPMI NC-PD 0.00673472 0.466 0.0228885 0.403 0.0948706 0.153

NC0-PD0 NC0-PD0 -0.0182896 0.560 0.044843 0.298 0.0545817 0.293

NC-PD NC_center32-PD_center32 -0.0446155 0.687 -0.032841 0.666 0.0243423 0.400

NC0-PD0 NC0_center32-PD0_center32 -0.0712155 0.812 -0.0176842 0.597 -0.0436096 0.681

https://doi.org/10.1371/journal.pone.0188196.t003
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possibility, we checked for disease heterogeneity using random splits of a single dataset with

replicate scans (NEUROCON), all of which have been acquired under identical technical

conditions.

(a) We first constructed random splits by placing different subjects in the two splits, with all

the replicate scans of a subject in the same split (“split subjects”, heterogeneous splits). As can be

seen in Fig 3A (blue curve), a large fraction of these random splits display non-reproducible

functional connectivity changes. More precisely, 88% of the random heterogeneous splits

show non-reproducibility at the p>0.01 level and 42% at the p>0.05 level. Fig 3B shows the

complementary cumulative distribution function (1-CDF) for the corresponding reproducibil-

ity measure R (blue curve), while Fig 3C presents a typical scatter-plot of ROI-pair t-values for

a random heterogeneous split (one with R equal to the median).

(b) Next, we constructed random splits by placing each replicate scan of the same subject in

a different split, so that the two splits contain (different) scans of the same subjects (“split repli-

cates”, homogeneous splits). In contrast to (a), all homogeneous splits showed reproducibility

at the p<10−3 level (Fig 3A, red curve). Fig 3B shows the complementary CDF for the repro-

ducibility measure (red curve)–note the significantly higher reproducibility (R) values for the

homogeneous splits (red curve, median R = 0.71) as compared to the heterogeneous splits

(blue curve, median R = 0.21). Fig 3D displays a typical scatter-plot of ROI-pair t-values for a

random homogeneous split.

The observed non-reproducibility in a large fraction of heterogeneous dataset splits indicates

disease heterogeneity, in line with the comparison between the 3 independent PD datasets. As a

control, we did indeed observe consistent reproducibility with respect to all homogeneous data-

set splits, demonstrating that the technical noise could not have been the dominating factor

behind the erratic non-reproducibility in heterogeneous splits.

The fact that the well-known clinical heterogeneity of Parkinson’s disease is also accompa-

nied by heterogeneity in resting state functional connectivity may not retrospectively be a big

surprise to an experienced neurologist, although its exact extent could not have been estimated

a priori, before analyzing the data. However, does this FC heterogeneity in PD also imply the

lack of practical usefulness of rs-fMRI functional connectivity? Are there any other conditions

that can be reliably differentiated using resting state functional connectivity? To answer these

questions, we applied our approach to a different, potentially more homogeneous contrast,

namely that between eyes open and eyes closed resting state conditions in healthy volunteers.

Repeating our analysis of reproducibility of FC group changes on random splits of the Beijing

eyes open-eyes closed dataset [39] (see Supporting Information) revealed reproducibility
(p<0.05) not just in the homogeneous dataset splits, but also in the heterogeneous ones (Fig A

in S1 File–only 6% of the heterogeneous and just 0.8% of the homogeneous random splits

were non-reproducible at the p>0.05 level).

Summing up our findings, from the point of view of global FC changes, Parkinson’s disease
is heterogeneous, as opposed to the eyes open-eyes closed contrast, which is much more homoge-

neous (Table 4).

Table 4. Summary of reproducibility of global functional connectivity changes in Parkinson’s Disease

and respectively the eyes open-eyes closed contrast.

Reproducible global FC changes? PD EO-EC

different datasets no

split subjects (heterogeneous splits) inconsistent (no in a large fraction of splits) yes

split replicates (homogeneous splits) yes yes

https://doi.org/10.1371/journal.pone.0188196.t004
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Influence of technical factors and preprocessing on reproducibility

We found good reproducibility when changing various technical factors or processing options

of the NEUROCON data, such as (see Fig 4):

• doubling the repetition time (TR),

• registration (linear versus nonlinear),

• global signal regression (with versus without).

This is in line with our conclusion that functional heterogeneity, rather than these technical

factors, is the dominating factor behind the lack of reproducibility of FC changes in different

rs-fMRI studies of Parkinson’s disease.

We also tested the influence of various rs-fMRI denoising methods on the reproducibility

of PD-related FC changes, such as ICA-FIX [40,41], or regression of the mean white matter

and/or cerebrospinal fluid signal—none of these denoising methods changed the observed

non-reproducibility (data not shown).

We also observed no improvement in reproducibility across random splits of the NEURO-

CON dataset after regressing out potential confounders, such as age, gender, or disease dura-

tion (data not shown).

Influence of parcellation on reproducibility

We have argued that functional connectivity must be computed with respect to an unbiased

parcellation (i.e. one that hasn’t been constructed from any of the analyzed datasets). However,

any given parcellation has also specific biases that may in principle affect the capacity to dis-

criminate between PD and normal controls—especially relevant factors are the average ROI

size and the number of ROIs. Testing the reproducibility of the PD-related global FC changes

using 13 different parcellations, with varying numbers of ROIs (between 90 and 950, see

Table 2), revealed a lack of reproducibility regardless of parcellation, or dataset pair (Table 5).

(The NEUROCON-PPMI comparison was marginally significant (p = 0.05) for the NC-PD

contrast, but this significance didn’t survive perturbations such as selecting just the ‘center32’

Table 5. Reproducibility measure and associated p-value for 13 parcellations and all three dataset

pairs (NC-PD contrast).

Parcellation NEUROCON-TaoWu NEUROCON-PPMI TaoWu-PPMI

R p R p R p

Craddock130 -0.011116 0.554 0.0927652 0.191 -0.0613781 0.747

Craddock260 -0.00871389 0.560 0.0775174 0.205 -0.0770479 0.864

Craddock500 0.00488102 0.469 0.079955 0.172 -0.0546894 0.839

Craddock950 0.00952484 0.409 0.0694818 0.174 -0.0347004 0.748

Shen100 -0.0490741 0.708 0.0958863 0.187 -0.0567748 0.734

Shen200 -0.032232 0.641 0.0936098 0.172 -0.0618746 0.799

Shen300 -0.0247647 0.632 0.0829943 0.159 -0.0729234 0.871

OASIS 0.00698018 0.482 0.0205063 0.411 -0.0155159 0.598

Power264 0.0533032 0.166 0.0812484 0.141 -0.0153593 0.600

Gordon_surface 0.0381087 0.262 0.025185 0.391 -0.0435482 0.748

Talairach -0.0273596 0.686 0.0263891 0.357 0.0598013 0.129

Stanford -0.0600487 0.730 0.185859 0.050 -0.081526 0.819

AAL -0.145955 0.949 0.0692377 0.257 0.00673472 0.466

https://doi.org/10.1371/journal.pone.0188196.t005
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scans from PPMI (p = 0.259), or restriction to the low motion scans NC0-PD0 (p = 0.26), or

NC0-PD0_center32 (p = 0.555).)

Marginally significant individual differentiating FC changes in PD

Despite non-reproducibility of PD-related global FC changes across different datasets, a small

number of ROI-pairs that distinguish PD from controls may nevertheless, in principle, show

reproducible changes across datasets. To check for this possibility, we concentrated on individ-
ual brain region pairs with FC changes that are significant w.r.t. all datasets, by sorting the

ROI-pairs according to their least significance max(p) with respect to all datasets.

For example, Table 6 shows the ROI-pairs with FC decreases in PD (i.e. positive t-values,

corresponding to NC>PD) and max(p)< 0.05 for the Power264 parcellation, without global

signal regression. The best ROI-pair has max(p+) = 0.0125, somin(max(p+)) = 0.0125.

To check whether thismin(max(p+)) is statistically significant, we performed permutation

tests as described. Table 7 lists thesemin(max(p±)) values as well as their associated significance

Table 6. Best ROI-pairs with FC decreases in PD (t>0, corresponding to NC>PD) and max(p) < 0.05 (for the Power264 parcellation, without global

signal regression).

max(p) ROI1-ROI2 p NEUROCON

(NC-PD)

p TaoWu

(NC-PD)

p PPMI

(NC-PD)

t NEUROCON

(NC-PD)

t TaoWu

(NC-PD)

t PPMI

(NC-PD)

0.012526 sphere5(-21,-31,61)-sphere5

(15,-77,31)

0.012526 0.0018915 0.011638 2.5541 3.3398 2.7402

0.016354 sphere5(-42,45,-2)-sphere5

(43,-78,-12)

0.0026347 0.016354 0.0079673 3.1172 2.5153 2.905

0.025311 sphere5(-21,-31,61)-sphere5

(-24,-91,19)

0.0019939 0.025311 0.025232 3.2025 2.3298 2.3949

0.038357 sphere5(-38,-33,17)-sphere5

(20,-86,-2)

0.038357 0.00041882 0.014314 2.1104 3.8665 2.653

0.038529 sphere5(37,-81,1)-sphere5

(38,-17,45)

0.038529 0.02727 0.038269 2.1123 2.297 2.2003

0.038634 sphere5(-21,-31,61)-sphere5

(-26,-90,3)

0.012064 0.038634 0.033842 2.5863 2.1425 2.2603

0.044406 sphere5(-21,-31,61)-sphere5

(29,-77,25)

0.0085123 0.027058 0.044406 2.7193 2.3019 2.1243

0.046861 sphere5(-21,-31,61)-sphere5

(-40,-88,-6)

0.0077414 0.046861 0.017283 2.7342 2.0557 2.55

https://doi.org/10.1371/journal.pone.0188196.t006

Table 7. Significance of min(max(p±)) values for all 13 parcellations (no global signal regression).

Parcellation min(max(p+)) min(max(p−)) p(min(max(p+))) p(min(max(p−)))

AAL 0.0607935 0.112189 0.208 0.426

Craddock130 0.0503968 0.242712 0.152 0.831

Craddock260 0.0294203 0.148728 0.170 0.843

Craddock500 0.0202304 0.0909226 0.206 0.859

Craddock950 0.0172931 0.0542509 0.316 0.815

Shen100 0.0371887 0.376232 0.055** 0.905

Shen200 0.0425589 0.151199 0.195 0.747

Shen300 0.0324906 0.115015 0.199 0.804

OASIS 0.0697703 0.3402 0.208 0.938

Power264 0.012526 0.118716 0.033* 0.846

Gordon_surface 0.0275321 0.11095 0.185 0.846

Talairach 0.00701726 0.0339528 0.032* 0.522

Stanford 0.0599084 0.281706 0.145 0.820

https://doi.org/10.1371/journal.pone.0188196.t007
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p(min(max(p±))) for all 13 parcellations. Only two out of the 13 parcellations yielded signifi-

cant ROI-pairs at the p<0.05 significance level (‘Power264’ and ‘Talairach’), while a third par-

cellation produced only marginally significant ROI-pairs (‘Shen100’, p = 0.055)—see Table 8

and Fig 5. These (marginally) significant ROI-pairs involve visual-sensorimotor, respectively

visual-parietal association areas. Whether these ROI-pair changes are more widely reproduc-

ible or not will have to await the release of more publicly-available PD rs-fMRI datasets.

Testing classifiers for discriminating PD-related FC changes

Training classifiers on functional connectivity data for each one of the 3 datasets (NEURO-

CON, Tao Wu, PPMI) and testing them on the other two datasets produced average accuracies

on test data in the range 0.225–0.7 (mean 0.497, standard deviation 0.073), while a random

classifier is expected to have an average accuracy of 0.5. Fig 6 shows the corresponding average
accuracies Aacc = (acc(NC)+acc(PD))/2 for standard preprocessing (with the default FSL high-

pass filter at 0.01Hz), global signal regression and respectively bandpass filtering (0.01–0.1Hz)

for both linear SVM and Gaussian Naïve Bayes (GNB) classifiers with N = 5000 features (out

Table 8. Marginally significant FC changes w.r.t. all 3 datasets (decreased in PD).

Parcellation p(min(max

(p+)))

min(max(p+)) ROI1 ROI2

Talairach 0.032 0.00701726 (-24,-58,4)

left visual association area, lingual gyrus,

BA18

(–38, –32,16)

left superior temporal gyrus, BA41, planum temporale / parietal

operculum

Power264 0.033 0.012526 sphere5(-21,-31,61)

left postcentral / precentral gyrus

sphere5(15, –77,31)

right cuneus

Shen100 0.055 0.0371887 L.BA19.3

left cuneus, precuneus

R.BA6.1

right SMA, middle cingulate

https://doi.org/10.1371/journal.pone.0188196.t008

Fig 5. Marginally significant FC changes w.r.t. all 3 datasets. The ROIs were mapped onto the brain surface using BrainNet

Viewer [42] (http://www.nitrc.org/projects/bnv/).

https://doi.org/10.1371/journal.pone.0188196.g005
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of the total of 6670 ROI pairs of the AAL parcellation). See Fig B and Table E in S1 File for the

accuracies of classifiers with N = 10,50,100,500,5000 features.

Since for each training dataset (for example NEUROCON), we have two different test data-

sets (PPMI and TaoWu in our example), we also computed an aggregated average accuracy

for each dataset by taking the mean of the two average accuracies corresponding to the two

remaining test datasets (Aacc(dataset-dataset1)+Aacc(dataset-dataset2))/2. The resulting

aggregated average accuracies were low, in the range 0.336–0.591 (mean 0.497, standard devia-

tion 0.0522, compared to 0.5 for a random classifier; see also Fig 7).

Since the three datasets are not technically homogeneous, we also trained and tested classifi-

ers on random splits of the same dataset, to check to what extent the low accuracies are due to

technical differences, or to disease heterogeneity. Fig 8 shows the average accuracies for 10,000

random splits in half of each dataset and various preprocessing options. Again, the means of

the average accuracies over the 10,000 tests were low, in the range 0.51–0.66, reinforcing the

evidence for disease heterogeneity.

Finally, for a a more direct graphical depiction of the heterogeneity of the functional con-

nectomes of the PD patients, we have applied consensus NMF clustering [43] of the PD-related

FC changes for a progressively increasing number of clusters (k = 2,. . .,18, Fig C in S1 File).

Note that besides the consistent grouping of the replicate scan pairs for each patient, it is diffi-

cult to single out an optimal number of clusters k.

Discussion

The accelerated increase in the number of functional connectivity studies of Parkinson’s Dis-

ease requires a consolidation of the knowledge in this field for enabling the development of

clinically relevant rs-fMRI markers for this disease. Unfortunately however, there are many

inconsistencies between published works and virtually no high confidence reproducibility

studies.

This is the first study investigating the reproducibility of functional connectivity changes in

Parkinson’s disease on more than two datasets. The fact that we use a uniform data processing

Fig 6. Average accuracies for classifiers trained on dataset 1 and tested on dataset 2 for all dataset

pairs using standard preprocessing (‘standard’), global signal regression (GS) and respectively

bandpass filtering (0.01–0.1Hz). Here, SVM (linear Support Vector Machine) and GNB (Gaussian Naïve

Bayes) classifiers used N = 5000 features—see Fig B in S1 File for classifier accuracies for varying N. As an

example, NEUROCON-PPMI denotes classifiers trained on NEUROCON and tested on PPMI data.

https://doi.org/10.1371/journal.pone.0188196.g006
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workflow for all datasets excludes a large number of technical factors as potential culprits for

the observed differences between datasets. Also, the fact that our comparison involves three
datasets is essential, as it lowers the probability that the observed lack of reproducibility is due

to a problematic dataset—in such a case, with 3 datasets we might still observe reproducibility

with respect to the remaining dataset pair, something which we do not see in reality.

To better clarify the issue, we devised a method to directly check for disease heterogeneity

using random splits of a single dataset with replicate scans. Technical differences can then be

excluded since all the scans have been acquired under identical technical conditions. The fact

Fig 8. Average accuracies for classifiers trained and tested on split data from the same dataset using standard preprocessing

(‘standard’), global signal regression (GS) and respectively bandpass filtering (0.01–0.1Hz). An SVM classifier with N = 5000 features

was used.

https://doi.org/10.1371/journal.pone.0188196.g008

Fig 7. Aggregated average accuracies for classifiers trained on each of the 3 datasets using standard

preprocessing (‘standard’), global signal regression (GS) and respectively bandpass filtering (0.01–

0.1Hz). Classifiers were trained with N = 10,50,100,500,5000 features. As an example, NEUROCON(10)

refers to the aggregated accuracy (Aacc(NEUROCON-PPMI) + Aacc(NEUROCON-TaoWu))/2 for classifiers

trained on NEUROCON and tested on PPMI and respectively TaoWu data using N = 10 features. SVM—

linear SVM classifier, GNB—Gaussian Naïve Bayes classifier.

https://doi.org/10.1371/journal.pone.0188196.g007
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that we still observe non-reproducibility in a significant fraction of random subsamples of

each individual dataset (these subsamples being technically homogeneous as they come from

the same dataset), suggests that functional heterogeneity may be a dominating factor behind

the lack of reproducibility of functional connectivity alterations in different resting state fMRI

studies of Parkinson’s disease.

This could be due to the heterogeneous multi-lesional topography and progression of the

neurodegenerative process, possibly accompanied by variable compensatory functional circuit

changes, as well as by changes due to dopaminergic medication [26].

The heterogeneity of the functional connectome changes in PD is also more directly appar-

ent in the consensus clustering plots (Fig C in S1 File).

While global PD-related functional connectivity differences were non-reproducible across

datasets, we identified a few individual ROI pairs with marginally consistent FC differences

across all three datasets. However, finding out whether these differences are more widely

reproducible or not will have to await the release of more public PD datasets.

Additionally, we applied more sophisticated multivariate machine learning techniques to

learn classifiers that discriminate PD from controls using functional connectivities between

ROI pairs as features. However, training classifiers on each one of the three datasets (NEURO-

CON, Tao Wu, PPMI) produced only low accuracies on the remaining two (test) datasets, in

line with the preceding results. Furthermore, since the three datasets are not technically homo-

geneous, we also trained and tested classifiers on random splits of the same dataset, to more

directly check to what extent the low accuracies are due to technical differences, or to disease

heterogeneity. Again, we obtained low average accuracies (with means in the range 0.51–0.66),

reinforcing the evidence for disease heterogeneity. Interestingly, these results are consistent

with a recent study [44] on multisite generalizability of schizophrenia diagnosis based on func-

tional brain connectivity, which reported multisite classification accuracies below 70%, in con-

trast to over 30 previously published, largely single-site schizophrenia studies, whose average

reported classification accuracy exceeds 80%.

Therefore, given the paucity of publicly available rs-fMRI PD datasets, we advocate the criti-

cal importance of data sharing for enabling the discovery of reproducible and clinically useful
functional imaging biomarkers of PD. In this regard, we view our study as an important first

step towards more refined reproducibility studies that would be possible only with more pub-

licly available datasets. In view of the many inconsistencies found in the published literature

on PD-related functional connectivity changes, we strongly argue for a direct computational

comparison of PD rs-fMRI datasets using a uniform data processing workflow, to avoid publi-

cation bias as well as processing workflow differences in the separate studies.

Limitations

The present study has concentrated on PD-related changes in functional connectivity (loosely

viewed as correlations between different regions of interest), rather than changes in fluctua-

tions of the amplitude of the rs-fMRI signal. In a complementary study, Wu et al. [45] observed

PD-related changes in ALFF, but with rather limited reproducibility. An in-depth analysis

of the reproducibility of PD-related differences in the amplitude of fluctuations is out of the

scope of the present paper.
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