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MOTIVATION Enumeration of Plasmodium falciparum asexual blood stages is fundamental to determining
the potency of antimalarial compounds. Differentiation and quantification of asexual stages sheds light on
what parasite processes these antimalarial compounds target. Light microscopy remains the mainstay for
differentiating asexual stages, but this process is time consuming, requires extensive training, and can be
variable between microscopists. To streamline this process, we developed a high-content imaging- and
machine learning-based analysis that builds upon previous reports of parasite quantification.14 Here, our
added contribution is to automatically discern and enumerate P. falciparum asexual blood stages and sub-
cellular organelles within malaria parasites. We demonstrate that this method can robustly classify asexual
stages and be further utilized to quantify stage-specific phenotypes and can enumerate P. falciparum

nuclei.
SUMMARY
In 2021, Plasmodium falciparum was responsible for 619,000 reported malaria-related deaths. Resistance
has been detected to every clinically used antimalarial, urging the development of novel antimalarials with
uncompromised mechanisms of actions. High-content imaging allows researchers to collect and quantify
numerous phenotypic properties at the single-cell level, and machine learning-based approaches enable
automated classification and clustering of cell populations. By combining these technologies, we developed
a method capable of robustly differentiating and quantifying P. falciparum asexual blood stages. These
phenotypic properties also allow for the quantification of changes in parasite morphology. Here, we demon-
strate that our analysis can be used to quantify schizont nuclei, a phenotype that previously had to be
enumerated manually. By monitoring stage progression and quantifying parasite phenotypes, our method
can discern stage specificity of new compounds, thus providing insight into the compound’s mode of action.
INTRODUCTION

Plasmodium, the causative agent of malaria, is an obligate

intracellular parasite that was responsible for a reported 247

million cases and 619,000 deaths in 2021.1 Of the five species

of Plasmodium that cause disease in humans, Plasmodium fal-

ciparum is both the most prevalent and the deadliest, respon-

sible for over 90% of all malaria-related deaths.1 Asexual red

blood cell (RBC) stages of Plasmodium are responsible for clin-

ical disease symptoms such as the hallmark characteristic of

periodic fevers and chills. Thus, patients are prompted to

seek treatment during this period of infection. Antimalarials

that target the asexual RBC stages reduce parasitemia within

the patient, leading to alleviation of symptoms. The 48-h para-

site replication cycle of intraerythrocytic stages can be subdi-
Cel
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vided into three stages based on morphology: rings, trophozo-

ites, and schizonts. At the ring stage (0–23 h post-invasion

[hpi]), parasite organelles are densely packed in a rim around

the parasite’s periphery, forming a ring-like shape with a single

nucleus.2 At the trophozoite stage (24–39 hpi), parasites in-

crease in volume, and hemoglobin ingestion increases dramat-

ically, leading to increased hemozoin formation.2 This allows

trophozoites to be characterized by their larger size, visualiza-

tion of hemozoin, and a single nucleus. At the schizont stage

(40–48 hpi), parasites continue to increase in size and undergo

multiple rounds of DNA replication and nuclear division, result-

ing in a larger parasite containing multiple nuclei.2 P. falciparum

has developed resistance to all clinically used antimalarials,

including artemisinin, the cornerstone of WHO-recommended

first-line therapies for uncomplicated falciparum malaria.1
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Assays capable of rapidly assessing parasitemia, differenti-

ating asexual stages, and quantifying parasite morphology

will lend traction to the development of new antimalarials and

provide insight into their mode of action to avoid cross-resis-

tance to existing drugs.

To date, light microscopy is the most widely used method

to examine parasite morphology and determine the stage of

asexual parasites, especially in academic laboratories and in

the field. This method is simple and inexpensive but time

consuming,3 leading to the development of semi-automated

methods for parasitemia quantification including the [3H] hypo-

xanthine incorporation assay, which measures parasite meta-

bolic activity4; plate reader assays, which use fluorescent indica-

tors to stain for parasite DNA5–8 or Nitro Blue tetrazolium chloride

for plasmodial lactate dehydrogenase (pLDH) activity9; ELISA

assays for pLDH10 or histidine-rich protein 2 (HRP2)11; and

flow cytometry assays.3,12 The technological simplicity, scalabil-

ity, and rapid nature of plate reader assays prompted develop-

ment of high-throughput adaptations that have been used to

screen millions of compounds for antimalarial activity.7,9,13 How-

ever, these assays are limited in their capacity to monitor para-

site phenotypes and quantify the proportion of each asexual

stage. High-content imaging provides the best of both worlds,

rapidly collecting a multitude of properties that can be used to

quantify cells and cell phenotypes.

In P. falciparum, high-content imaging was first used to

improve the sensitivity of traditional plate reader assays by quan-

tifying individual parasites by DAPI-stained DNA puncta rather

than total fluorescence intensity.14,7 To date, this method has

been used to screen millions of compounds for antimalarial ac-

tivity in high-throughput format.14,15–17 The sensitivity of this

assay was further improved by using high-content imaging to

quantify RBCs and to distinguish viable early ring, ring, tropho-

zoite, and schizont stages in high-throughput format.18 RBCs

were identified based on their geometric structure, and asexual

stages were differentiated based on the number of DNA signals,

number ofmitochondrial signals, area between DNA signals, and

distance between DNA signals.18

Parasite phenotypes have also been visualized and quantified

with high-content screens using calcium-binding stains coupled

with imaging flow cytometry-based assays19–21 and RNA-bind-

ing stains coupled with automated fluorescence microscopy-

based assays.22 Fluo-4 has high affinity for Ca2+ in the parasite’s

digestive vacuole (DV), and disruption of the DV results in leaking

of Ca2+ into the parasite’s cytoplasm. By measuring the area of

Fluo-4 staining in infected RBCs (iRBCs), researchers were

able to screen 2,885 compounds for their ability to disrupt the

parasite DV in a 96-well plate format.21 RNA stains serve as a

marker for the parasite’s cytoplasm and can be used to monitor

parasite size, shape, and transcriptional activity,22 allowing

researchers to screen novel marine-derived compounds for

their ability to induce phenotypic defects based on staining

intensity and shape.23 RNA staining has also been used in

high-throughput format to screen a library of compounds for ga-

metocidal and gamete inhibition activity based on the ability of

banana-shaped gametocyte stages to form circular-shaped

gametes in the presence of xanthurenic acid.24 In addition,

high-content imaging has been utilized in high-throughput
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format to screen compounds for their gametocidal activity using

GFP-luciferase-expressing parasites,25 mitochondrial stains as

a viability marker,26,27 and antibodies against the gamete-spe-

cific protein Pfs25.28 Further, high-content imaging methods

have been utilized in high-throughput format to screen com-

pounds that block liver stage infection, kill liver stage schizonts,

and/or kill dormant hypnozoites by identifying liver stages based

on size, shape, and intensity using fluorescent and immunofluo-

rescent staining29–32 and by distinguishing actively replicating

schizonts from dormant hypnozoites using alkyne-bearing pu-

rine nucleosides.33

Machine learning is a powerful tool to analyze the phenotypic

data generated from high-content imaging. Previously, machine

learning has been paired with high-content imaging to differen-

tiate drug-sensitive or -resistant HCC4011 cancer cells in a

heterologous population34 and to study host-pathogen interac-

tions with Toxoplasma gondii and Salmonella enterica.35 More

recently, machine learning has been applied to transgenic

P. falciparum parasites expressing cytoplasmic localized GFP

in order to differentiate asexual stages and predict the mode of

action of new drugs by clustering drug-treated parasites based

onmorphological phenotypes.36 Here, we report a method using

machine learning capabilities on high-content imaging to (1)

identify and enumerate P. falciparum-infected RBCs, (2) robustly

distinguish and quantify P. falciparum asexual blood stages, and

(3) enumerate nuclei within P. falciparum schizonts. Since this

method does not require genetically modified parasites, it can

be applied to any P. falciparum strain. Leveraging the power of

machine learning, we report a method that can determine the

stage sensitivity of antimalarials and quantify stage-specific

parasite morphological phenotypes.

RESULTS

High-content imaging on the Operetta CLS was paired with

Harmony High-Content Imaging and Analysis software with

PhenoLOGIC (v.4.9) to quantify parasitemia, differentiate

P. falciparum asexual stages, and enumerate nuclei within

P. falciparum schizonts. In this work, we use Harmony built-in al-

gorithms (these will be named ‘‘method xx,’’ for example) and

software capabilities (e.g., the ability to distinguish properties)

as building blocks to create two different analyses: (1) to quantify

parasitemia with a 203 air objective and (2) to quantify asexual

blood stages and parasite nuclei with a 403 water objective.

Bright field was used for RBC quantification at 203magnifica-

tion, while CellMask Orange plasma membrane stain (hereon

referred to as Cell Mask) was used for RBC quantification at

403 magnification. Since mature human RBCs lack nuclei

and mitochondria,37 the cell-permeable stains Hoechst 33342

(hereon referred to as Hoechst) and MitoTracker Deep Red

(hereon referred to as MDR) were used to identify parasites by

staining for parasite DNA and mitochondrial membrane poten-

tial, respectively. MDR, which stains positively in actively respi-

rating parasites, was included to differentiate live from dead par-

asites so that only viable parasites were included in

quantifications. To identify asexual stages and visualize parasite

morphology at 403 magnification, the RNA stain SYTO

RNASelect (hereon referred to as SYTO) was utilized to discern
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Hoechst MDR SYTO Bright Field Merge Figure 1. Fluorescent asexual stages

Cells were stained with Hoechst 33342 for parasite

nuclei, MitoTracker Deep Red for functional mito-

chondria, SYTO RNASelect for parasite RNA, and

CellMask Orange plasma membrane stain for red

blood cell plasmamembrane and then imaged on an

Operetta CLS with a 403 water objective. Shown

are representative images from top to bottom of red

blood cells infected with a single ring, multiple rings,

a single trophozoite, multiple trophozoites, a single

schizont, or multiple schizonts. In the merged panel,

Hoechst, MitoTracker Deep Red, SYTO RNASelect,

and CellMask Orange plasma membrane stain are

false colored and indicated in blue, red, green, and

purple, respectively. Scale bar: 5 mm.
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parasite cytoplasm.22,23 For 203 imaging, cells can be imaged

live or fixed using an aldehyde-based fixative. For 403 imaging,

cells should only be imaged live, as fixatives for MDR and SYTO

are incompatible.

Selecting RBCs using a 203 air objective
Our first objective was to identify P. falciparum-infected RBCs,

which can be singly or multiply infected with ring-stage (Figure 1,

panels in rows 1 and 2), trophozoite-stage (Figure 1, panels in

rows 3 and 4), or schizont-stage (Figure 1, panels in rows 5 and

6) parasites. To quantify parasitemia, which is the total number

of parasites per total number of RBCs, we first sought to identify

RBCs. A 203 air objective was used to capture a single plane per

channel. The depth of focus for the 203 air objective is 8 mm. This

is sufficient to capture the entire parasite and allow for variability

in focus height between fields of view. The 203 water objective

was not chosen since the depth of focus is only 1.8 mm, the in-

crease in resolution (0.79 mm for 203 air vs. 0.66 mm for 203wa-

ter)wasnot sufficient todifferentiate asexual parasite stages, and

imaging time as well as data file size would have significantly

increased. The workflow for the 203 air analysis is provided (Fig-

ure 2A). For the description of the workflow for 203 image acqui-

sition and analyses, ‘‘step 1, 2, etc.’’ refer to the detailed steps,

which can be found in method details, Operetta 203 image

acquisition and analysis. RBCs were visualized using the

bright-field channel (Figure 2B). RBCs are biconcave,38 which re-
Cell
sulted in the appearance of two concentric

circles, each recognized as an individual

cell. Additionally, every spike on an echino-

cyte was identified as a separate object. To

overcome these challenges, a Gaussian fil-

ter was first applied with a width of 3.5

pixels (px) (2.1 mm; step 2; Figure 2C) to

smooth any biconcave or echinocyte ap-

pearances. Then, this image was inverted

(step 3; Figure 2D), since the software rec-

ognizes light and not dark areas.

As parasites mature, they remodel

the host RBC, allowing iRBCs to adhere

to the microvasculature, iRBCs, and

RBCs.38 This makes accurate RBC quanti-

fication challenging due to clustering of
RBCs. Many approaches have been used to segment clustered

RBCs to estimate the total number of cells. Region growing,39

morphological image processing,40,41 distance transforma-

tion,42 and template matching43 have been used on Giemsa-

stained thin blood smears. Osculating circle estimation paired

to geometric calculations18 has been used to segment fluores-

cent stained RBCs. We found that by optimizing our seeding

and washing technique, as described in the STAR Methods,

we obtain amonolayer with a reduced percentage of overlapping

RBCs. Our method, however, can identify distinct RBCs even if

there is some overlap or if the RBC membranes are touching.

Using the ‘‘inverted’’ image output, ‘‘method M’’ (step 4; Fig-

ure 2E) was used to select cells. A diameter of 8 mm38 was

selected, and the splitting sensitivity was set to 0.46 to maximize

splitting of cells in close proximity but minimize splitting of indi-

vidual cells. Splitting sensitivity is a unitless parameter, and

this parameter and all other unitless parameters described

below were determined empirically. To eliminate selection of

background noise, bright-field morphology (step 5) and intensity

(step 6) properties were calculated. Using these properties, only

objects with cell areas between 15 and 200 mm2, cell roundness

>0.6, ratio of width to length >0.35, and bright-field intensity

contrast <�0.036 were selected (step 7; Figure 2F). Note that

RBCs can be identified at 203 air magnification using a Cell

Mask stain, but we chose to use bright field in order to increase

the number of available channels for future studies.
Reports Methods 3, 100516, July 24, 2023 3
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Figure 2. 203 image analysis

Parasites were stained with Hoechst, indicated in blue, for parasite nuclei and MitoTracker Deep Red (MDR), indicated in red, for functional mitochondria. Red

blood cells (RBCs) were visualized by bright field and stained with CellMask Orange plasma membrane stain, which is false colored in purple. The bright-field

(legend continued on next page)
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Selecting RBCs with viable parasites using the 203 air
objective
Hoechst and MDR stains were used to identify iRBCs at 203 air

magnification. Using the ‘‘find spots’’ building block, ‘‘method

C’’ was chosen to identify parasite nuclei (step 8; Figure 2G)

and respirating mitochondria (step 9; Figure 2H). Maximum

spot radius and minimum uncorrected spot to region intensity

were set to 9.1 px (5.48 mm) and 0.6, respectively, to prevent se-

lection of background staining (e.g. from lint, dust, or a scratched

well). For Hoechst, the lower threshold for contrast was set to

>0.5 to prevent selection of weaker background staining. Since

background staining is higher using MDR, the lower threshold

for contrast was set to >0.06. Cells with at least one Hoechst

spot, at least one MDR spot, and a relative MDR spot intensity

>0.014 were identified as infected with viable parasites (step

10; Figure 2I). Note that relative MDR spot gating intensity may

need to be adjusted depending on inter-experiment variability.

In order to calculate parasitemia (percentage of iRBCs), the num-

ber of infected cells was divided by the total number of RBCs,

and this value was multiplied by 100 (step 11).

Validation of 203 analysis
Chloroquine 72-h growth inhibition assays were conducted on

asynchronous chloroquine-sensitive GC03 and chloroquine-

resistant Dd2 parasites.44 To validate our 203 analysis, parasite-

mia from cultures in the same experiment was determined

simultaneously using high-content imaging and flow cytometry

assays. Dose-response curves (Figure 2J) and half-maximal

inhibitory concentration (IC50) values (Figure 2K) were similar

for both assays. For GC03, we obtained IC50 values of 19.9

and 21.1 nM for flow cytometry and high-content imaging,

respectively (Figure 2K). For Dd2, we obtained IC50 values of

320.9 and 326.8 nM for flow cytometry and high-content imag-

ing, respectively (Figure 2K). These values are consistent with

previously published reports.45–47

Selecting RBCs using a 403 water objective
Our second objective was to discern and differentiate asexual

blood-stage P. falciparum parasites. Although our 203 air imag-

ing and analysis method was able to quantify parasitemia, the

resolution (at 0.79 mm) was too low to discriminate differences

required to identify the various stages. Thus, we set out to differ-

entiate asexual stages using a 403water objective. A 633water

objective was not chosen since the small gain in resolution

(0.33 mm for 403 water vs. 0.28 mm for 633 water) did not
channel was used to identify RBCs in this analysis, while CellMask Orange plasm

were imaged with a 203 air objective on an Operetta CLS.

(A–F) Listed is (A) the workflow to quantify parasitemia using Harmony High-Conte

input image was first filtered using a Gaussian smoothing filter with a width of 3.5 p

was then (D) inverted so that RBCs would be highlighted, yielding the output imag

‘‘method M,’’ indicated by rainbow circles. Using bright-field intensity and cell mo

excluded, indicated by pink circles, and RBCs were selected, filled in green.

(G and H) From the selected RBC population, outlined in white, (G) Hoechst spo

(I–K) RBCs with at least one Hoechst spot and at least oneMitoTracker spot were

validate this image analysis, asynchronous GC03 and Dd2 parasites were treated

parasitemia was determined by flow cytometry (FC) and high-content imaging (20

method. Shown are (J) dose-response curves and (K) mean IC50 values ± standa

difference (ns) was detected between FC and high-content imaging using a Stud
enhance stage identification, and the 2-fold reduction in

the area per field of view (104,329 mm2 for 403 water vs.

42,025 mm2 for 633 water) would have significantly increased

the image acquisition time. Increased image resolution using

the 403 water objective (compared with 203 water) came with

additional challenges, which were overcome with different imag-

ing channels, smoothing filters, and cell parameters to identify

cells and parasites, as described below. The workflow for the

403 water objective analysis is shown (Figure 3A). For the

description of the workflow for 403 image acquisition and ana-

lyses, ‘‘step 1, 2, etc.’’ refer to the detailed steps, which can be

found in method details, Operetta 403 image acquisition and

analysis. For 403 imaging, 3D images were acquired by

capturing ten planes for each field 0.5 mm apart. Since the depth

of focus of the 403 water objective is only 1.2 mm, a z stack was

needed to capture the entire parasite and allow for variability be-

tween focus heights on different fields of view. A 2D image was

then obtained using maximum projection (step 1; Figure 3B).

RBCs were selected using the Cell Mask channel since Cell

Mask provided fewer details of RBC morphology than bright

field, making RBC selection easier. Two smoothing filters were

applied for RBC selection. First, median smoothing was applied

using a scale of 2 px (600 nm; step 2; Figure 3C), which corre-

sponds to the half-width of the kernel, defined as a 2D matrix

of px. The median filtered image was then further filtered using

theGaussian filterwith awidth of 1 px (300 nm; step 3; Figure 3D),

which corresponds to the standard deviation of the Gaussian

filter. The median filter smooths the edges of RBCs, and the

Gaussian filter smooths the surface of RBCs.

Using the Gaussian-filtered output image, cells were identified

using ‘‘method P’’ (step 4; Figure 3E), which is recommended by

PerkinElmer for splitting clustered cells and contains parameters

for minimum area, splitting sensitivity, and common threshold.

RBCs are approximately 8 mm in diameter,38 which would yield

an area of approximately 50 mm2. However, if the ‘‘method P’’ al-

gorithm detects a cell with an area smaller than the defined

threshold, then that cell will be grouped with its closest neighbor.

Therefore, we used a threshold of >24 mm2 so that overlapping

cells would be selected as separate objects. A common

threshold of 0.83 was used to identify cells, and a splitting sensi-

tivity of 0.28 was used to maximize separation of overlapping

cells and minimize splitting of single cells. To exclude back-

ground staining and selection of doublet cells, the following

morphology properties of cells were calculated (step 5): width,

length, and ratio of width to length. In addition, intensity
a membrane stain was only included to better visualize parasitized RBCs. Cells

nt Imaging and Analysis software with PhenoLOGIC (v.4.9). The (B) bright-field

ixels (2.1 mm), yielding the output image (C) ‘‘Gaussian smoothed.’’ This image

e ‘‘inverted.’’ Using the ‘‘inverted’’ output image, (E) RBCs were identified using

rphology properties, (F) background and cells on a different focus height were

ts and (H) MDR spots were identified, circled in yellow.

classified as ‘‘infected RBCs,’’ indicated by yellow circles. Scale bar: 50 mm. To

for 72 h over a range of chloroquine (CQ) concentrations. For each replicate,

3). At least 10,000 RBCs were analyzed per treatment concentration by each

rd error of the mean (SEM) from three independent experiments. No significant

ent’s t test.
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Figure 3. 403 image analysis

Cells were stained with Hoechst, indicated in blue, for parasite nuclei; MDR, indicated in red, for respirating parasite mitochondria; SYTO RNASelect, indicated in

green, for parasite cytoplasm; and CellMask Orange plasma membrane stain, indicated in purple, for RBC plasma membranes. Ten planes were captured for

each field on an Operetta CLS using a 403 water objective to create a maximum projection.

(A–D) Listed is (A) the workflow used to quantify parasite asexual blood stages with Harmony High-Content Imaging and Analysis software with PhenoLOGIC

(v.4.9). To identify RBCs, the (B) input image was first filtered using a (C) median smoothing filter to smooth RBC edges. Then, a (D) Gaussian smoothing filter was

applied to smooth RBC faces.

(E) RBCs were identified using ‘‘method P,’’ using the smoothed output image. Identified cells are indicated in rainbow coloring.

(F–H) Using cell morphology and intensity properties, background staining and doublet cells were excluded, circled in pink, allowing single RBCs to be selected,

indicated in filled green. To identify RBCs containing viable parasites, (G) Hoechst spots and (H) MDR spots were selected using ‘‘method D.’’ The regions of

interest (selected RBCs) are outlined in white, and selected spots are circled in yellow.

(I) RBCs that contained at least one Hoechst spot and at least one MDR spot were classified as infected RBCs, circled in yellow.

(J) Machine learning was used to classify these RBCs as infected with: single rings (SRs), circled in green; multiple rings (MRs), circled in red; single trophozoites

(STs), circled in blue; multiple trophozoites (not shown); single schizonts (SSs), circled in pink; or multiple schizonts (not shown). Scale bar: 25 mm.
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properties were calculated for Cell Mask (step 6). Based on

these calculated morphological and intensity values, we were

able to use the size and shape of RBCs to exclude background

staining and doublet cells with the following gating properties:

width to length ratio >0.35, cell area between 20 and 60 mm2,

cell width >3.5 mm, cell length <13.5 mm, and mean intensity

>2,500 counts/px (step 7; Figure 3F). Note that intensity gating

properties may need to be adjusted depending on inter-experi-

ment variability. To minimize variance, the exposure time and

percentage of power of each channel should be adjusted so

that relative intensity is approximately 3,500–4,000 for all chan-

nels. Though this method allows for good separation of overlap-

ping cells, we do not recommend exceeding 900 cells per field

(104,329 mm2).

Selecting iRBCs with viable parasites using a 403
objective
To identify iRBCs, Hoechst and MDR channels were used.

‘‘Method D’’ was chosen to find spots with the Hoechst channel

(step 8; Figure 3G) and theMDR channel (step 9; Figure 3H). This

method was first used to correct for background staining with a

parameter of 0.422 for Hoechst and of 0.8 for MDR. A higher

background threshold value is set for the MDR channel to ac-

count for higher background with MDR vs. Hoechst stain. The

detection sensitivity was set to 0.45 for Hoechst and to 0.4 for

MDR. These sensitivity detection parameters are low enough

to identify live parasites of the early ring stages but still exclude

non-specific background staining. To quantify RBCs with live

parasites, cells with R1 Hoechst spot and R1 MDR spot were

selected (step 10; Figure 3I).

Identification of asexual stages
After selecting iRBCs using 403 imaging, we used Harmony’s

PhenoLOGIC machine learning plugin to differentiate asexual

blood stages (Figure 3J). PhenoLOGIC is a type of linear classi-

fier where a human is initially needed to classify objects into

desired outputs. The software learns from this training set and

identifies which combination of properties are important for clas-

sifying objects. The more properties that are collected that

productively aid in stage differentiation, the better the linear clas-

sifier script is at distinguishing asexual blood stages. Ring and

trophozoite stages each contain one Hoechst and one MDR

spot, while multinucleated schizont stages contain multiple

Hoechst and MDR spots where each merozoite is developing

(Figure 1). The number and organization of these spots has

been used to differentiate ring, trophozoite, and schizont

stages.18 We collected four spot properties for Hoechst and

MDR channels from the ‘‘find spot’’ method (steps 8–9): total

spot area, relative spot intensity, number of spots, and number

of spots per area of cell. As parasites grow, the intensity and

size of parasite nuclei, mitochondria, and cytosol staining in-

creases, corresponding to parasite maturation.20,23 These

properties were used to further distinguish asexual stages by

collecting the following intensity properties for Hoechst, MDR,

and SYTO channels (steps 11–13): mean, standard deviation,

coefficient of variance, median, sum, maximum, minimum, and

contrast. Texture properties of iRBCs were collected using the

spots, edges, and ridges (SER)method for Hoechst (step 14; Fig-
ure S1), MDR (step 15; Figure S2), and SYTO (step 16; Figure S3)

channels. This method uses eight different filters (spot, hole,

edge, ridge, valley, saddle, bright, and dark) that highlight

different patterns of staining intensity. Intensity properties are

then calculated from the filtered image. Morphology properties

of Hoechst, MDR, and SYTO were also calculated using the

STARMethods (steps 17–19). First, five profiles were generated,

which define regions from the outermost part of the cell

(profile 1) to the innermost part of the cell (profile 5) (Figure S4).

Then, symmetry, threshold compactness, axial, radial, and pro-

file properties were calculated for each region of an object for

Hoechst, MDR, and SYTO channels. In total, 125 properties

were collected and used for the linear classifier script.

To establish an accurate training set, parasites were first en-

riched for each asexual stage: ring stages (0–23 hpi), trophozoite

stages (24–39 hpi), and schizont stages (40–48 hpi). We aimed to

capture a broad range of parasites that fall within these three cat-

egories (Figure S5). Following stage isolation, purity of stage

enrichment was assessed by light microscopy, which is currently

the gold standard for stage identification. Purities of 96%–99%,

88%–93%, and 78%–80% were obtained for ring, trophozoite,

and schizont stages, respectively (Figure S5). When grown

in vitro, RBCs can be infected with multiple parasites, making

automated stage identification challenging. For example, inten-

sity of fluorescent staining will be high not only in RBCs contain-

ing schizonts but also in RBCs harboring multiple trophozoite

stages (Figure 1). Additionally, RBCs containing single rings

have very different intensity properties compared with RBCs

containing multiple ring stages (Figure 1). Because of this, we

defined six populations: single rings, multiple rings, single tro-

phozoites, multiple trophozoites, single schizonts, and multiple

schizonts (Figure 1). For the training set in categories of single

rings, single trophozoites, or single schizonts, we manually iden-

tified at least 400 RBCs that were infected with one parasite us-

ing the linear classifiermethod in the ‘‘select population’’ building

block (step 20). We also manually selected at least 100 RBCs

that were infected with multiple parasites, which refers to the

categories of multiple rings, multiple trophozoites, or multiple

schizonts. The manually selected parasites in the training set

served as data points that, in combination with emergent prop-

erties identified, allowed for the machine learning-based algo-

rithm to identify parasite stages without further human input.

The bright-field channel was used to aid in manually differenti-

ating rings from trophozoites as well as singly from multiply

iRBCs based on the presence of hemozoin. However, due to

the variability of smooth RBCs and echinocytes, bright field did

not provide useful SER or STAR properties for stage differentia-

tion and was excluded from the analysis. Note that for accurate

stage identification, it was essential to train the linear classifier

with images from different samples acquired on different days,

to account for variation in staining intensity, as well as a range

of different parasite ages for each stage (Figure S5; e.g., early,

mid, and late trophozoites), to aid in differentiating borderline

stages (such as distinguishing late rings from early trophozoites).

For each population comparison, PhenoLOGIC software gen-

erates a scatterplot (Figure 4) and ‘‘goodness’’ score (Figure 4;

Table S1) based on data from individual parasites that were

manually curated in the training set in addition to parasites
Cell Reports Methods 3, 100516, July 24, 2023 7
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automatically identified by the algorithm. The scatterplot pro-

vides visualization of the spread and distribution of the two

compared populations, as well as spread and distribution

between human- and machine-selected parasites. Human-

selected parasites are depicted in solid circles, while machine-

selected parasites are depicted in open circles (Figure 4). The

‘‘goodness’’ of the separation is the signal-to-noise ratio based

on the distance of the training points from the classifier line. In

general, the higher the score, the better. This value expresses,

to some extent, the quality of the separation, but it does not pro-

vide information about the distribution of classification results.

The scatterplot is essential to fully understand the quality of

the classification, as it shows outliers, separation, and shape

of the populations (e.g., focused, splattered, or multiple focus re-

gions). The following population comparisons were performed:

single rings vs. multiple rings (Figure 4A); single rings vs. single

trophozoites (Figure 4B); single rings vs. multiple trophozoites

(Figure 4C); single rings vs. single schizonts (Figure 4D); single

rings vs. multiple schizonts (Figure 4E); multiple rings vs. single

trophozoites (Figure 4F); multiple rings vs. multiple trophozoites

(Figure 4G); multiple rings vs. single schizonts (Figure 4H); multi-

ple rings vs. multiple schizonts (Figure 4I); single trophozoites vs.

multiple trophozoites (Figure 4J); single trophozoites vs. single

schizonts (Figure 4K); single trophozoites vs. multiple schizonts

(Figure 4L);multiple trophozoites vs. single schizonts (Figure 4M);

multiple trophozoites vs. multiple schizonts (Figure 4N); and sin-

gle schizonts vs. multiple schizonts (Figure 4O). Single-ring and

single-trophozoite stages were easily differentiated from sin-

gle-schizont stages as indicated by ‘‘goodness’’ scores of 3.94

(Figures 4D) and 2.83 (Figure 4K), respectively. Multiple rings

were well distinguished from single and multiple schizonts,

with ‘‘goodness’’ scores of 2.68 (Figures 4H) and 3.38 (Figure 4I),

respectively, whilemultiple trophozoites were distinguished from

single and multiple schizonts, with ‘‘goodness’’ scores of 1.66

(Figures 4M) and 1.91 (Figure 4N), respectively. Differentiation

of ring and trophozoite stages was the most challenging, with

a goodness score of 1.55 (Figure 4B), consistent with a

previously published machine learning-based method.36 The

closeness in spread between these populations is due to

the continuous development cycle of blood stages, with early-

ring stages easily differentiated from late-trophozoite stages

but late-ring stages poorly differentiated from early-trophozoite

stages. The phenotypic differences between late-ring and

early-trophozoite stages are slight, as both stages are similar

in size, and early-trophozoite stages have little hemozoin (Fig-

ure S5). SYTO staining proved to be important for this distinction,

accounting for 10 out of the 20 properties used to differentiate

single rings from single trophozoites (Data S1). In contrast, the
Figure 4. Differentiation of asexual stages

After establishing a training set for machine learning, ‘‘goodness’’ scores and sc

software with PhenoLOGIC (v.4.9). The ‘‘goodness’’ score is a measure of signal-t

populations. The scatterplot provides a 2D depiction of the differences between

(A) Single rings vs. multiple rings; (B) single rings vs. single trophozoites; (C) singl

rings vs. multiple schizonts; (F) multiple rings vs. single trophozoites; (G) multiple r

rings vs. multiple schizonts; (J) single trophozoites vs. multiple trophozoites; (K

schizonts; (M) multiple trophozoites vs. single schizonts; (N) multiple trophozoite

rings, multiple rings, single trophozoites, multiple trophozoites, single schizonts, a

light blue, respectively. Solid circles indicated manually selected parasites, and
morphology of schizont stages is very distinct from rings and tro-

phozoites, as Hoechst staining is much more pronounced in

multinucleate schizont stages (Figure 1). Accordingly, Hoechst

staining accounted for 12 of the 20 properties used to differen-

tiate single schizonts from single rings and 12 of the 22 proper-

ties (Data S1) used to differentiate single schizonts from single

trophozoites.

Validatingparasite quantificationand stage identification
We used two population types to validate our machine learning

analysis: stage-enriched cultures (Figure 5A) and asynchronous

(mixture of stages) cultures (Figure 5B). Four different parasite

strains (Cam3.II K13 WT, Cam3.II K13 R539T, Cam3.II

K13C580Y, and 3D7) were used as we did not observe differ-

ences in their morphology and, for these verification purposes,

were treated as parasite bioreplicates. Cam3.II K13C580Y ring

stages, Cam3.II K13 WT trophozoite stages, and Cam3.II

K13C580Y schizont stages were used in the stage-enriched cul-

tures. At least 1,000 iRBCs were enumerated for each stage both

by high-content imaging and light microscopy, which is consid-

ered the gold standard for parasite stage identification. For

stage-enriched populations, parasites were enriched for rings,

for trophozoites, or for schizonts, as described in the STAR

Methods, and then quantified by both methods. To ensure that

bursting schizonts would not significantly impact quantification

in the schizont-enriched culture, parasites from 36 to 44 hpi

were used. Raw stage counts from light microscopy and high-

content imaging are listed in Table S2 for both stage-enriched

andmixed cultures. The percentage of each stagewas quantified

by dividing the total number of the stage of interest by the total

number of parasites. A Bland-Altman analysis was used to

assess agreement between the two quantification methods.48

Statistical limitswere calculated based on themean and standard

deviation of the differences between the two assay methods of

light microscopy and machine learning. The mean of the differ-

ences is also known as the bias. If the bias calculated is close

to zero, then this indicates that the two assay methods are sys-

tematically producing similar results. For stage-enriched popula-

tions, a bias of �2.763 10�15 with a standard deviation of ±3.35

was obtained (Figure 5C). For the asynchronous populations, a

bias of�2.233 10�14 with a standard deviation of ±4.38 was ob-

tained (Figure 5D). If there is good agreement between the two

assay methods, 95% of the differences are expected to lie within

1.96 standard deviations of the bias, given that the differences are

normally distributed. Our analyses show that the differenceswere

normally distributed, the calculated biaswas close to zero, and all

comparisons fell on or within 95% limits of agreement of ±1.96

standard deviations (Figures 5C and 5D). The greater variance
atterplots were generated with Harmony High-Content Imaging and Analysis

o-noise ratio, which indicates the separation, but not distribution, between two

.

e rings vs. multiple trophozoites; (D) single rings vs. single schizonts; (E) single

ings vs. multiple trophozoites; (H) multiple rings vs. single schizonts; (I) multiple

) single trophozoites vs. single schizonts; (L) single trophozoites vs. multiple

s vs. multiple schizonts; and (O) single schizonts vs. multiple schizonts. Single

nd multiple schizonts are shown in green, dark red, dark blue, yellow, pink, and

open circles indicated machine-selected parasites.
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Figure 5. Machine learning validation

(A–C) Parasite stages were quantified manually by light microscope (solid bars) and automatically by 403 imaging paired with machine learning (dotted bars) in

(A) stage-enriched and (B) asynchronous (mixed stage) populations. For stage-enriched quantifications, ring-enriched, trophozoite-enriched, and schizont-

enriched populations were counted. For asynchronous quantifications, Cam3.II K13 R539T, Cam3.II K13C580Y, and 3D7 strain parasites were counted. Rings,

trophozoites, and schizonts are indicated in green, blue, and pink, respectively. At least 1,000 parasites were counted by each method per individual enrichment

or individual parasite strain. The percentage of each stage was calculated by dividing the total number of the stage of interest by the total number of parasites.

Percentages from each independent quantification are shown. Raw parasite counts are listed in Table S2. To assess agreement between stage quantification

methods, a Bland-Altman analysis was performed for (C) stage-enriched populations and (D) asynchronous populations. Percentages of rings, trophozoites, and

schizonts were compared for each individual enriched population or individual parasite strain. Machine learning values were subtracted from the corresponding

light microscopy values. A Shapiro-Wilk test was used to confirm that the difference between values was normally distributed. The difference between two values

(x axis) was then compared with the average of the two values (y axis) and plotted on the graph shown. For each population, ring (R), trophozoite (T), and schizont

(S) comparisons are indicated by green, blue, and pink symbols, respectively. (C) Parasite stages enriched for rings, trophozoites, and schizonts are indicated by

circles, triangles, and squares, respectively.

(D) Cam3.II K13 R539T, Cam3.II K13C580Y, and 3D7 comparisons are indicated by circles, triangles, and squares, respectively. The bias, which is the mean

difference between each comparison set, was calculated, and 95% limits of agreement (shaded in gray) were determined as ±1.96 standard deviation (SD). The

bias and ±95% limits of agreement are indicated by the dotted lines. A bias close to zero indicates that there is good agreement between the two assay methods.

The data for both stage-enriched and asynchronous populations show a bias close to zero, and all points fall on or within the 95% limits of agreement. This

suggests that the two assay methods of light microscopy and machine learning are in agreement and produce similar results.
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in the asynchronous comparisons is likely explained by the

inherent bias of microscope users to focus on larger and more

vibrantly stained trophozoite stages rather than lighter-stained

ring stages. No parasites from these validations were used as

part of the training set for the linear classifier.
10 Cell Reports Methods 3, 100516, July 24, 2023
Detection of P. falciparum stage sensitivity to
chloroquine
Chloroquine, which interferes with parasite-mediated heme

detoxification, is known to stall parasites at the late-ring to

early-trophozoite stage.49 To determine if we could quantify
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Figure 6. Discerning stage sensitivity

GC03 parasites were synchronized to the early-ring stage and treated with 60 nM CQ.

(A–C) Parasitemia (A) and stage proportion (B andC) were quantified at 0, 24, 48, and 72 h using the 403 imaging and analysismethod. (A) Parasitemia valueswere

normalized to the 0-h time point and plotted as mean ± SEM from four independent experiments. Untreated parasites are indicated by dark gray circles, and CQ-

treated parasites are indicated by light gray squares. Stage proportions are shown for a (B) representative single replicate (3 other biological replicates can be found

in Figure S6) and (C)mean ± SEM from four independent replicates. Raw parasite counts from each replicate can be found in Table S3. Ring (R), trophozoite (T), and

schizont (S) stages are indicated in green, blue, and pink, respectively. At least 500 parasites or 60,000 RBCs were analyzed per treatment at each time point.

(D) Representative images of Giemsa-stained thin blood smears visualized by light microscope are also shown. Scale bar: 2.5 mm.

Statistical significance in (A) and (C) was examined between treated and untreated samples at each time point using a Student’s t test. *p < 0.05; **p < 0.01;

***p < 0.001; ns, not significant.

Article
ll

OPEN ACCESS
this phenotype with our 403 imaging andmachine learning anal-

ysis, we synchronized chloroquine-sensitive GC03 strain para-

sites to the early-ring stage and then exposed them to 60 nM

chloroquine (equivalent of 33 IC50). Relative parasitemia (Fig-

ure 6A) and the proportion of each stage (Figures 6B, 6C, and

S6) quantified at 0, 24, 48, and 72 h time points are shown.
Raw stage counts from four independent biological replicates

can be found in Table S3. Differences in stage progression be-

tween untreated and chloroquine-treated parasites were first de-

tected at 24 h (Figure 6B), with 22% of untreated parasites and

41% of chloroquine-treated parasites identified as rings (p =

0.0113; Figure 6C). Differences in parasitemia were first detected
Cell Reports Methods 3, 100516, July 24, 2023 11
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Figure 7. Enumeration of schizont nuclei

Cam3.II K13C580Y schizonts were enriched using a 75% Percoll density gradient and then treated with 50 mM E64 for 2 h to reduce schizont rupture. Cultures

were then stained and imaged with our 403 imaging analysis.

(A–C) Shown is a representative image of the (A) Hoechst input channel. This image was filtered with the (B) spots, edges, and ridges (SER) spots filter to highlight

individual nuclei. Using this output image, (C) nuclei were identified in single schizonts using ‘‘method C.’’ Each different colored dot indicates an identified nuclei

spot. To validate this method, the average number of nuclei were quantified in at least 450 single schizonts manually by light microscope and automatically by our

403 machine learning analysis. Scale bar: 10 mm; inset scale bar: 2.5 mm.

(D) Shown are mean nuclei ± SEM from three independent experiments, indicated by circles, triangles, and squares. The mean number of schizont nuclei

and the number of schizonts counted for each replicate are shown in Table S4. No significant difference was found between the two methods using a Student’s

t test.
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at 48 h (p = 0.0061; Figure 6A), with untreated parasites convert-

ing to new ring stages (78% rings). In contrast, at 48 h, chloro-

quine-treated parasites remained stalled at the late-ring (46%;

p = 0.0008) to early-trophozoite stage (51%; p = 0.0013) (Fig-

ure 6C), and parasitemia declined to 35% of the starting value

(Figure 6A). At 72 h, parasitemia of chloroquine-treated parasites

continued to decline (Figure 6A), and parasites remained unable

to progress past the trophozoite stage (Figures 6B and 6C).

These differences in stage progression were also reflected by

Giemsa-stained parasites visualized by light microscopy (Fig-

ure 6D). These data indicate that our machine learning analysis

can be used to discern P. falciparum stage susceptibility to anti-

malarials in a quantitative fashion.

Quantifying and validating number of nuclei within
P. falciparum schizonts
To determine if our machine learning analysis could be lever-

aged to quantify stage-specific phenotypes, we attempted to

quantify P. falciparum schizont nuclei. The Hoechst channel

(Figure 7A) was first filtered using the SER spot texture filter,

which highlights the brightest portion of spots (step 21; Fig-

ure 7B). A scale of 0.5 px (150 nm) was used to allow for optimal

separation of spots without splitting individual nuclei. Using the

SER spot filtered output image, nuclei were then identified in

single schizonts using ‘‘find spots’’ ‘‘method C’’ (step 22; Fig-

ure 7C). This method allows for identification of small spots

with a radius %1.1 px (330 nm). To exclude background,

contrast and uncorrected spot to region intensity were set to

>0.06 and >2.7, respectively. The mean number of schizont

nuclei was obtained by dividing the total number of identified

nuclei by the total number of single schizonts (step 23e). To vali-

date this method, nuclei in at least 450 schizonts were counted

by high-content imaging and light microscopy. 46–48 hpi
12 Cell Reports Methods 3, 100516, July 24, 2023
stages were enriched using a 75% Percoll density gradient,

and then schizonts were treated with 50 mME64 for 2 h to inhibit

schizont rupture.50 The average numbers of nuclei and total

schizonts counted from three independent experiments are

listed in Table S4. Both methods had similar quantifications,

with 13.91 mean nuclei per schizont identified by light micro-

scopy and 13.57 mean nuclei per schizont identified by high-

content imaging (Figure 7D). No significant difference was

found between methods when assessed by a Student’s t test

(p = 0.6980).

DISCUSSION

Here, we describe methods to quantify parasitemia using a

203 air objective and to discern, enumerate, and characterize

P. falciparum asexual blood stages using a 403 water objec-

tive. Though we chose to use 96-well plates, the 203 method

could be adapted to 384-well plate or 1,536-well plate format

by adjusting cell seeding as previously described.7,18 Following

cell plating, the same imaging and analysis protocols can then

be used. Similar to flow cytometry and a previous high-content

imaging approach,18 this method improves upon ELISAs and

plate reader assays by quantifying individual RBCs and using

a viability marker so that only live parasites are counted.

Thus, our 203 method is well suited for dose-response assays

and ring-stage survival assays (RSAs). RSAs are the gold-stan-

dard protocol used to assess artemisinin resistance.51 For

assay accuracy, it is critical that pyknotic, non-respirating par-

asites are excluded. This makes parasite visualization by micro-

scopy extremely helpful compared with fluorescence detection

by flow cytometry. Thus, many labs still use light microscopy

for RSAs, which is an extremely time-consuming process. We

therefore believe that this 203 method could be a valuable tool.
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To differentiate asexual stages in our 403method, a linear clas-

sifier was utilized. Previously, another machine learning-based

method has been described to differentiate P. falciparum asexual

stages in a semi-supervised fashion using deep neural net-

works.36Deepneural networks aremore complex than linear clas-

sifiers and are able to recognize patterns of unstructured data, al-

lowing the authors to classify asexual stages on a continuum

instead of discrete outputs and to predict drug mode of action

based on clustering of drug-induced parasite morphological

phenotypes.36 While this method certainly has advantages,

our method described here also demonstrates a robust capacity

to differentiate asexual stages and has several unique advan-

tages. First, there is no requirement to use genetically modified

parasites expressing a cytosolic fluorescent marker. Thus, any

P. falciparum strain can be used, including multidrug-resistant

parasites and recently adapted clinical isolates, which are argu-

ably more relevant for compound screens. Second, our method

does not require expertise in coding or machine learning, allowing

increased accessibility to biologists with limited technological

backgrounds. Third, our method can identify and distinguish

RBCs infected with single parasites fromRBCs infected with mul-

tiple parasites, which was not previously shown.18,36 Finally, this

method allows flexibility to quantify stage-specific phenotypes

of interest. In the future, this method can be expanded to quantify

other blood-stage phenotypes of interest by including different

fluorescent stains. For example, the calcium stain Fluo-4 has pre-

viously been used to screen for compounds that disrupt the par-

asite’s DV and calcium dynamics.19–21 Further, components of

this analysis could be implemented outside themalaria field. Since

merozoites are similar in size to bacteria, our method to numerate

nuclei of daughter merozoites in schizonts could be adapted to

enumerate the number of bacteria in infected cells, for example

within macrophages. Manual visualization and enumeration of

small objects can be challenging andwould be facilitated by auto-

mated high-content imaging platforms.

The relentless capacity of Plasmodium to acquire drug resis-

tance is a major hurdle for malaria elimination. Accordingly,

continual development of antimalarials to overcome the chronic

state of drug resistance is essential. High-content imaging

paired with machine learning is a valuable tool in this endeavor,

capable of rapidly identifying potent compounds and providing

clues toward the mode of action of these compounds. The

approach described here can aid in the discovery of compounds

with uncompromised modes of action by quantifying pheno-

types of interest. In addition, determining stage sensitivity of

compounds will aid in optimal partner drug pairing. For example,

if one drug is less sensitive at a particular stage, an ideal partner

drug would be most active at that stage. Such differential stage

potency partially underlies the strong synergy seen between di-

hydroartemisinin and proteasome inhibitors.52 Methods like the

one described here will contribute to the collection of assays

available to characterize antimalarial candidates.

Limitations of the study
For screening of compounds for antimalarial activity or for deter-

mining IC50 values to gauge drug potency, we recommend using

the 203 image acquisition and analysis method, which yields

nearly identical results to flow cytometry-based assays and
has a comparable run time (approximately 20–30 min to image

and analyze R10,000 cells per well in a 96-well plate). The

203 high-content imaging method requires an increase in

staining time (20 vs. 45 min), an additional washing step, and

an increase in instrument price, compared with flow cytometry.

However, once imaging parameters are obtained (<10 min), no

supervision of high-content imaging is required. In contrast,

flow cytometry requires continuous monitoring to ensure that

data acquisition is not skewed by machine clogging due to the

sticky nature of iRBCs.38 If there is clogging, hours can be spent

removing the clog within the flow cytometry tubing, and the

assay needs to be redone, as the data collected are inaccurate.

We do not recommend using our 403 image acquisition and

analysis method for initial large-scale screens since imaging

time with the 403 objective is significantly increased by the

acquisition of z stacks (>10 h unsupervised time to image

R10,000 cells per well in a 96-well plate). Though the number

of fields that are needed per well is dependent on the type of

experiment and parasitemia used, for both 203 and 403

methods, a dense monolayer of cells with minimal cell overlap

is key to reducing imaging time without interfering with cell

segmentation.

Once a compound of interest is identified, our 403 image

acquisition and analysis method can be used to quantify alter-

ations in stage progression and phenotypic changes in com-

pound-treated parasites. Here, we demonstrate that our 403

method can be used to quantify stalling of chloroquine-treated

parasites at the late-ring to early-trophozoite stage, as well as

quantify schizont nuclei in an automated fashion. By determining

points in the developmental cycle that are altered, this analysis

can be harnessed to determine stage sensitivity of new com-

pounds or determine altered progression in drug-resistant para-

sites. Simultaneously, phenotypic properties can be quantified

to provide insight into the mode of action of new drug candi-

dates. Of note, one limitation to our 403 method is that cells

must be imaged live since fixing agents for SYTO and MDR are

not compatible.

Previously, several groups have manually enumerated

schizont nuclei to monitor growth rates or pinpoint breaks in

the development between schizont and ring stages in response

to treatment with uncharacterized drugs or mutations in poorly

defined parasite genes.53–58 Since the method described here

is capable of not only identifying schizont stages but also differ-

entiating RBCs infected with single vs. multiple schizonts, a fac-

tor that would inflate nuclei counts, this analysis is able to over-

come hurdles that have previously inhibited fully automated

approaches to nuclei enumeration. Note that since individual

nuclei cannot be assigned to a particular schizont, only the

mean number of nuclei and the total number of schizonts imaged

can be defined with our 403 method.

Although we used Harmony High-Content Imaging and Anal-

ysis software with PhenoLOGIC machine learning software for

these analyses, several alternative open-source scripts are avail-

able including CellProfiler (https://cellprofiler.org),59 Advanced

Cell Classifier (http://www.cellclassifier.org),60 and Keras

R-CNN.61 Of these, the building blocks in CellProfiler most

closely resemble Harmony software, with options to segment

and identify cells as well as to measure object size, texture,
Cell Reports Methods 3, 100516, July 24, 2023 13
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and intensity properties.59 CellProfiler can also be paired with

open-source plugins like ClassifyPixelsUNet, which may aid in

RBC segmentation,62 as well as the supervisedmachine learning

classifier CellProfiler Analyst (https://cellprofileranalyst.org) to

differentiate asexual stages. A detailed step-by-step protocol

along with explanations of parameters used are included to in-

crease transferability of this approach. We recognize that there

may be significant differences between instruments and soft-

ware. Nevertheless, we anticipate that this protocol will be help-

ful to anchor numerical parameters.
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Hoechst 33342 Thermo Fisher Scientific Catalog# 62249

MitoTrackerTM Deep Red FM Thermo Fisher Scientific Catalog #M22426

CellMaskTM Orange Plasma membrane Stain Thermo Fisher Scientific Catalog #C10045

SYTOTM RNASelectTM Thermo Fisher Scientific Catalog #S32703

SYBR Green I Thermo Fisher Scientific Catalog #S7563

Dihydroartemisinin Millipore Sigma Catalog# 1200520

Chloroquine diphosphate Thermo Scientific Chemicals Catalog# 455240250

Experimental models: Organisms/strains

Plasmodium falciparum strain GC03 BEI Resources Catalog# MRA-164

Plasmodium falciparum strain Dd2 BEI Resources Catalog# MRA-150

Plasmodium falciparum strain Cam3.II K13 R539T Laboratory of David Fidock N/A

Plasmodium falciparum strain Cam3.II K13C580Y Laboratory of David Fidock N/A

Plasmodium falciparum strain Cam3.II K13 WT Laboratory of David Fidock N/A

Plasmodium falciparum strain 3D7 BEI Resources Catalog# MRA-102

Software and algorithms

Harmony� High Content Imaging and Analysis Software with

PhenoLOGICTM Machine Learning (version 4.9)

PerkinElmer Part# HH17000010

Other

Operetta CLS PerkinElmer Part# HH16000020

Analyses related to identification of P. falciparum asexual blood stages This paper N/A
RESOURCE AVAILABILITY

Lead contact
Requests for further information should be directed to the lead contact, Caroline Ng (caroline.ng@unmc.edu).

Materials availability
No unique reagents were generated in this study.

Data and code availability
d Parasite counts for machine learning validation can be found in the supplemental data. All other data in this study will be shared

upon request from the lead contact.

d No original code was generated in this paper.

d Additional information needed to reanalyze the data reported here is available upon request from the lead contact.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Primary cell cultures
O+ blood from anonymous donors was purchased from Interstate Blood Bank (Memphis, TN). Thus, no information about sex,

gender, or other demographics regarding blood source is available. Whole blood was passed through a leukocyte-reduction filtration

unit (Haemonetics, Braintree, MA). Then, leukocyte-depleted blood was centrifuged at 4000 rpm (31003 g) for 10 min without brake.

The supernatant was removed, and to the packed blood, an equal volume of incomplete media, which consists of RPMI 1640 media

supplemented with 2.05 mM L-Glutamine (GE Healthcare, Chicago, IL), was added. This centrifugation and addition of incomplete
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media was performed twice to remove any residual serum, fats, white blood cells, or other components of whole blood. Pure RBCs

were then resuspended at 50% hematocrit in ADSOL (2 mM adenine (Alfa Aesar, Haverhill, MA), 111 mM dextrose (Fisher

BioReagents, Pittsburgh, PA), 41.2 mM mannitol (Acros Organics, Fair Lawn, NJ), and 154 mM sodium chloride (Fisher

BioReagents)63 for RBC preservation and stored at 4�C.

Cell lines
All P. falciparum parasites were gifts from Prof. David Fidock (Columbia University Irving Medical Center, New York, NY). Parasite

cultures were propagated in O+ RBCs at 5% hematocrit in complete media, which consists of RPMI 1640 media supplemented

with 0.01mg/mL gentamicin (Gibco, Billings, MT)), 50mg/mL hypoxanthine (AcrosOrganics), and 0.5%Albumax II (Invitrogen, Carls-

bad, CA) and maintained at 37�C in a Heracell VIOS 160i Tri-gas Incubator (ThermoFisher Scientific, Waltham, MA) under hypoxic

conditions (5% O2, 5% CO2, 90% N2). Gas was purchased from Matheson Gas (Irving, TX).

METHOD DETAILS

Stage-specific enrichments
Ring stage parasites were enriched for by treating cultures with 5% sorbitol (Acros Organics) for 10 min at 37�C followed by centri-

fugation at 1500 rpm (4363 g) for 3 min. The supernatant was removed, and a volume of complete media equal to the volume of the

starting culture was added. Centrifugation, supernatant removal, and addition of complete media were repeated for a total of two

washes. Early ring stages used for the chloroquine time course were obtained treating parasites with 5% sorbitol, incubating for

12 h, treating with 5% sorbitol a second time, incubating an additional 36 h, and then treating with 5% sorbitol for a third time.64

Following the third sorbitol treatment, early ring stages were washed twice with media. Trophozoite stages were enriched using a

double treatment with 5% sorbitol 10–12 h apart. Following the second treatment, the culture was incubated for 12–15 h at 37�C
in hypoxic conditions. Schizont stage parasites were enriched for using a 75% Percoll (GE Healthcare, Chicago, IL) density gradient.

Briefly, 500 mL of infected RBCs (iRBCs) was re-suspended in incomplete media supplemented with 14.3 U/mL heparin (Merck, Ke-

nilworth, NJ) and incubated at 37�C for 30minwith intermittent vortexing. Cultureswere then carefully layered on top of a 75%Percoll

density gradient in a 15 mL conical (Fisher BioReagents) and centrifuged at 4000 rpm (3100 3 g) for 15 min. Schizont stages were

collected from the layer immediately above the Percoll, transferred to a new 15mL conical tube, andwashed by filling the conical with

incompletemedia supplementedwith 14.3 U/mL heparin. The schizonts were then centrifuged at 1500 rpm (4363 g) for 3minwith no

brake, the supernatant was removed, and complete media was added to put the culture at 1% hematocrit. For nuclei counting as-

says, enriched schizonts were incubated with 50 mM E64 (Alfa Aesar, Ward Hill, MA) for 2 h at 37�C in hypoxic conditions. Following

stage isolations, parasite cultures were adjusted to 1% hematocrit in complete media prior to image acquisition.

High content imaging sample preparation
Plate preparation: CellCarrier-96 Ultra Microplates (Perkin Elmer, Waltham, MA) were coated with 50 mL of 0.1 mg/mL poly-L-lysine

(MPBiomedicals, Irvine, CA) per well for 20min at room temperature, thenwashed three timeswith 150 mL of autoclavedMilliQ water.

The water was aspirated, and plates were allowed to air dry for a minimum of 30 min.

Stain preparation: RBC plasma membranes were stained with 5 mg/mL CellMask Orange Plasma membrane Stain. Nuclei were

stained with 2 mg/mL Hoechst 33342 and RNA was stained with 1 mM SYTO RNASelect. Functional mitochondria were labeled

with 100 nM MitoTracker Deep Red FM. All fluorescent dyes were obtained from Thermo Fisher Scientific and diluted in 1 3 PBS.

40 mL of stain was added per well.

Parasite seeding: 10 mL of parasite culture at 1% hematocrit, equivalent to 10 million RBC, was added per well. Equal cell distri-

bution within the well was ensured by moving the plate while placed on the table from left to right and away from and toward the

researcher. Cells were allowed to settle for 45 min at 37�C under hypoxic conditions as described above. Plates were washed three

times with 150 mL of 13 PBS. To remove 13 PBS, plates are inverted over a waste container. Plates should not be centrifuged, as

this causes cells to aggregate to the edge of the well. Following the third removal of 1 3 PBS, 150 mL of 1 3 PBS was added.

Maximumcell density with little to no overlap is ideal for subsequent image analyses. If MDRand SYTO stains are being used together

(40x analysis), cells must be imaged within 6 h after staining, since fixing agents for these two stains (aldehyde-based and methanol)

are incompatible. If MDR and Hoechst are used alone, then cells may be fixed with an aldehyde-based fixative (e.g., 2% paraformal-

dehyde and 2% glutaraldehyde) and then imaged later, as long as samples remain moist and do not dry out.

Flow cytometry sample preparation
Stain preparation: Parasite nuclei were stained with 1 3 SYBR Green I and respirating parasite mitochondria were stained with

100 nM MitoTracker Deep Red FM, diluted in 1 3 PBS, as described in.65,66 40 mL of stain was added per well to a 96-well Clear

Round Bottom Polystyrene plate (Corning, Corning, NY).

Parasite seeding: 5 mL of parasite culture at 1% hematocrit was added per well. Plates were incubated for 20 min at 37�C under

hypoxic conditions. 150 mL of 13 PBSwas added per well, ensuring that RBCs are resuspended prior to flow cytometry-based para-

site detection.
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Operetta 20x image acquisition and analysis
Sampleswere imagedwith anOperetta CLSHigh-Content Analysis System (Perkin Elmer) using the following settings: 203 air objec-

tive, non-confocal, binning 2. Selection of non-confocal imaging and binning 2 was made to decreased data file size since increased

resolution was unnecessary. Channels were captured in the following order to minimize image capture time: Hoechst (excitation/

emission (ex/em) 355–385/430-500), Mitotracker Deep Red (ex/em 615–645/655-760), and brightfield. For each channel, focus

height was determined, and exposure time and percent power were adjusted so that the intensity for all channels was approximately

4000–5000 counts/px.

Images were analyzed with Harmony 4.9 software with PhenoLOGIC using the following steps.

1. Input Image: Stack Processing- Individual Planes; Min. Global Binning- Dynamic

2. Filter image: Channel- Brightfield; Method- Smoothing (Filter = Gaussian; Width = 3.5 px); Output Image- Gaussian smoothed

3. Filter Image: Channel- Gaussian smoothed; Method- Invert Image (Cut-off quartile = 100); Output Image- Inverted

4. Find Cells: Channel- Inverted; ROI- None; Method-M (Diameter = 8 mm; Splitting sensitivity = 0.46; Common threshold = 0.35)

5. Calculate Morphology: Population- Cells; Region- Cell; Method- Standard (Area, Roundness, Ratio Width to Length)

6. Calculate Intensity Properties: Channel- Brightfield; Population- Cells; Region- Cells; Method- Standard (Contrast)

7. Select Population: Population- Cells; Method- Filter by Property (Cell Area mm2 > 15; Cell Area mm2 < 200; Cell Roundness

>0.6; Cell Ratio Width to Length >0.35; Intensity Cell Brightfield Contrast < �0.036); Output Population- RBCs selected

8. Find Spots: Channel- Hoechst; ROI- RBCs selected; ROI Region- Cell; Method- C (Radius %9.1 px; Contrast >0.5; Uncor-

rected Spot to Region Intensity >0.6; Distance R1.04 mm; Spot Peak Radius = 0 mm); Output Population- Nuclei

9. Find Spots: Channel- MitoTracker Deep Red; ROI- RBCs with nuclei; ROI Region- Cell; Method- C (Radius%9.1 px; Contrast

>0.06; Uncorrected Spot to Region Intensity >0.6; Distance R3 px; Spot Peak Radius = 0 px; Calculate Spot Properties);

Output Population- MitoTracker Spots

10. Select Population: Population- RBCs; Method- Filter by Property (Number of Hoechst Spots R1; Number of MitoTracker

Spots R1; Relative MitoTracker Deep Red Spot Intensity >0.014); Output Population- Infected RBCs

11. Define Results: Method- Formula Output (using Number of Objects)
a. Total Parasitemia:
�
Infected RBC

RBCs selected

�
3 100
Asynchronous drug assays
Asynchronous (mixed stage) GC03 and Dd2 parasites were adjusted to 1% hematocrit and 0.075% or 0.05% parasitemia, respec-

tively. Parasites were treated with a range of chloroquine concentrations, 150 nMDHA as a positive control for complete killing, or no

drug. After 72 h, cells were stained as described above, and parasitemia was assessed by high content imaging and flow cytometry.

For high content imaging, cells were imaged at 203magnification and our 203 analysis method was used to determine parasitemia.

For flow cytometry, parasitemia was assessed using a NovoCyte Flow Cytometer (Agilent, Santa Clara, California) and analyzed

with NovoExpress 1.5.0 Software. At least 10,000 cells were analyzed for each method. In vitro IC50 values were determined using

a log(inhibitor) vs. response, variable slope regression analysis with GraphPad Prism version 9. Three independent replicates were

performed, and statistical significance was examined using a Student’s t test.

Operetta 40x image acquisition and analysis
Samples were imaged with an Operetta CLS High-Content Analysis System (Perkin Elmer) using the following settings: 403 water

objective, confocal, binning 1. Channels were captured in the following order to minimize image capture time: Hoechst (excitation/

emission (ex/em) 355–385/430-500), SYTO RNASelect (ex/em 460–490/500-550), CellMask Orange Plasma membrane (ex/em

530–560/570-650), Mitotracker Deep Red (ex/em 615–645/655-760), and brightfield. For each channel, focus height was deter-

mined, and exposure time and percent power were adjusted so that the intensity for all channels was approximately 3000–

4500 counts/pixels (px). Ten planes were captured for each field 0.5 mm apart.

Images were analyzed with Harmony 4.9 software with PhenoLOGIC using the following steps.

1. Input Image: Stack Processing- Maximum Projection; Min. Global Binning- Dynamic

2. Filter Image: Channel- CellMask Orange Plasma membrane; Method- Smoothing (Filter = Median; Scale = 2 px); Output

Image- Median Smoothed

3. Filter Image: Channel- Median Smoothed; Method- Smoothing (Filter = Gaussian; Width = 1 px); Output Image- Gaussian

Smoothed

4. Find Cells: Channel- Gaussian Smoothed; Method- P (Area >24 mm2; Splitting Sensitivity = 0.28; Common Threshold = 0.83);

Output Population- Cells

5. CalculateMorphology Properties: Population- Cells; Region- Cells; Method- Standard (Width, Length, RatioWidth to Length);

Property Prefix- Cell
Cell Reports Methods 3, 100516, July 24, 2023 e3
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6. Calculate Intensity Properties: Channel- CellMask Orange Plasma membrane; Method- Standard (Mean, Median, Sum,

Maximum, Minimum, Contrast)

7. Select Population: Population- Cells; Method- Standard (Cell Length <13.5 mm;Cell Width >3.5 mm;Cell RatioWidth to Length

>0.35; Cell Area <60 mm2; Cell Area >20 mm2;Mean CellMask Orange Plasmamembrane Intensity >2500); Output Population-

RBCs selected

8. Find Spots: Channel- Hoechst; Region of Interest (ROI)- RBCs Selected; ROI Region- Cell; Method- D (Detection Sensitivity =

0.45; Splitting Sensitivity = 0.5; Background Correction = 0.422; Calculate Spot Properties)

9. Find Spots: Channel- Mitotracker Deep Red; ROI- RBCs Selected; ROI Region- Cell; Method- D (Detection Sensitivity = 0.4;

Splitting Sensitivity = 0.75; Background Correction = 0.8; Calculate Spot Properties)

10. Select Population: Population- RBCs selected; Method- Filter by Property (Number of Hoechst spots R1; Number of Mito-

tracker Deep Red Spots R1); Output population- Infected RBCs

11. Calculate Intensity Properties: Channel- Hoechst; Population- Infected RBCs; Region- Cell; Method- Standard (Mean, Stan-

dard Deviation, Coefficient of Variance, Median, Sum, Maximum, Minimum, Contrast)

12. Calculate Intensity Properties: Channel- Mitotracker Deep Red; Population- Infected RBCs; Method- Standard (Mean, Stan-

dard Deviation, Coefficient of Variance, Median, Sum, Maximum, Minimum, Contrast)

13. Calculate Intensity Properties: Channel- SYTO; Population- Infected RBCs; Method- Standard (Mean, Standard Deviation,

Coefficient of Variance, Median, Sum, Maximum, Minimum, Contras)

14. Calculate Texture Properties: Channel- Hoechst; Population- Infected RBCs; Method- SER Features (Scale = 0 px; Normal-

ization by Kernel)

15. Calculate Texture Properties: Channel- Mitotracker Deep Red; Population- Infected RBCs; Method- SER Features (Scale =

0 px; Normalization by Kernel)

16. Calculate Texture Properties: Channel- SYTO; Population- Infected RBCs; Method- SER Features (Scale = 0 px; Normaliza-

tion by Kernel)

17. Calculate Morphology Properties: Population- Infected RBC; Region- Cell; Method- STAR; Channel- Hoechst (Symmetry;

Threshold Compactness; Axial; Radial; Profile; Profile Inner Region- Spots; Profile Width = 4 px)

18. Calculate Morphology Properties: Population- Infected RBC; Region- Cell; Method- STAR; Channel- Mitotracker Deep Red

(Symmetry; Threshold Compactness; Axial; Radial; Profile; Profile Inner Region- Spots; Profile Width = 4 px)

19. Calculate Morphology Properties: Population- Infected RBC; Region- Cell; Method- STAR; Channel- SYTO (Symmetry;

Threshold Compactness; Axial; Radial; Profile; Profile Inner Region- Spots; Profile Width = 4 px)

20. Select Population: Population- Infected RBCs; Method- Linear Classifier (Number of Classes- 6)

a. Using stage enriched cultures, a training set was established for six populations: single rings, multiple rings, single tropho-

zoites, multiple trophozoites, single schizonts, and multiple schizonts. At least 400 objects were defined for populations

of RBCs infected with one parasite and at least 100 objects were defined for populations of RBCs infected with multiple

parasites.

21. Filter Image: Channel- Hoechst; Method- Texture SER (Filter = SER Spot; Scale = 0.5 px; Normalization = Region Intensity)

22. Find Spots: Channel- SER Spot; ROI- Schizont; ROI Region-cell; Method- C (Radius %1.1 px; Contrast >0.06; Uncorrected

Spot to Region Intensity >2.7; Distance R1.0 px; Spot Peak Radius = 0 px); Output Population- Schizont nuclei

23. Define Results: Method- Formula Output (using number of objects for all parameters)

a. Total parasitemia calculation: �
Infected RBCs

RBCs selected

�
3 1
e4 C
b. Ring parasitemia:
 �
Single rings+Multiple rings

RBCs selected

�
3 1
c. Trophozoite parasitemia:
 �
Single trophozoites+Multiple trophozoites

RBCs selected

�
3 1
d. Schizont parasitemia:
 �
Single schizonts+Multiple schizonts

RBCs selected

�
3100
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e. Mean number of nuclei per schizont:
 �
Schizont nuclei

Single schizonts

�

Giemsa staining
Thin blood smears were fixed with 100% methanol for 30 s, then incubated in Giemsa stain (Epredia Giemsa stain obtained from

Fisher Scientific, diluted 1:10 in distilled water) for 15 min. Stained slides were gently washed under running water and allowed to

air dry, and then imaged using an Olympus CX43 (Shinjuku City, Tokyo, Japan) microscope. Representative images were captured

using the attached Olympus SC50 camera using Olympus cellSens Entry 2.3 software. For stage validations, at least 1,000 iRBCs

were analyzed per smear. The exact numerical counts can be found in Table S2. The percent of each stagewas calculated by dividing

the number of iRBCs containing the stage of interest by the total number of iRBCs counted and then multiplying by 100. A Bland-

Altman analysis was used to compare light microscopy andmachine learningmethods with GraphPad Prism version 9. For validation

of schizont nuclei counting, nuclei in at least 450 schizontswere counted. The exact numerical counts can be found in Table S3. RBCs

harboring multiple schizonts, detected by multiple hemozoin spots, were excluded.

Chloroquine time course
Early ring stages were adjusted to approximately 1–2% parasitemia and incubated with 60 nM chloroquine or in the absence of drug.

Parasites were imaged at 0 h, 24 h, 48 h, and 72 h timepoints using the 40x imaging and analysis method and by light microscope. At

least 500 parasites or 60,000 RBCs were analyzed for the 40x analysis method. The exact numerical count can be found in Table S3.

Four independent biological replicates were performed. Every 24 h,media was removed, and fresh drugmedia was added. Statistical

significance between treated and untreated samples was examined using a Student’s t test with GraphPad Prism version 9.

QUANTIFICATION AND STATISTICAL ANALYSIS

All quantifications for high content imaging were performed using Harmony High Content Imaging and Analysis Software with

PhenoLOGIC Machine Learning (version 4.9) using the methods described here. All statistical analyses were performed using

GraphPad Prism version 9. To compare stage quantifications and schizont nuclei quantifications with light microscopy and machine

learning, Bland-Altman analyses were performed. Briefly, differences between methods were first assessed for normality using a

Shapiro-Wilk test. The bias is calculated by determining the average of the differences, and the standard deviation (S.D.) is deter-

mined. A bias of close to zero indicates that there is good agreement in results produced by the two assays. The 95% limit of

agreement is set at �/+ 1.96 standard deviation. 95% of differences in values should lie within 1.96 S.D. of the bias, given that

the differences are normally distributed. More details relating to this analysis can be found in the main text and in the Figure Legends

for Figures 5 and 7, and Tables S2 and S3. For all other statistical analyses, a two-tailed Student’s t test was performed. Significance

was defined as a p value less than 0.05. Details relating to these statistics can be found in the associated figure legends and method

details.
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