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Abstract: Measurements of response inhibition components of reactive inhibition and proactive
inhibition within the stop-signal paradigm have been of particular interest to researchers since the
1980s. While frequentist nonparametric and Bayesian parametric methods have been proposed to
precisely estimate the entire distribution of reactive inhibition, quantified by stop signal reaction
times (SSRT), there is no method yet in the stop signal task literature to precisely estimate the entire
distribution of proactive inhibition. We identify the proactive inhibition as the difference of go
reaction times for go trials following stop trials versus those following go trials and introduce an
Asymmetric Laplace Gaussian (ALG) model to describe its distribution. The proposed method is
based on two assumptions of independent trial type (go/stop) reaction times and Ex-Gaussian (ExG)
models. Results indicated that the four parametric ALG model uniquely describes the proactive
inhibition distribution and its key shape features, and its hazard function is monotonically increasing,
as are its three parametric ExG components. In conclusion, the four parametric ALG model can be
used for both response inhibition components and its parameters and descriptive and shape statistics
can be used to classify both components in a spectrum of clinical conditions.

Keywords: proactive inhibition; reaction times; Ex-Gaussian; Asymmetric Laplace Gaussian; Bayesian
Parametric Approach; hazard function

1. Introduction
1.1. Stop Signal Task and the Race Model

Response inhibition refers to one’s ability to stop responses or impulses that have
become inappropriate or unwanted within continually changing environments [1]. This
process’s importance lies in one’s being in continually changing conditions that require
new, updated courses of action [2]. Some instances of response inhibition in daily life
include braking while driving a vehicle into an intersection in reaction to a sudden traffic
change, changing direction during a tennis game and resisting an extra piece of pizza at
a birthday party. Two paradigms have been proposed to study the lab setting’s response
inhibition [3]: the stop signal task and the go/no-go task. In the standard stop signal task,
as used in this study, the task consists of a two-choice response time task called the “go task”
and the “stop task”. The go task is the primary task in which the participants are asked to
correctly press a right or left button in response to stimulus presentation—an “X” or “O”
on the computer screen. The stop task is the occasional, secondary task in which (with a
probability of stop signal pss) the participants are presented with a stop signal alarm after a
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temporal delay; participants are instructed to withhold their responses to the ongoing go
task. Successful response inhibition occurs when participants successfully withhold their
response to the “X” or “O” on the screen in the stop task (Figure 1).

Figure 1. The standard stop signal task with two inhibition components: proactive inhibition, reactive
inhibition (Chevrier and Schachar, 2020 [4]-Permission was granted).

Within the Stop Signal Task (SST) paradigm, response inhibition has been evaluated
and described by several methods, such as the deadline model, the race model (with its
independent and interactive versions) and the Hans–Carpenter model [5–9]. This work
considers the independent race model given its widespread application in the SST literature.
The independent race model creates a context to measure one of the inhibition compo-
nents: the latency of unobservable stopping response or Stop Signal Reaction Times (SSRT).
The model is based on two competing processes: the go process (Tgo) and the stop process
(Tstop). In all experiment trials, the go process starts upon triggering the stimulus, and, in a
portion of them—called stop trials—after the stop signal delay times (Td) following the
stimulus, the stop process starts. The stop process wins (or loses) the race against the go
process whenever Tgo > Tstop + Td(Tgo < Tstop + Td), and in this case, successful inhibition
(or failed inhibition) occurs.

The independent race model assumes two independent assumptions: first, an stochas-
tic independence assumption between the go process and the stop process (i.e., Tgo ⊥ Tstop);
second, a contextual independence assumption, meaning that the go process has the same
distribution over all SST trials (i.e., (Tgo|Td) = Tgo). The validity of these assumptions has
been the subject of various discussions in the SST literature [10].

The outline of the introduction in the subsequent sections is as follows. In Section 1.2,
we introduce two major components of inhibition: the reactive inhibition and proactive
inhibition. Next, we review different contextual index type (constant vs. distribution) mea-
surements of reactive inhibition. Then, in Section 1.3, we focus on contextual estimations
of proactive inhibition. Here, in Section 1.3.1, we review its main constant indices, and,
in Section 1.3.2, we discuss the motivation for the distributional index. Finally, in Section 1.4,
we outline the remainder of this work.
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1.2. Components of Inhibition

Response inhibition has two distinctive temporal–dynamic components: reactive inhi-
bition and proactive inhibition. Both components have been utilized within the standard
stop signal task, or its varieties, to discriminate different clinical groups [11,12]. We gener-
ally refer to reactive inhibition as the outright inhibition triggered by an external cause. It
is the reactive cancellation upon recognizing environmental changes that require stopping
behavior. Next, proactive inhibition is the restraint of actions in preparation for stopping
by external conditions [13]. It involves slowing responses and monitoring for the need to
stop. Each of these inhibition components has been quantified in distinctive methods as
constant point estimates or distributions in the stop signal task (SST) literature [1,14–29].
Figure 2 summarizes the inhibition components and their index types.

Figure 2. Inhibition components and their subtypes: current literature (path 1-1, 1-2-1, 1-2-2-1, 1-2-2-2,
2-1, 2-2-1, 2-2-2-1); this study (path 2-2-2-2).

Reactive inhibition (Figure 2: path 1-1, 1-2-1, 1-2-2-1, 1-2-2-2) has been quantified as
Stop Signal Reaction Times (SSRT) in the SST literature from both point estimation and
distributional perspectives. Primary point estimations of the reactive inhibition to date
include the Crude SSRT, the Logan 1994 SSRT [1], the Weighted SSRT, the Mixture SSRT [24]
and the time series-based SSRT [26]. On the other hand, primary distributional estimations
of the reactive inhibition include Colonius’s nonparametric method [29], the Bayesian
Parametric Approach (BPA) [19,20]—with two subtype methods: the Individual BPA
(IBPA) and the Hierarchical BPA (HBPA)—and the mixture method [25]. In the case of
parametric mixture SSRT, the cluster type components may take a variety of proposed
reaction time (RT) models, such as Ex-Gaussian (ExG), Ex-Wald, Wald, Gamma, Weibull
and lognormal [21,23,27]. However, given the ExG model’s practical advantages to others,
the parametric model is widely considered for the reactive inhibition [19,20].
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In healthy subjects, proactive phases of the Stop Signal Task (SST) selectively acti-
vate right frontoparietal regions involved in proactive withholding, and reactive phases
selectively activate right inferior frontal and caudate regions involved in the reactive can-
cellation of responses [30–33]. However, activities during proactive and error phases of the
task strongly predict SSRT in controls and SSRT differences in ADHD [31,34]. Similarly,
it is most likely that activities at times other than the proactive inhibition phase strongly
contribute to estimates of proactive control. As such, observed differences in proactive
control cannot be directly attributed to specific brain regions or phases of activity. The term
“proactive inhibition” has several interpretations within the stop signal task literature: first,
“the advanced preparation to halt action in the anticipation of an imminent stop signal” [16];
second, “association of probability of stopping in the stop trial and the go reaction times
(GORT)” [35]; third, “comparison of two go trial reaction times (GORT1,GORT2) before
and after a go trial as well as before and after a stop trial “ [36]; fourth, “comparison of go
trial reaction times after a stop trial (GORTB) to that after a go trial(GORTA)” [25]. In this
paper, we operationalize the last interpretation, which has the advantage of requiring only
one single-arm SST.

1.3. Estimations of Proactive Inhibition
1.3.1. Constant Index

Proactive inhibition has been quantified in the SST literature merely as point estimation
from three different perspectives (Figure 2. path 2-1). The first such estimation is defined
through a dynamic Bayesian model [18]. Here, using the mixture assumption for the
predictive distribution for the probability of the kth trial being a stop task “p(Stop)”, the
reactive inhibition is defined as the positive Pearson correlation called the “Sequential Effect
(SE)” (see Equation (1)). The second estimation is based on the variation of differences of
reaction times in a go trial (GORTs) in the associated arms of the modified standard stop
signal task paradigm [14–17,22,28]. The associated arm of the study is identified by the set
of all go and stop trials associated with the specific pre-designed probability of stop signal
pss (e.g., as in [14]: one may run four arms of 60, 200, 120 and 86 trials with pss = 0, 0.15, 0.25
and 0.35, respectively). Generally, for two given probabilities of stop signals in two arms of
the modified SST where 0 ≤ p(1)ss < p(2)ss < 1, the arm type proactive inhibition ∆ATGORT
is defined as the difference of mean GORT in the two arms (see Equation (2)). The last type
of the point estimation of proactive inhibition is based on the differences of GORTs in the
trial type clusters of the standard SST paradigm [24,26] (Figure 3). Here, for the fixed stop
signal probability (e.g., pss = 0.25) and the type A GORTA and type B GORTB, the trial
type proactive inhibition ∆TTGORT is defined as the difference of mean GORT in these
two types (see Equation (3)).

The following equations summarize the formulae for the three methods, respectively:

SE = Corr(p(Stop), GORT), (1)

∆ATGORT = mean(GORT
(p(2)ss )

)−mean(GORT
(p(1)ss )

), (2)

∆TTGORT = mean(GORTB)−mean(GORTA). (3)

1.3.2. Motivation

Little information is available in the SST literature on the entire distribution of proac-
tive inhibition and its key features (Figure 2: path 2-2-1; 2-2-2). This subject is significant
for two reasons: first, although what we know about brain function prevents a mapping
of discrete behavioral observables onto discrete phases of modular brain functions, it is
also conversely true that proactive inhibition distributions reflect information far beyond
isolated brain activity during isolated phases of SST trials and therefore have strong po-
tential to complement information available from brain imaging. Furthermore, it might
reveal important clinical differences not available from brain imaging (which is already
known to be the case for point estimates of SSRT). Second, measures of central tendencies,
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such as mean or median, are insufficient—and even unnecessary—to compare mostly
skewed response inhibition distributions [37]. Besides this, masking prominent features
of the proactive inhibitions by using central tendency measures may result in incorrect
conclusions about their make-up. As an example, two different clinical groups may have
the same mean of proactive inhibition, but the shape of their distributions may differ:
one may be more positively skewed, or more leptokurtic, or possess a higher domain of
variance. The methods mentioned earlier for the estimation of proactive inhibition do not
allow for the precise estimation and description of the appropriate models for the entire set
of proactive inhibition distributions.

Figure 3. Trial type point estimation of proactive inhibition (∆(GORT)) in the standard stop-
signal task.

1.4. Study Outline

This study proposes a four parametric, Asymmetric Laplace Gaussian (ALG) model
for the entire proactive inhibition, given the assumption of independent trial type (go/stop)
GORTs within the standard stop signal task (Figure 2, path 2-2-2-2). The study outline is as
follows. First, in Section 2, some mathematical preliminaries on the components of ALG
distribution, their features, the definition of the proactive inhibition distribution, and the
involved random variables in the stop signal task probability space are provided. Second,
in Section 3, a mathematical analysis regarding the distribution of proactive inhibition is
presented. This includes its four parametric ALG form, descriptive statistics, shape statistics
and vital distributional properties of the ALG model (e.g., shape and tail behavior, hazard
function). Finally, an empirical example is presented to manifest the above theoretical
results. Here, as in [24,26], the overall SST data for each participant are partitioned to type
A SST data and type B SST data. Then, using the Individual Bayesian Parametric Approach
(IBPA) method [19,20], the fitted ExG GORT mean posterior parameters are calculated for
the cluster type SST data. Next, the distribution of proactive response inhibition is studied.
Table 1 presents the summary of estimation methods presented in the literature, including
this study, given the type of inhibition component.
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Table 1. Summary of Estimation Methods of Inhibition Components

Estimation Inhibition Component

Reactive Proactive

Constant Index SSRT ∆GORT,SE
Examples SSRTCrude, SSRTMixture, SSRTWeighted ∆ATGORT, ∆TTGORT

SSRTLogan1994, SSRTSS.Logan1994
Distribution Index SSRT ∆GORT
Examples ExG,LN,Wald ALG

Ex-Wald, Gamma

2. Mathematical Preliminaries
2.1. Preliminaries on Component Distributions

The reader who has studied intermediate probability is well-equipped with the fol-
lowing definitions and theorems. A good comprehension of them plays a key role in
understanding the nature of the proposed ALG model and its relationship dynamic with
its ExG components. The first two definitions provide the critical features of the compo-
nents of our upcoming calculations, namely Ex-Gaussian distribution (ExG) [38] and the
Asymmetric Laplace distribution (AL) [39]. The third definition deals with the Asymmetric
Laplace Gaussian (ALG) distribution. The subsequent four theorems play key roles in the
proofs of the properties of the ALG model in Section 3.1.

Definition 1. A random variable has an Ex-Gaussian (ExG) distribution with parameters (µ, σ, τ)
whenever it is considered as the sum of an independent normal random variable with parameters
(µ, σ2) and an exponential random variable with parameter τ:

ExG(µ, σ, τ)
d
= N(µ, σ2)⊕ Exp(τ). (4)

The density, the moment generating function, the nth cumulant (n ≥ 1), the variance,
the skewness and the kurtosis of the ExG distribution are given by

PDF fExG(t|µ, σ, τ) =
1
τ

exp(
µ− t

τ
+

σ2

2τ2 ) ∗Φ(
µ− t

σ
− σ

τ
) : σ, τ > 0, t ∈ R,

MGF mExG(t) = (1− tτ)−1exp(µt +
σ2

2
t2) : t < τ−1,

nthCumulant κExG
n = (n− 1)!τn + 1n=1(n)µ + 1n=2(n)σ2 : 1 ≤ n,

Mean E(ExG) = µ + τ,

Variance Var(ExG) = σ2 + τ2,

Skewness γExG = 2(1 + σ2τ−2)−3/2,

Kurtosis κExG = 3
(1 + 2σ−2τ2 + 3σ−4τ4)

(1 + σ−2τ2)2 . (5)

Definition 2. A random variable has an Asymmetric Laplace (AL) distribution with parameters
(α1, α2) whenever it is considered as the difference of two independent exponential random variables
with parameters α2, and α1, respectively:

AL(α1, α2)
d
= Exp(α2)	 Exp(α1). (6)

The density, the moment generating function, the nth cumulant (n ≥ 1), the variance,
the skewness and the kurtosis of the AL distribution are given by
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PDF fAL(t|α1, α2) =
exp( t

α1
)1(−∞,0)(t) + exp(−t

α2
)1[0,∞)(t)

α1 + α2
t ∈ R,

MGF mAL(t) = (1 + (α1 − α2)t− α1α2t2)−1 − α−1
1 < t < α−1

2 ,

nthCumulant κAL
n = (n− 1)!((−α1)

n + (α2)
n) 1 ≤ n,

Mean E(AL) = −(α1 − α2),

Variance Var(AL) = α2
1 + α2

2,

Skewness γAL = −2(α3
1 − α3

2)× (α2
1 + α2

2)
−3/2,

Kurtosis κAL = 3(3α4
1 + 2α2

1α2
2 + 3α4

2)× (α2
1 + α2

2)
−2. (7)

The convolution of two independent AL random variables and Gaussian random
variables, called ALG or Normal-Laplace (NL) random variables, has been of special
attention in the literature [40,41]. We adopt ALG notation in this work given its alignment
with the ExG notation.

Definition 3. A random variable has Asymmetric Laplace-Gaussian (ALG) distribution with
parameters (α1, α2, µ, σ) whenever it is considered as the sum of two independent Asymmetric
Laplace random variables with parameters (α1, α2) and a Normal random variable with parameters
(µ, σ2), respectively:

ALG(α1, α2, µ, σ)
d
= AL(α1, α2)⊕ N(µ, σ2). (8)

Note that since AL(0+, α2)
d
= Exp(α2), it follows that

ALG(0+, α2, µ, σ)
d
= ExG(µ, σ, α2).

Consequently, the ExG model can be considered a special degenerate ALG model.
Next, the following key two theorems allow us to propose the ALG distribution as the
model for the proactive inhibition and compute the key descriptive and shape statistics of
the ALG distribution in terms of its Laplacian and Gaussian components [42].

Theorem 1. Let X, Y be two independent real-valued random variables with finite moment gener-
ating functions mX , mY, and cumulant functions κ, κ, respectively. Then, for some s0 > 0,

mX+Y(t) = mX(t)mY(t) : (−s0 < t < s0), (9)

κX+Y(t) = κX(t) + κY(t) : (−s0 < t < s0). (10)

Theorem 2. Let X, Y be two real-valued random variables with finite moment generating functions
mX, mY, respectively. Assume for some s0 > 0 : mX(t) = mY(t) (−s0 < t < s0). Then, X, Y
have the same distribution.

Finally, the last two theorems enable us to describe the behavior of the hazard function
of the ALG model for the proactive inhibition [43,44].

Theorem 3. Let X be a real-valued random variable with differentiable PDF fX and CDF FX such
that fX(t) → 0, FX(t) → 1 as t → ∞, and −ln( fX(t)) is convex (concave). Then, the hazard
function hX is increasing (decreasing).

Theorem 4. Let X, Y be two independent, real-valued random variables with non-decreasing hazard
functions hX, hY, respectively. Then, the hazard function of their sum hX+Y is non decreasing
as well.
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2.2. Stop Signal Task Probability Space and Random Variables

Given the stop signal task described in Section 1.1, its associated probability space
(Ω,F , P) constitutes of a sample space Ω as the set of all go trials, F as the power set of
sample space (F = P(Ω)) and a probability measure P defined by P(E) =

∫
E dF, E ∈

F where F is the cumulative distribution function (CDF) of some RT distribution (e.g.,
ExG). Furthermore, the go trial RT random variable is a measurable function GORT :
Ω → R. Moreover, for specific type-A (all trials immediately following go trials), type-
B (all trials immediately following stop trials) and type-S (all trials) cluster SST data,
their associated probability spaces and random variables are denoted by the associated
subscripts (e.g., (ΩA,FA, PA), (ΩB,FB, PB) and (ΩS,FS, PS)). In order to have dimensional
homogeneity [45] on having algebraic operations over RT random variables GORTA :
ΩA → R and GORTB : ΩB → R, one may consider extension via projection to a higher
dimensional sample space or coupling [46]. Considering the first method, both cluster type
probability spaces (ΩA,FA, PA) and (ΩB,FB, PB) can be simultaneously extended to the
following probability space:

(ΩA×B,FA⊗B, Pπ) = (ΩA ×ΩB,P(ΩA)⊗P(ΩB), PA × PB) (11)

where ΩA ×ΩB is the Cartesian product of cluster type sample spaces; P(ΩA)⊗P(ΩB) is
the tensor product sigma algebra on product space; and PA × PB is the canonical product
probability measure. In particular, considering the following projections:

πA : ΩA ×ΩB → ΩA : πA(gA, gB) = gA, π−1
A (EA) ∈ FA⊗B f or all EA ∈ FA

πB : ΩA ×ΩB → ΩB : πB(gA, gB) = gB, π−1
B (EB) ∈ FA⊗B f or all EB ∈ FB

it follows that:

Pπ(π
−1
A (EA)) = PA(EA) f or all EA ∈ FA

Pπ(π
−1
B (EB)) = PB(EB) f or all EB ∈ FB.

The cluster type space-related random variables GORTA : ΩA → R and GORTB :
ΩB → R can now be extended to the corresponding random variables GORTπ

A×B : ΩA×B →
R (GORTπ

A(gA, gB) = GORTA(gA)) and GORTπ
A×B : ΩA×B → R (GORTπ

B (gA, gB) =
GORTB(gB)), respectively. In the spirit of this extension, the algebraic operations (e.g.,
difference) on the random variables GORTA, GORTB from different cluster type proba-
bility spaces will be defined as their corresponding higher dimensional extensions (e.g.,
GORTB(gB) − GORTA(gA) = GORTπ

B (gA, gB) − GORTπ
A(gA, gB) : f or all (gA, gB) ∈

ΩA ×ΩB).

2.3. Proactive Inhibition Index

Proactive inhibition was operationalized based on the standard stop signal task’s
internal perspective [26]. The following definition of distribution of proactive inhibition
is inspired by the third constant index of proactive inhibition in Equation (3). Here, for a
given fixed stop signal probability (e.g., 0.25), type A GORT of GORTA (GORT for a trial
after a go trial) and type B GORT of GORTB (GORT for a trial after a stop trial), the internal
proactive inhibition is defined as

∆GORT d
= GORTB − GORTA. (12)

Remark 1. Equation (12) in the definition of distribution proactive inhibition has a direct relation-
ship with Equation (3) in the definition of the constant index of proactive inhibition. Indeed, taking
expectations from both sides of Equation (12) yields Equation (3), while considering constants as
point mass distributions implies that Equation (3) is a special case of Equation (12).
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Note that there are two mathematical perspectives for the proactive inhibition: first,
a model with two ExG components; second, a model with Asymmetric Laplace (AL) and
Gaussian components. Henceforward, it is understood within the given context which
perspective is being discussed.

3. Results

The results are discussed in two subsections. In Section 3.1, we explore the mathemati-
cal analysis of the proposed model for the proactive inhibition in the standard stop signal
task. The proofs of the key results are presented in Appendix A. This model includes a four
parametric ALG for the proactive inhibition and its prominent distributional properties.
In Section 3.2, we first present an empirical example of the case and discuss its various
distributional features. Then, we compare the proactive inhibition ALG model and the
reactive inhibition ExG model in terms of key statistics.

3.1. Mathematical Analysis
3.1.1. The Proactive Inhibition Distribution and its Parameters

First of all, we propose a mathematical model for the proactive inhibition provided by
the ALG:

Theorem 5 (The Main Result). The four parametric ALG(τA, τB, µB − µA, (σ2
B + σ2

A)
1/2) may

present a unique statistical model for the internal proactive inhibition index ∆GORT with trial
type-related parameters (µA, σA, τA, µB, σB, τB) in the standard stop signal task.

As a corollary of Theorem 5, the probability density function ( f∆GORT) and the cumula-
tive density function (F∆GORT) of the ALG distribution for the internal proactive inhibition
index are given by [40,41]:

f∆GORT(t) =
1

τA + τB

×[ e
(

√
σ2

B+σ2
A

2τB
(

√
σ2

B+σ2
A

τB
−2 t−(µB−µA)√

σ2
B+σ2

A
))

× (1−Φ(

√
σ2

B + σ2
A

τB
− t− (µB − µA)√

σ2
B + σ2

A

))

+ e
(

√
σ2

B+σ2
A

2τA
(

√
σ2

B+σ2
A

τA
+2 t−(µB−µA)√

σ2
B+σ2

A
))

× (1−Φ(

√
σ2

B + σ2
A

τA
+

t− (µB − µA)√
σ2

B + σ2
A

))]

t ∈ R (13)

and,

F∆GORT(t) =
1

τ−1
A + τ−1

B
× [(τ−1

A + τ−1
B )Φ(

t− (µB − µA)√
σ2

B + σ2
A

)

− τ−1
A e

(

√
σ2

B+σ2
A

2τB
(

√
σ2

B+σ2
A

τB
−2 t−(µB−µA)√

σ2
B+σ2

A
))

× (1−Φ(

√
σ2

B + σ2
A

τB
− t− (µB − µA)√

σ2
B + σ2

A

))

+ τ−1
B e

(

√
σ2

B+σ2
A

2τA
(

√
σ2

B+σ2
A

τA
+2 t−(µB−µA)√

σ2
B+σ2

A
))

× (1−Φ(

√
σ2

B + σ2
A

τA
+

t− (µB − µA)√
σ2

B + σ2
A

))]

t ∈ R, (14)

respectively. Here, Φ denotes the standard normal cumulative distribution function.
Next, given trial type parameters, we estimate the descriptive and shape statistics for

the proposed ALG model of the proactive inhibition.
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Theorem 6. The descriptive statistics and the shape statistics of the proactive inhibition ALG
distribution with trial type-related parameters (µA, σA, τA, µB, σB, τB) in the standard stop signal
task are given by

nthCumulant κALG
n = (n− 1)!((−τA)

n + τn
B )

+1(n=1)(n)(µB − µA) + 1(n=2)(n)(σ
2
B + σ2

A) : 1 ≤ n

Mean E(ALG) = τB − τA + µB − µA,

Variance Var(ALG) = τ2
A + τ2

B + σ2
A + σ2

B,

Skewness γALG =
2(τ3

B − τ3
A)

(τ2
A + τ2

B + σ2
A + σ2

B)
3/2

,

Kurtosis κALG =
6(τ4

B + τ4
A)

(τ2
A + τ2

B + σ2
A + σ2

B)
2

. (15)

3.1.2. The Proactive Inhibition’s Key ALG Distributional Properties

In this section, we present key distributional properties for the ALG model for proac-
tive inhibition, including (i) component decompositions in terms of trial type GORT,
(ii) shape and tail behavior and (iii) the behavior of the hazard function.

Theorem 7 (Component Decomposition). An ALG model for proactive inhibition emerges from
uncountable pairs of trial type related GORT (GORTA, GORTB) distributions.

We remind the reader that Theorem 7 presents a process to simulate a plausible four
parametric ALG distribution for the proactive inhibition.

Theorem 8 (Shape and Tail Behavior). An ALG model for proactive inhibition has a unimodal,
generally asymmetric, infinite, differentiable density with extreme large values proportionate to the
Exp(1/τB) distribution.

We remind the reader that in contrast to the ALG model’s mean for proactive inhibition,
there are no closed-form formulas for the mode and the median, respectively. Similar to
the ExG model for reactive inhibition with increasing hazard function, we consider the
following theorem.

Theorem 9 (Hazard Function’s Behavior). An ALG model for proactive inhibition has a non-
decreasing hazard function.

3.2. The Empirical Example

This section presents an example of the empirical data and model for the theoretical
results inferred in the previous section on the ALG model for proactive inhibition and its
descriptive, shape and hazard function’s key features. These results are based on the cluster
type IBPA estimation of mean posterior ExG parameters θ = (µ, σ, τ) presented in Table A1
(Appendix A.2).

Remark 2. The reader is reminded that in the point estimation of the parameters of ALG, there
is uncertainty inherited from random sampling in the Bayesian procedure [47]. The reader is
recommended to assess this when applying the procedure and to be aware of the differences (see
Appendix A.3).

The proactive inhibition distribution estimation process follows these steps:

1. Partition the Single SST data to type-A SST data and type-B SST data,
2. Fit IBPA with underlying ExG assumption to type-A SST data and type-B SST data,
3. Retrieve mean posterior ExG parameters to type-A GORT data and type-B GORT

data,
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4. Plug the estimations in previous step into the ALG model presented in Theorem 5.

3.2.1. Materials & Methods
Data

The study data have been previously described [24–26,48]. Data were collected at the
Ontario Science Center in Toronto, Canada, in 2009–2010. Included were 16,099 participants
aged 6 to 17. The participants’ parents provided the required ethical consent for the SST
experiment. Each participant completed the SST task, including four blocks of 24 trials with
a total of 96 trials, including random 25% stop trials (24 stops) and 75% go trials (72 goes).
The SST tracking algorithm was designed so that, at the end of the trials, each participant
achieved a 50% probability of successful inhibition.

Participants

The study participants are the same as those described in [25,26]. Included here is a
unique subsample of 44 participants with a mean age of 12.1 years, with 96 SST trials for
each, and an almost balanced number of trial type stop trials (10–14 type B stop trials vs.
1410 type A stop trials, respectively). This almost balanced number of trial type stop trials
yields 14–10 type B go trials vs. 58–62 type A go trials, respectively.

The SST Clusters

The study stop signal task clusters have been described before in [24–26]. Each
participant’s SST data were partitioned to type A SST data, where a go trial preceded
all trials, and type B SST data, with all trials preceded by a stop trial. All four starting
trials in their blocks were identified as type-A trials. Hence, each participant had three
types of SST data clusters: Type-A SST cluster (i.e., 72 trials), Type B SST cluster (i.e.,
24 trials), and Type-S SST cluster (all 96 trials). Then, using IBPA, the parameters of
the corresponding Ex-Gaussian (ExG) GORT’s parameters (i.e., θA = (µA, σA, τA), θB =
(µB, σB, τB), θS = (µS, σS, τS) were computed as described in Section 3.2.2.

3.2.2. Statistical Analysis

The statistical ALG model to describe the proactive inhibition distribution was pre-
sented using moment generating functions [40]. Next, the ALG model’s descriptive and
shape statistics were computed in terms of parameters of the cluster type ExG compo-
nents [42]. Finally, its hazard function behavior was theoretically inferred using its compo-
nents’ parameters, [44].

The ExG components of the presented statistical model were estimated using the IBPA
method [19,20]. As in [25], each participant had three IBPA associated ExG parametric
estimations θA = (µA, σA, τA), θB = (µB, σB, τB), and θS = (µS, σS, τS), associated to type-A
cluster SST data, type-B cluster SST data and all SST data, respectively. These parameters
were estimated as the posterior means of the associated following IBPA procedure with
three chains, 5000 burn-ins within 20,000 simulations in Bayesian Ex-Gaussian Estimation
of stop-signal RT distributions (BEESTS) 2.0 software [20]:

Data Individual Priors
GORT ∼ ExG(µgo, σgo, τgo)
SRRT ∼ ExG(µgo, σgo, τgo, µstop, σstop, τstop, SSD)I+

[1,1000] µgo, σgo, τgo ∼ U[10, 2000]
SSRT ∼ ExG(µgo, σgo, τgo, µstop, σstop, τstop, SSD)I+

[1,1000] µgo, σgo, τgo ∼ U[10, 2000]

Two sets of comparisons were conducted using paired t-tests (DescTools, R software
version 4.0.0 [49]): first, a primary comparison between the cluster-type fitted parameter of
the ExG distribution, the descriptive statistics and the shape statistics; second, secondary
comparisons between the ALG model descriptive and shape statistics and its associated
cluster-type ExG components.
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3.2.3. The ALG Model for Proactive Inhibition

The ExG model for each of the two components of proactive inhibition has the fol-
lowing key features presented by Table 2. First, while type-B µ, and τ parameters are
significantly larger than their type-A counterparts, there is no difference for the σ parame-
ter. In addition, the sample average proactive inhibition is 92.1 ms (95% CI = (69.4,114.9)).
Second, both ExG components are positively skewed and leptokurtic. Finally, there is
no significant difference between their trial-type skewness and their trial-type kurtosis,
respectively. Figure 4a presents the trial type ExG modeled components of the ALG model.

Table 2. Descriptive and paired t-test [mean (95%CI)] results for parameters, descriptive and shape
statistics of fitted Ex-Gaussian distribution to cluster type GORT and AL-Gaussian distribution to
∆GORT(n = 44).

ExG Model ALG Model

Cluster Comparison Cluster

Type A Type B Type B vs. Type A Type S

α1 - - - 104.2
- - - (90.4, 117.9)

α2 - - - 142.4
- - - (125.9, 158.8)

Parameter µ 478.8 532.8 53.9 *** 53.9
(448.0, 509.7) (498.6, 566.9) (30.9, 76.9) (30.9, 76.9)

σ 109.9 133.1 23.2 179.2
(90.5, 129.3) (108.4, 157.8) (−0.1, 46.4) (151.4, 206.9)

τ 104.2 142.4 38.2 *** -
(90.4, 117.9) (125.9, 158.8) (19.6, 56.8) -

Mean 583.0 675.1 92.1 *** 92.1
(553.0, 612.9) (633.8, 716.4) (69.4, 114.9) (69.4, 114.9)

Statistics St.D 160.6 202.4 41.8 *** 260.4
(143.5, 177.8) (177.9, 226.9) (25.9, 57.6) (232.3, 288.6)

Skewness 0.787 0.918 0.131 0.186
(0.602, 0.973) (0.751, 1.085) (−0.113, 0.375) (0.076, 0.296)

Kurtosis 4.966 5.300 0.334 1.153
(4.414, 5.518) (4.790, 5.808) (−0.397, 1.064) (0.923, 1.384)

Notes: *** p-value < 0.0005.

The ALG model for proactive inhibition has the following features, given cluster type
parameter estimations. First, as a primary corollary of Theorem 6, the model is positively
skewed whenever τB > τA. The negatively skewed and symmetric cases hold whenever
the strict greater inequality > is replaced with < and =, respectively. According to data in
Table A1 in the appendix, all three cases exist (case 10: positive skew; case 16: symmetric;
case 11: negative skew).

Figure 4b presents all the mentioned three cases. Overall, the model is positively
skewed given the results in Table 2. Second, as the second corollary of Theorem 6,
the model is leptokurtic whenever (2(τ4

A + τ4
B))

1/2 − (τ2
A + τ2

B) > σ2
A + σ2

B. The platykurtic
and mesokurtic cases hold whenever the strict greater inequality > is replaced with <
and =, respectively. In particular, for the case τA ≈ τB, the model is always platykurtic.
Overall, the model is platykurtic given results in Table 2. Third, while the ALG model’s
standard deviation is larger than its two ExG’s components, its skewness and kurtosis are
significantly smaller. Finally, the ALG model has a strictly increasing hazard function for
various skewness cases, as mentioned in Theorem 9 and presented in Figure 4c.
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Figure 4. (a) The ALG density and its trial type ExG component densities; (b) the ALG density for
the positively skewed, symmetric and negatively skewed cases; (c) the ALG hazard function for the
positively skewed, symmetric and negatively skewed cases.

3.2.4. Proactive Inhibition ALG Model versus Reactive Inhibition ExG Model

This section compares the ALG distribution of the proactive inhibition and the ExG
distribution of the reactive inhibition in descriptive and shapes statistics. Table 3 presents
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the corresponding statistics for both models. As it is seen, the proactive ALG inhibition
distribution has a significantly lower mean, lower skewness, lower kurtosis and higher
standard deviation than reactive inhibition ExG distribution. Futhermore, while the proac-
tive inhibition ALG distribution is platykurtic, the corresponding reactive ExG distribution
is leptokurtic. However, the two distributions are both positively skewed. Overall, the two
distributions are significantly distinctive.

Table 3. Comparison of proactive inhibition ALG model versus reactive inhibition ExG model in
terms of descriptive and shape statistics (n = 44).

Inhibition Reactive Proactive Proactive vs. Reactive
Index SSRT ∆GORT ∆GORT vs. SSRT
Model ExG ALG ALG vs. ExG

Mean 196.8 92.1 −104.6 ***
(173.5, 220.1) (69.4, 114.9) (−140.6, −68.7)

Statistics

St.D 157.8 260.4 102.6 ***
(139.4, 176.2) (232.3, 288.6) (71.8, 133.6)

Skewness 0.578 0.186 −0.401 ***
(0.500, 0.674) (0.076, 0.296) (−0.540, −0.261)

Kurtosis 4.231 1.153 −3.077 ***
(3.998, 4.465) (0.923, 1.384) (−3.381, −2.775)

Notes: *** p-value < 0.0005.

4. Discussion
4.1. Present Work

This paper presents a four parametric model for the entire proactive inhibition
distribution—the ALG model. This model is based on the two independent ExG com-
ponents fitted to the trial type GORTs. Considering ExG models as a degenerate ALG
model, this work indicates that a four parametric ALG model can model both response
inhibition components (see Figure 5).

Figure 5. The ALG model as the comprehensive statistical model for inhibition in the standard SST.

The proposed ALG model for proactive inhibition has several important aspects.
First, the model is based on the independent assumptions of GORTA and GORTB. Such
speculation is an additional postulate to the structure of the SST data, and its validity
needs extra investigation. Second, contrary to the point estimations of proactive inhibition
in the form of the mean [26] or correlation [18], it presents the entire distribution of the
proactive inhibition. Third, the ALG model for proactive inhibition is entirely distinctive
from the ExG model for reactive inhibition in terms of the mean, standard deviation
and kurtosis. This result provides more evidence on the distinction between proactive
inhibition and reactive inhibition as a whole distribution. Fourth, similar to the ExG model
for reactive inhibition, the ALG model for proactive inhibition is skewed to the right and
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has a monotonically increasing hazard function. Finally, the closed form ALG model for
proactive inhibition with its associated ExG modeled components is the most plausible
option at the moment. Other non-ExG RT models for its components (e.g., Gamma, Weibull,
Lognormal, Wald and Ex-Wald) and, hence, their trial type differences do not yield to any
known closed-form distribution for proactive inhibition. This issue makes the study of their
probabilistic features difficult. This limitation is easily verifiable by repeating the proof of
Theorem 5 based on the uniqueness of moment-generating functions for other non-ExG RT
models for the trial type GORTs.

The proposed ALG model for the proactive inhibition is estimated in two different
methods. First, one may use the Bayesian (or frequentist-based) methods to fit the ExG
parametric models to their trial-type components and then estimate the four parametric
ALG model using Theorem 5, as done in Section 3.2. Second, one may subtract the trial
type GORTs and fit the ALG model directly to the differenced GORT data using Maximum
Likelihood (ML) or Expectation-Maximization (EM) algorithms [50]. Simulations of the
model follows the similar logic.

The proposed ALG model uniquely distinguishes the reactive inhibition and proactive
inhibition distribution in terms of vital distributional features. Table 4 presents an overall
comparison for proactive inhibition and reactive inhibition in terms of the ALG model
(considering ExG as its particular case):

Table 4. Comparison of proactive inhibition and reactive inhibition in terms of ALG model properties.

Inhibition Index # Parameters # Estimations Mean StD Skewness (+) Kurtosis Hazard

Proactive ∆GORT 4 2 lower higher lower platykurtic increasing
Reactive SSRT 3 1 higher lower higher leptokurtic increasing

There are some limitations in the proposed ALG model for proactive inhibition. First,
since GORTA data and GORTB data are unmatched, there is no way to calculate their
correlation quantitatively. Hence, from a quantitative perspective, checking the validity of
the assumption of independent GORTA and GORTB is difficult. Second, by its definition,
proactive inhibition takes only non-negative values, while the presented ALG model takes
negative values. Third, similar to the ExG model for reactive inhibition, the ALG model for
proactive inhibition has a monotonically increasing hazard function, preventing it from
being the best fitting model for the cases of proactive inhibition with peaked hazards.
Finally, given the calculation structure of the ALG model parameters, based on those of
ExG components, its parameters’ cognitive interpretations are highly dependent on its ExG
components inheriting their constraints.

4.2. Future Work

Future research should replicate the proposed approach in modeling the proactive
inhibition distribution in this study in different directions. This further work may include
the following perspectives: first, the assumption of independence between GORTA and
GORTB needs extra investigation and, in case of its violation, an updated model for proac-
tive inhibition distribution is plausible. Second, one model should consider peaked hazard
functions for the ALG model components to address RT data with such features. Third,
there is a need to interpret the proposed ALG distribution parameters in terms of inhibition
mechanisms in the brain and vice versa. Fourth, there is a lack of investigation comparing
the proactive inhibition distribution in terms of the usual stochastic order, the descriptive
and shape statistics across a spectrum of clinical groups such as ADHD, OCD, schizophre-
nia and drug users. Finally, similar investigations on comparing the proactive inhibition
distribution and its above key statistics are plausible in terms of the participants’ ages.
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4.3. Conclusions

In conclusion, the ALG model provides a practical description of the proactive in-
hibition distribution that takes full advantage of its ExG components fitted for the trial
type GORTs. It also offers a straightforward, computational analog of the proactive in-
hibition, comparable to the ExG model for reactive inhibition. Given the advantages of
estimating the entire distribution of proactive inhibition over former point estimations,
the researchers recommend considering the ALG model as the latest optimal choice to
describe the distribution of proactive inhibition.
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Appendix A

Appendix A.1. Proofs

This appendix presents proofs for the new results presented in Section 3.1.

Appendix A.1.1. Proof of Theorem 5

Proof. Method (1): Let ∆GORT = GORTB − GORTA where GORTB, GORTA are indepen-
dent with ExG distribution with associated parameters θB = (µB, σB, τB), θA = (µA, σA, τA),
respectively. Then, by Definitions 1 and 2 and Theorem 1, it follows that:

m∆GORT(t) = mGORTB(t)×mGORTA(−t)

= mExG(θB)
(t)×mExG(θA)

(−t)

= ((1− tτB)
−1exp(µB.t +

σ2
B

2
t2))× ((1 + tτA)

−1exp(−µA.t +
σ2

A
2

t2))

= ((1− tτB)(1 + tτA))
−1exp((µB − µA).t +

σ2
B + σ2

A
2

t2)

= (1 + (τA − τB)t− τAτB.t2)−1exp((µB − µA).t +
σ2

B + σ2
A

2
t2)

= mAL(τA ,τB)
(t)×mN(µB−µA ,σ2

B+σ2
A)
(t) : −τ−1

A < t < τ−1
B .

Accordingly, by Theorem 2 it follows that

∆GORT d
= AL(τA, τB)⊕ N(µB − µA, σ2

B + σ2
A)

d
= ALG(τA, τB, µB − µA, (σ2

B + σ2
A)

1/2).

Method (2): Using Definitions 1–3 and Equation (12), it follows that

∆GORT d
= GORTB 	 GORTA
d
= ExG(µB, σB, τB)	 ExG(µA, σA, τA)

d
= (N(µB, σ2

B)⊕ Exp(τB))	 (N(µA, σ2
A)⊕ Exp(τA))

d
= (N(µB, σ2

B)	 N(µA, σ2
A))⊕ (Exp(τB)	 Exp(τA)

d
= N(µB − µA, σ2

B + σ2
A)⊕ AL(τA, τB)

d
= AL(τA, τB)⊕ N(µB − µA, σ2

B + σ2
A)

d
= ALG(τA, τB, µB − µA, (σ2

B + σ2
A)

1/2).

Uniqueness: Let ALG(α
(i)
1 , α

(i)
2 , µ(i), σ(i)), (1 ≤ i ≤ 2) be two ALG parametric models

for proactive inhibition in the SST. By construction process, there are two vector of parame-
ters (µ(i)

A , σ
(i)
A , τ

(i)
A , µ

(i)
B , σ

(i)
B , τ

(i)
B ), (1 ≤ i ≤ 2) associated with type-A ExG GORT and type-B

ExG GORT, respectively, such that

α
(i)
1 = τ

(i)
A ,

α
(i)
2 = τ

(i)
B ,

µ(i) = µ
(i)
B − µ

(i)
A ,

σ(i) = (σ
(i)
B

2
+ σ

(i)
A

2
)

1
2 , (1 ≤ i ≤ 2).
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However, by uniqueness of the type-A and type-B component ExG parameters fitted
for type-A cluster GORT and type-B cluster GORT, respectively, we have

µ
(i)
A = µA, σ

(i)
A = σA, τ

(i)
A = τA,

µ
(i)
B = µB, σ

(i)
B = σB, τ

(i)
B = τB, (1 ≤ i ≤ 2).

Hence, as their functions (e.g., f1(x) = x, f2(x) = x, f3(x, y) = x− y, and f4(x, y) =
(x2 + y2)

1
2 ), the ALG parameters are equal:

α
(i)
1 = τA,

α
(i)
2 = τB,

µ(i) = µB − µA,

σ(i) = (σB
2 + σA

2)
1
2 , (1 ≤ i ≤ 2).

Consequently, the fitting ALG model for the proactive inhibition is unique in the
SST.

Appendix A.1.2. Proof of Theorem 6

Proof. By Definition 2 and Theorem 1 for the nth cumulant of the ALG distribution with
four parameters (α1, α2, µ, σ), we have

κ
ALG(α1,α2,µ,σ)
n = κ

AL(α1,α2)
n + κ

N(µ,σ2)
n

= ((n− 1)!((−α1)
n + αn

2 )) + (1(n=1)(n)µ + 1(n=2)(n)σ
2) : 1 ≤ n.

Consequently, the descriptive and the shape statistics for the ALG distribution with
four parameters (α1, α2, µ, σ), it follows that

Mean E(ALG) = α2 − α1 + µ,

Variance Var(ALG) = α2
1 + α2

2 + σ2,

Skewness γALG =
2(α3

2 − α3
1)

(α2
1 + α2

2 + σ2)3/2
,

Kurtosis κALG =
6(α4

1 + α4
2)

(α2
1 + α2

2 + σ2)2
.

Finally, the assertion follows for α1 = τA, α2 = τB, µ = µB− µA, and σ2 = σ2
B + σ2

A.

Appendix A.1.3. Proof of Theorem 7

Proof. Given a four parametric ALG(α1, α2, µ, σ) for the proactive inhibition, it can be
written in the form

ALG(α1, α2, µ, σ) = µ⊕ σN(0, 1)⊕ α2Exp2(1)	 α1Exp1(1)

where the random variables N(0, 1), Expi(1) ∼ Exp(1)(i = 1, 2) are mutually independent.
Accordingly, there are uncountably many solutions (µA, σA, τA, µB, σB, τB) for the following
equations:

τA = α1, τB = α2, µB − µA = µ, σ2
B + σ2

A = σ2.

Appendix A.1.4. Proof of Theorem 8

Proof. It is sufficient to prove the first and the last properties.
To prove the first property, let α1 = τA, α2 = τB, µ = µB − µA, and σ2 = σ2

B + σ2
A. Then,
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consider the unimodal distributions X d
= AL(α1, α2) and Y d

= N(µ, σ2). Since FY(y) =

ΦZ(
y−µ

σ ) is continuous, and the sets A = {y| log(F
′
Y(y))is concave}, B = {y|F′Y(y) = 0}

have empty intersection, by an application of Ibragimov’s Theorem 1 [51], Y has strong
unimodal distribution. Hence, its convolution with any unimodal distribution such as X is

unimodal. However, X⊕Y d
= Y⊕ X = ALG(α1, α2, µ, σ2), completing the proof.

To prove the last property, referring to Equation (13), since

(1−Φ(

√
σ2

B + σ2
A

τB
− t− (µB − µA)√

σ2
B + σ2

A

)) → 1

e
(

√
σ2

B+σ2
A

2τA
(

√
σ2

B+σ2
A

τA
+2 t−(µB−µA)√

σ2
B+σ2

A
))

× (1−Φ(

√
σ2

B + σ2
A

τA
+

t− (µB − µA)√
σ2

B + σ2
A

)) → 0

as t→ +∞, (A1)

it follows that:

f∆GORT(t) ∼
1

τA + τB
e
(

√
σ2

B+σ2
A

2τB
(

√
σ2

B+σ2
A

τB
−2 t−(µB−µA)√

σ2
B+σ2

A
))

=
exp( σ2

B+σ2
A

2τ2
B

+ µB−µA
τB

)

τA/τB + 1
× exp(−t/τB)

τB

= K(µA, µB, σA, σB, τA, τB)× fExp(1/τB)
(t) as t→ +∞. (A2)

Appendix A.1.5. Proof of Theorem 9

Proof. Let, ∆GORT =d ALG(α1, α2, µ, σ) =d AL(α1, α2)⊕ N(µ, σ2) where

(α1, α2, µ, σ2) = (τA, τB, µB − µA, σ2
A + σ2

B).

For, X =d AL(α1, α2), Y =d N(µ, σ2), and two applications of Theorem 3 for the
following convex functions show that both components of the ALG distribution have
increasing hazard functions:

−ln( fX(t)) = ln(α1 + α2)× (
−t
α1

)1(−∞,0] +
t

α2
1[0,∞)(t)) −∞ < t < ∞,

−ln( fY(t)) = ln(
√

2πσ) +
(t− µ)2

2σ2 . −∞ < t < ∞

Accordingly, by an application of the Theorem 4, the plausible result follows.

Appendix A.2. ExG Cluster Type Models Parameters

This appendix presents IBPA parameter estimations for cluster type ExG model.
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Table A1. Mean posterior Ex-Gaussian parameters estimations across trial types by IBPA (n = 44).

µ− Parameter σ− Parameter τ− Parameter

# µS µA µB σS σA σB τS τA τB

1 357 350 372 32 35 14 86 96 68
2 637 599 732 175 170 132 47 48 68
3 469 484 411 60 57 42 76 73 111
4 597 567 631 163 165 96 66 69 149
5 640 618 608 156 133 58 47 62 121
6 452 431 469 108 106 64 66 65 135
7 689 668 664 136 130 146 47 60 115
8 665 609 660 145 91 237 51 103 120
9 543 484 640 166 151 118 120 147 157
10 470 468 483 56 59 52 98 87 156
11 414 399 597 46 37 118 177 168 80
12 557 534 597 132 128 146 53 58 123
13 550 538 564 137 133 98 55 38 190
14 319 318 365 307 295 370 170 137 264
15 421 416 437 61 56 90 138 142 149
16 358 342 389 61 57 61 48 56 57
17 594 599 561 130 130 133 78 62 196
18 467 397 747 229 190 299 127 131 159
19 426 426 424 67 75 50 102 103 110
20 423 449 504 62 74 129 122 65 169
21 521 519 487 144 157 96 91 97 125
22 397 346 463 87 58 110 94 132 101
23 540 525 588 80 78 79 94 88 128
24 592 571 529 176 136 304 46 69 180
25 577 459 602 165 70 244 69 181 124
26 562 555 694 79 75 160 172 154 148
27 446 436 541 71 60 166 240 236 233
28 486 476 629 82 64 196 172 155 151
29 414 363 391 133 66 213 62 115 111
30 486 484 541 87 86 146 141 127 181
31 546 502 656 137 118 157 90 100 137
32 436 421 462 107 109 90 72 81 88
33 452 454 458 38 46 40 156 156 165
34 404 422 408 105 109 42 95 72 92
35 470 549 595 230 200 298 207 171 136
36 429 400 448 116 139 95 158 163 245
37 521 497 507 89 130 68 112 125 222
38 284 271 321 40 37 53 100 108 91
39 424 432 416 57 55 87 70 52 131
40 419 418 476 52 53 196 145 148 105
41 533 537 517 105 151 93 72 35 159
42 388 445 497 53 145 206 145 57 116
43 506 467 539 97 82 100 66 96 78
44 842 824 822 175 341 165 34 95 320

Notes: µS, σS, τS : ExG GORT parameters for single cluster SST data; µA, σA, τA : ExG GORT parameters for
type-A cluster SST data; µB, σB, τB : ExG GORT parameters for type-B cluster SST data; IBPA: #Chains = 3;
Simulations = 20,000; Burn-in = 5000 (for all parameters).

Appendix A.3. Uncertainty in Parameter Estimates

This appendix presents an example of the inherited Bayesian sampling procedure
uncertainty and its impact on the posterior ALG parameter estimations and, consequently,
the entire ALG distribution.
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Figure A1. (a) Spectrum for ALG density; (b) spectrum for ALG cumulative density function;
(c) spectrum for ALG hazard function(case #1 in Table A1 Appendix A.2; n = 13).

References
1. Matzke, D.; Verbrugen, F.; Logan, G.D. The title of the cited contribution. In Steven Handbook of Experimental Psychology and

Cognitive Neuroscience, 4th ed.; Volume 5. Methodology; Wixted, J.T., Ed.; John Wiley & Sons. Inc: Hoboken, NJ, USA, 2018.
2. Aron, A.R. From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biol.

Psychiatry 2011, 69, e55–e68. [CrossRef] [PubMed]
3. Johnston, S.; Dinoske, A.; Smith, J.; Bang, R.J. The Development of Stop Signal and Go/No-go Response Inhibition in Children

Aged 7–12 years: Performance and Event Related Potential Indices. Int. J. Psychol. 2007, 63, 25–38. [CrossRef] [PubMed]
4. Chevrier, A.; Schachar, R.J. BOLD differences normally attributed to inhibitory control predict symptoms, not task-directed

inhibitory control in ADHD. J. Neurodev. Disord. 2020, 12, 1–12. [CrossRef]

http://doi.org/10.1016/j.biopsych.2010.07.024
http://www.ncbi.nlm.nih.gov/pubmed/20932513
http://dx.doi.org/10.1016/j.ijpsycho.2006.07.001
http://www.ncbi.nlm.nih.gov/pubmed/16919346
http://dx.doi.org/10.1186/s11689-020-09311-8


Brain Sci. 2022, 12, 730 22 of 23

5. Ollman, R.T.; Billington, M.J. The Deadline Model for Simple Reaction Times. Cogn. Psychol. 1972, 3, 311–336. [CrossRef]
6. Ollman, R.T. Simple Reactions with Random Countermanding of the go Signal. In Attention and Performance IV; Kornblum, S., Ed.;

Academic Press: New York, NY, USA, 1973.
7. Logan, G.D. Attention, Automaticity, and the Ability to Stop a Speeded Choice Response. In Attention and Performance IX; Long, J.,

Baddeley, A.D., Eds.; Erlbaum: Hillsdale, NJ, USA, 1981.
8. Boucher, L.; Palmeri, T.J.; Logan, G.D.; Schall, J.D. Inhibitory Control in Mind and Brain: An Interactive Race Model of

Countermanding Saccades. Psychol. Rev. 2007, 114, 376–397. [CrossRef]
9. Hans, D.P.; Schall, J.D. Countermanding Saccades in Macaque. Vis. Neurosci. 1995, 12, 929–937. [CrossRef]
10. Bissett, P.G.; Jones, H.M.; Poldrack, R.A.; Logan, G.D. Severe violations of independence in response inhibition tasks. Sci. Adv.

2021, 7, eabf4355. [CrossRef]
11. Van Rooji, S.J.H.; Rademaker, A.R.; Kennis, M.; Vink, M.; Kahn, R.S.; Geuze, E. Impaired right inferior frontal gyrus-response to

contextual cues in male veterans with PTSD during response inhibition. J. Psychiatry Neurosci. 2014, 35, 330–338. [CrossRef]
12. Zandbelt, B.B.; Van Buuren, M.; Kahn, R.S.; Vink, M. Reduced Proactive Inhibition in Schizophrenia is related to Corticotriatal

dysfunction and poor working memory. Biol. Psychiatry 2011, 70, 1151–1158. [CrossRef]
13. Vink, M.; Zandbelt, B.B.; Gladwin, T.; Hillegers, M.; Hoogendam, J.M.; Van der Wildenberg, W.P.M.; lDu Plessis, S.; Kahn, R.S.

Frontostriatal Activity and Connectivity Increase During Proactive Inhibition Across Adolescence and Early Adulthood. Hum.
Brain Mapp. 2014, 35, 4415–4427. [CrossRef]

14. Bartholly, S.; Rennalls, S. J.; Jacques, C.; Darby, H.; Campbell, I.C.; Schmidt, U.; Odaly, O.G. Proactive and reactive inhibitory
control in eating disorders. Psychiatry Res. 2017, 255, 432–440. [CrossRef] [PubMed]

15. Brevers, D.; Voubusson, E.; Dejonghe, F.; Dutrieux, J.; Detiea, M.; Cheron, G.; Verbanck, D.; Foucart, J. Proactive and Reactive
Motor Inhibition in Top Athletes versus Nonathletes. Percept. Mot. Skills 2018, 125, 289–312. [CrossRef] [PubMed]

16. Castro-Meneses, L.J.; Johnston, B.W.; Sowman, D.F. The effects of impulsivity and proactive inhibition on reactive inhibition and
go process: Insights from vocal and manual stop signal tasks. Front. Hum. Neurosci. 2018, 9, 529. [CrossRef] [PubMed]

17. Dicaprio, V.; Modugno, N.; Mancini, C.; Olivia, E.; Mirabella, G. Early Stage Parkinson’s Patients Show Selective Impairment in
Reactive but not Proactive Inhibition. Mov. Disord. 2020, 35, 409–418. [CrossRef]

18. Ide, J.S.; Shenoy, P.; Yu, A.J.; Li, C.S. Bayesian Prediction and Evaluation in the Anterior Cingulate Cortex. J. Neurosci. 2013, 33,
2039–2047. [CrossRef] [PubMed]

19. Matzke, D.; Dolan, C.V.; Logan, G.D.; Brown, S.D.; Wagenmakers, E.J. Bayesian Parametric Estimation of Stop Signal Reaction
Time Distributions. J. Exp. Psychol. Gen. 2013, 142, 1047–1073. [CrossRef]

20. Matzke, D.; Love, J.; Wiecki, T.V.; Brown, S.D.; Logan, G.D.; Wagenmakers, E.J. Release the BEESTS: Bayesian Estimation of
Ex-Gaussian Stop Signal Reaction Time Distributions. Front. Psychol. 2013, 4, 918. [CrossRef]

21. Martine Prado, M.; Fermin, D. A Theory of Reaction Times Distributions. Unpublished Work 2008. Available online: http:
cggprints.org/6310 (accessed on 15 December 2020).

22. Ramautar, J.R.; Kok, A.; Rielderinkhof, K.R. Effects of Stop Signal Probability in the Stop Signal Paradigm: The N2/P3 Complex
further validated. Brain Cogn. 2004, 56, 234–252. [CrossRef]

23. Schwarz, W. The Ex-Wald Distribution as a Descriptive Model of Reaction Time Data. Behav. Res. Methods, Instruments Comput.
2001, 33, 457–469. [CrossRef]

24. Soltanifar, M.; Dupuis, A.; Schachar, R.; Escobar, M. A frequentist mixture modelling of stop signal reaction times. Biostat.
Epidemiol. 2019, 3, 90–108. [CrossRef]

25. Soltanifar, M.; Escobar, M.; Dupuis, A.; Schachar, R. A Bayesian Mixture Modelling of Stop Signal Reaction Time Distributions:
The Second Contextual Solution for the Problem of Aftereffects of Inhibition on SSRT Estimations. Brain Sci. 2021, 11, 1102.
[CrossRef]

26. Soltanifar, M.; Knight, K.; Dupuis, A.; Schachar, R.; Escobar, M. A Time Series-Based Point Estimation of Stop Signal Reaction
Times: More Evidence on the Role of Reactive Inhibition-Proactive Inhibition Interplay on the SSRT Estimations. Brain Sci. 2020,
10, 598. [CrossRef] [PubMed]

27. Rouder, J.N. Are Un-shifted Distributional Models Appropriate for Response Times? Psychometrica 2005, 70, 377–381. [CrossRef]
28. Zandbelt, B.B.; Bloemendaal, M.; Neggers, S.F.W.; Kahn, R.S.; Vink, M. Expectations and Variations: Declining the Neural

Network of Proactive Inhibitory Control. Hum. Brain Mapp. 2013, 34, 2015–2024. [CrossRef] [PubMed]
29. Colonius, H. A Note on the Stop Signal Paradigm, or How to Observe the Unobservable. Psychol. Rev. 1990, 97, 309–312.

[CrossRef]
30. Aron, A.R.; Robins, T.W.; Poldrack, R.A. Inhibition and the right inferior frontal cortex. Trends Cogn. Sci. 2004, 8, 170–177.

[CrossRef] [PubMed]
31. Chevrier, A.; Cheyne, D.; Graham, S.; Schachar, R. Dissociating Two Stages of Preparation in the Stop Signal Task Using fMRI.

PLoS ONE Public Libr. Sci. 2015, 10, e0130992. [CrossRef]
32. Chevrier, A.; Noseworthy, M.D.; Schachar, R. Dissociation of response inhibition and performance monitoring in the stop signal

task using event-related fMRI. Hum. Brain Mapp. 2007, 28, 1347–1358. [CrossRef]
33. Chikazoe, J.; Jimura, K.; Hirose, S.; Yamashita, K.; Miyashita, Y.; Konishi, S. Preparation to inhibit a response complements

response inhibition during performance of a stop-signal task. J. Neurosci. 2009, 29, 15870–15877. [CrossRef]

http://dx.doi.org/10.1016/0010-0285(72)90010-2
http://dx.doi.org/10.1037/0033-295X.114.2.376
http://dx.doi.org/10.1017/S0952523800009482
http://dx.doi.org/10.1126/sciadv.abf4355
http://dx.doi.org/10.1503/jpn.130223
http://dx.doi.org/10.1016/j.biopsych.2011.07.028
http://dx.doi.org/10.1002/hbm.22483
http://dx.doi.org/10.1016/j.psychres.2017.06.073
http://www.ncbi.nlm.nih.gov/pubmed/28672226
http://dx.doi.org/10.1177/0031512517751751
http://www.ncbi.nlm.nih.gov/pubmed/29310525
http://dx.doi.org/10.3389/fnhum.2015.00529
http://www.ncbi.nlm.nih.gov/pubmed/26500518
http://dx.doi.org/10.1002/mds.27920
http://dx.doi.org/10.1523/JNEUROSCI.2201-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23365241
http://dx.doi.org/10.1037/a0030543
http://dx.doi.org/10.3389/fpsyg.2013.00918
http:cggprints.org/6310
http:cggprints.org/6310
http://dx.doi.org/10.1016/j.bandc.2004.07.002
http://dx.doi.org/10.3758/BF03195403
http://dx.doi.org/10.1080/24709360.2019.1660110
http://dx.doi.org/10.3390/brainsci11081102
http://dx.doi.org/10.3390/brainsci10090598
http://www.ncbi.nlm.nih.gov/pubmed/32872438
http://dx.doi.org/10.1007/s11336-005-1297-7
http://dx.doi.org/10.1002/hbm.22047
http://www.ncbi.nlm.nih.gov/pubmed/22359406
http://dx.doi.org/10.1037/0033-295X.97.2.309
http://dx.doi.org/10.1016/j.tics.2004.02.010
http://www.ncbi.nlm.nih.gov/pubmed/15050513
http://dx.doi.org/10.1371/journal.pone.0130992
http://dx.doi.org/10.1002/hbm.20355
http://dx.doi.org/10.1523/JNEUROSCI.3645-09.2009


Brain Sci. 2022, 12, 730 23 of 23

34. Chevrier, A.; Bhaijiwala, M.; Lipszyc, J.; Cheyne, D.; Graham, S.; Schachar, R. Disrupted reinforcement learning during post-error
slowing in ADHD. PLoS ONE 2019, 14, e0206780. [CrossRef]

35. Wang, W.; Hu, S.; Ide, J.S.; Zhornitsky, S.; Zhang, S.; Yu, A.J.; Li, C.R. Motor Preparation Disrupts Proactive Control in the Stop
Signal Task. Front. Hum. Neurosci 2018, 12, 151. [CrossRef] [PubMed]

36. Mayse, J.D.; Nelson, G.M.; Park, P.; Gallagher, M.; Lin, S.C. Proactive and reactive inhibitory control in rats. Front. Neurosci 2014,
8, 104. [CrossRef] [PubMed]

37. Rousselet, G.A.; Wilcox, R.R. Reaction Times and Other Skewed Distributions: Problems with the Mean and Median. Meta Psychol.
2020, 4, 1630. [CrossRef]

38. Heathcote, A. RTSYS: A DOS Application for the Analysis of Reaction Times Data. Behav. Res. Methods Instrum. Comput. 1996, 28,
427–445. [CrossRef]

39. Kotz, S.; Kozubowski, T.J.; Podgorski, K. The Laplace Distribution and Generalizations: A Revisit with Applications to Communications,
Economics, Engineering and Finance; Birkhauser: Boston, MA, USA, 2001.

40. Amini, Z.; Rabbani, H. Letter to the editor: Correction to “The Normal-Laplace distribution and its relatives”. Commun. Stat.
Theory Methods 2017, 46, 2076–2078. [CrossRef]

41. Reed, W. The Normal-Laplace distribution and its relatives. In Advances in Distribution Theory, Order Statistics, and Inference
(Statistics for Industry and Technology); Balakrishnan, N., Castillo, E., Sarabia Algeria, J.M., Eds.; Birkhäuser: Boston, MA, USA,
2006; pp. 61–73.

42. Evans, M.J.; Rosenthal, J.S. Probability and Statistics: The Science of Uncertainty, 2nd ed.; W. H. Freeman and Company: New York,
NY, USA, 2010.

43. Barlow, R.E.; Marshall, A.W.; Proschan, F. Properties of Probability Distributions with Monotone Hazard Rate. Ann. Math. Stat.
1966, 37, 1574–1592. [CrossRef]

44. Luce, R.D. Response Times: Their Role in Inferring Elementary Mental Organizations; Oxford University Press: New York, NY, USA,
1986.

45. Cimbala, J.; Cengel, Y. Essential of Fluid Mechanics: Fundamentals and Applications: 7-2 Dimensional Homogeneity; McGraw-Hill:
New York, NY, USA, 2006; p. 203.

46. Colonius, H. An Invitation to Coupling and Copulas: With Applications to Multisensory Modelling. J. Math. Psychol. 2016, 74,
2–10. [CrossRef]

47. van Ravenzwaaij, D.; Cassey, P.; Brown, S.D. A Simple Introduction to Markov Chain Monte Carlo Sampling. Psychon. Bull. Rev.
2016, 25, 143–154. [CrossRef]

48. Crosbie, J.; Arnold, P.; Peterson, A.D.; Swanson, J.; Dupuis, A.; Li, X.; Shan, J.; Goodale, T.; Tam, C.; Strug, L.J. Response Inhibition
and ADHD Traits: Correlates and heritability in a Community Sample. J. Abnorm. Child Psychol. 2013, 41, 497–597. [CrossRef]

49. Signorell, A.; Aho, K.; Alfons, A.; Andregg, N.; Aragon, T.; Arachchige, C. DescTools: Tools for Descriptive Statistics. R
Foundation for Statistical Computing, R Package Version 0.99.38; Vienna, Austria, 2020. Available online: http://www.R-project.
org/package=DescTools (accessed on 1 January 2021).

50. Reed, W.J.; Jorgensen, M. The Double Pareto-lognormal distribution-A New Parametric Model for Size Distributions. Commun.
Stat. Theory Methods 2004, 33, 1733–1753. [CrossRef]

51. Ibragimov, I.A. On the Composition of Unimodal Distributions. Theory Probab. Appl. 1956, 1, 255–260. [CrossRef]

http://dx.doi.org/10.1371/journal.pone.0206780
http://dx.doi.org/10.3389/fnhum.2018.00151
http://www.ncbi.nlm.nih.gov/pubmed/29780308
http://dx.doi.org/10.3389/fnins.2014.00104
http://www.ncbi.nlm.nih.gov/pubmed/24847204
http://dx.doi.org/10.15626/MP.2019.1630
http://dx.doi.org/10.3758/BF03200523
http://dx.doi.org/10.1080/03610926.2015.1040510
http://dx.doi.org/10.1214/aoms/1177699149
http://dx.doi.org/10.1016/j.jmp.2016.02.004
http://dx.doi.org/10.3758/s13423-016-1015-8
http://dx.doi.org/10.1007/s10802-012-9693-9
http://www.R-project.org/package=DescTools
http://www.R-project.org/package=DescTools
http://dx.doi.org/10.1081/STA-120037438
http://dx.doi.org/10.1137/1101021

	Introduction
	Stop Signal Task and the Race Model
	Components of Inhibition
	Estimations of Proactive Inhibition
	Constant Index
	Motivation

	Study Outline

	Mathematical Preliminaries
	Preliminaries on Component Distributions
	Stop Signal Task Probability Space and Random Variables
	Proactive Inhibition Index 

	Results
	Mathematical Analysis
	The Proactive Inhibition Distribution and its Parameters 
	The Proactive Inhibition's Key ALG Distributional Properties 

	The Empirical Example
	Materials & Methods
	Statistical Analysis
	The ALG Model for Proactive Inhibition
	Proactive Inhibition ALG Model versus Reactive Inhibition ExG Model


	Discussion
	Present Work
	Future Work
	Conclusions

	
	Proofs
	Proof of Theorem 5 
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8
	Proof of Theorem 9

	ExG Cluster Type Models Parameters
	Uncertainty in Parameter Estimates

	References

