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Gene target discovery with network 
analysis in Toxoplasma gondii
Andres M. Alonso   1,2, Maria M. Corvi1 & Luis Diambra   2

Infectious diseases are of great relevance for global health, but needed drugs and vaccines have not 
been developed yet or are not effective in many cases. In fact, traditional scientific approaches with 
intense focus on individual genes or proteins have not been successful in providing new treatments. 
Hence, innovations in technology and computational methods provide new tools to further understand 
complex biological systems such as pathogen biology. In this paper, we apply a gene regulatory 
network approach to analyze transcriptomic data of the parasite Toxoplasma gondii. By means of 
an optimization procedure, the phenotypic transitions between the stages associated with the life 
cycle of T. gondii were embedded into the dynamics of a gene regulatory network. Thus, through 
this methodology we were able to reconstruct a gene regulatory network able to emulate the life 
cycle of the pathogen. The community network analysis has revealed that nodes of the network can 
be organized in seven communities which allow us to assign putative functions to 338 previously 
uncharacterized genes, 25 of which are predicted as new pathogenic factors. Furthermore, we identified 
a small gene circuit that drives a series of phenotypic transitions that characterize the life cycle of this 
pathogen. These new findings can contribute to the understanding of parasite pathogenesis.

Toxoplasmosis is a zoonotic disease that affects almost one third of the global population1. This condition is 
caused by the obligate intracellular parasite Toxoplasma gondii, which transits a complex life cycle. It develops 
an asexual phase in mammals and birds where the parasite cell can adopt an invasive and rapidly dividing form, 
the tachyzoite, and a latent form which is encysted in the host, the bradyzoite2. When bradyzoites are ingested 
by members of the felidae family, the definitive host, they differentiate into merozoite -an invasive and asexual 
form that will originate sexual gametocytes- and finally a sporulated form in oocysts, the sporozoite, as illustrated 
in Fig. 1A. Thus, the passage through the different life cycle stages allows the pathogen to adapt to diverse con-
texts by modulating its virulence and pathogenic potential3. While the stages of the biological cycle of T. gondii 
are characterized, the mechanisms that regulate the transitions between them are not completely understood. 
Different studies were directed to understand the phenomenon postulating that epigenetic regulation, changes in 
gene expression and subsequent activation/deactivation of genetic networks play a relevant role in the conversion 
from one stage to another4.

In order to understand how the Toxoplasma cycle is orchestrated, several systematic approaches have been 
implemented which are based on the application of high-throughput technologies (HTTs) in the field of epi-
genetics, genomics and proteomics. The protocols used include Chromatin immunoprecipitation (ChIP) in 
conjunction with microarray technologies (ChIP-chip)5,6, high-throughput sequencing (ChIP-seq) and gene 
expression studies based on microarray or sequencing technologies (RNA-seq)7,8. Given the range of experi-
mental conditions and the typical performance of these techniques, a new challenge arises: organize and analyze 
resulting information from new technologies in a coherent framework. The methodologies mentioned above can 
provide almost complete observations of complex biological systems and can lead to a deeper understanding of 
the problem at the systems level. Consequently, understanding biological systems requires HTTs data products 
integration which are used to build quantitative models for T. gondii. Systems biology is an emergent and multi-
disciplinary field that proposes new and rational approaches for the analysis of HTT-derived information in the 
field of infectious diseases9. One of these goals involves the inference of gene regulatory networks (GRNs) from 
large amounts of information, since it allows modeling the dynamics of complex systems in a single conceptual 
framework10–12. GRNs are dynamic systems whose states are determined by the expression levels of each gene or 
groups of genes (nodes), while the edges, or links, between nodes represent regulatory interactions; the network 
architecture can be understood as a graph13. Once the network is reconstructed it is possible to address a number 
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of different biological and biomedical questions such as the dissection of a key gene circuit involved in cellular 
differentiation14, the study of phenotypes related to health conditions, the development of new therapies, the 
design of perturbation experiments15 and interpretation of direct gene interactions such as transcription gene 
regulation through epigenomic data integration16,17. However, uncovering the GRN architecture represents a 
very difficult task, due to the limited amount of data available, many times affected noise, in comparison with 
the number of nodes in the network. Certainly, the fact that gene regulation involves feedback mechanisms and 
other nonlinearities, makes this challenge even more difficult18. In this sense, a computational techniques that 
allows for the reconstruction of a GRN from gene expression levels that overcome several major obstacles has 
been recently developed12 and applied to T. cruzi. Here we apply a GRN approach to study the Toxoplasma gondii 
life cycle, by integrating transcript expression data from sexual and asexual phenotypes as illustrated in Fig. 1B, 
obtained from the studies of Behnke et al.19 and Fritz et al.20, respectively. Despite the wide range of experimental 
conditions studied with different HTT, the only one that provides data on the life cycle of the parasite in a more 
comprehensive manner is still the microarray technology. This limitation could be overcome in the near future, 
allowing the integration of complementary data (for example, epigenetics) in more complete studies of this type.

Our proposed framework helps to reconstruct the network architecture which supports the six stages and 
the series of phenotypic transitions that make up the life cycle of T. gondii. The method was efficient to elucidate 
master key regulators involved in the analyzed phenotypical transitions. Most of the genes that are part of the 
subnetwork have not been characterized yet, while the presence of four dense granule proteins (GRA1, GRA2, 
GRA6, and GRA12) is highlighted. Finally, in silico perturbation experiments propose these key genes for future 
experimental studies in the tachyzoite to bradyzoite differentiation. Furthermore, by combining clustering meth-
ods and communities analysis it is possible to infer biological processes associated to these uncharacterized genes. 
While genes that are co-expressed tend to take part in the same processes and perform similar or complementary 
functions18, the inference of communities in the network allows to predict putative functions within the network.

We believe that the study of pathogen’s life cycles by gene network models leads to a thorough understanding 
of signaling pathways and their actors, being a powerful predictive tool for new molecular targets and diagnosis 
development as well as to assign functions to uncharacterized genes.

Results
Modeling the gene regulatory network of T. gondii.  In order to model the T. gondii GRN we assume 
that the state of the system at time t can be represented by a N-dimensional vector x(t) associated with the expres-
sion levels of N clusters of genes, or nodes of the network. The dynamics of the network corresponds to a Markov 
model of order one, where the present state depends on the previous state in a linear fashion, following this 
equation:

∑ θ ε+ Δ = + + + .μx t t w x t k t( ) ( ) ( )
(1)

i
j

i j j i i i,

Thus, the evolution of the system is governed by the matrix W and the external perturbations by kμ. The 
matrix elements wi,j tell us about the strength and type of the influence of cluster j on cluster i (wij < 0 indicates 
inhibition, wij = 0 indicates absence of influence, while wij > 0 indicates activation). The influence of environmen-
tal cues on genes are represented by μki .

The next step consists of determining which, and how, nodes are affected by the environmental cues. To this 
purpose, further to consider the available expression data, we also take into account known biological facts: (i) the 

Figure 1.  Toxoplasma gondii life cycle. (A) A schematic representation of the parasite biological cycle; (B) Expression 
profile of the parasite at the different life cycle stages. After a redundancy reduction procedure, we have found that 
the microarray dataset can be reduced to 545 clusters of genes. These variables can be represented in a heat-map of 
22 × 25 cells. The color of each cell in the heat-maps represents the activity level of a cluster. The activity level of each 
cluster is given by the average of the expression levels of genes belonging to the cluster. The clusters position in the 
heat-maps is the same for all states, to facilitate the comparison between them.
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life cycle of parasite has seven stages, but we include in our analysis transcriptional data available for five stages: 
immature oocysts, mature oocysts, tachyzoite, bradyzoite and merozoite; (ii) there are four possible transitions 
between these five stages, promoted by different environmental cues; (iii) The system fluctuates around one of 
attraction basins associated with the parasite stage; and (iv) the connectivity matrix is a sparse matrix. The avail-
able transcriptome data consist in six data points over the life cycle of T. gondii: oocysts day 0 (Od0), oocysts day 
10 (Od10), tachyzoite day 2 (Tzd2), bradyzoite day 4 (Bzd4), bradyzoite day 21 (Bzd21), and merozoite of cat #52 
(Mc52). Notice that the four external differentiation signals considered here, kμ with μ = 1, 2, 3, 4, are associated 
to the following phenotypic transitions: Od0 → Od10, Od10 → Tzd2, Tzd2 → Bzd21 and Bzd21 → Mc52, respec-
tively. The data point Bzd4 is part of the transition trajectory Tzd2 → Bzd21. We do not consider the transition 
Mc52 → Od0, since transcriptional data for micro- and macrogamete states are not currently available.

As described by Carrea et al.12, we perform the network reconstruction procedure in two steps. First, we focus 
on embedding the six data points into the dynamics of the network as steady states and on getting a connectivity 
matrix consistent with that. Then, considering the transitions between the different life cycle stages of the parasite 
and the previous connectivity matrix, we devise how external signals drive the phenotypic transitions.

Learning about the steady states.  The first step is to embed the attraction basins, associated with each 
stage, into the dynamics of the GRN. For this purpose, we consider the temporal evolution of the network, 
described by Eq. (1), without the influence of environmental cues, and apply the singular value decomposition 
(SVD) method to compute connectivity matrix W, as indicated in the corresponding Methods section. Since the 
elements of the connectivity matrix vary continuously, most of the inferred matrix elements are close to zero. 
Consequently, the number of predicted edges of the GRN is quite high in comparison to the number of regulatory 
links in known biological networks21,22. With the aim to achieve a dilute version of W, i.e. a matrix in which most 
of the elements are zero, we considered a kind of bootstrap method. As such, we have added different realizations 
of noise to the states corresponding to each stages, and constructed 500 training sets. By computing the minimum 
L2 norm solution for each training set, we are able to calculate a histogram distribution, P(wi,j), for each element of 
the connectivity matrix. In this manner, we assessed the merit of the weighted values by performing a location test 
(p-values 0.01) as indicated in Methods section. Then, we clip the non-significant weights to construct a sparse 
version of the connectivity matrix, Wss, able to support the parasite’s stages as steady states. At this significance 
level, there are 17,410 edges between the 545 gene clusters, i.e., around 94% of the elements of Wss are null. In 
order to quantify how the dynamics of the GRN with the matrix Wss, was able to capture the parasite’s stages as 
basins of attractions of the system, we calculated the overlap between the actual state and the target stage of the 
network. Figure 2A displays the trajectories illustrating the dynamics of the network around the steady stages. A 
zoomed view over the stage Tzd2 allows to appreciate that the course of the system (black lines) fluctuates in the 
basin of attraction associated with the Tzd2 stage indicated by the green dot, Fig. 2B. We perform simulations 
of the model for six different initial conditions chosen near to each stage and calculate the overlap between the 
state of the system at time t, and the states corresponding to the target stages for each simulation. Figure 2C dis-
plays the temporal behavior of these overlaps showing, in an alternative fashion, how the system can fluctuate 
around the basin of attraction associated to each parasite stage. This result suggests that once the system reaches 
an attraction basin it will move around within the basin as long as no external signal displaces the system from 
the basin. The size of fluctuations seems to vary from stage to stage leading to different perceptions of the size of 

Figure 2.  Embedding steady states. (A) The plot depicts the positions of the 6 stages of T. gondii represented by 
colored dots in the principal components space. First principal component accounts for 36.5% of the variance 
across the samples, while the second and third components explains 30.7% and 16.2%, respectively. Of course, 
the same variance percentages also correspond to the principal axes showed in Figs 5 and 7. The black lines 
around each stage correspond to the trajectories obtained using the model Eq. (1) without external signals. (B) 
Zoom view over the trajectory around the Tzd2 steady state. It can be observed that the state system fluctuates in 
the attraction basin associated with Tzd2 state; (C) Time course of the overlap between the system state at time t 
and the target stage: Od0 (blue), Od10 (red), Tzd2 (green), Bzd4 (yellow), Bzd21 (gray) and Mc52 (brown).
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basins. However, we observe that different initial conditions result in different size of fluctuations and to obtain 
a reliable estimation of size basins we need to run simulations for much longer periods and from many initial 
conditions. Getting a conclusion on the stability of the stage only inferred from the present analysis could not be 
reliable, since the dataset used here consists in only two biological replicates. Furthermore this analysis does not 
provide much information on the fluctuations of the system. Thus, we believe that this question could be properly 
addressed when single-cell RNAseq data for Toxoplasma becomes available.

The visualization of the obtained network is a challenging task, even with the low average node degree asso-
ciated to our sparse GRN (~6%). In order to overcome this, we show only a selected fraction of nodes grouped in 
seven communities without considering the self-regulatory links. As result Fig. 3 displays 1358 links with small 
p-value (10−130), while the complete set of 17,410 links, including self-regulatory links, is listed in Supplementary 
Table S1. The communities analysis of the network, depicted in Fig. 3, grouped nodes by clumps of nodes that 
were more connected to each other than to the rest of the graph23; as a result nodes were grouped in seven 
communities with acceptable value of modularity (Q = 0.49). A more restricted threshold (p-value smaller than 
10−130) reduces the average connectivity and increases the modularity of the community structure. Supplementary 
Fig. S1 depicts the modularity and the number of regulatory links in the resulting network when using different 
thresholds. Next, we analyzed gene ontology terms (associated molecular functions and biological processes) of 
the genes related to each community. In this manner, putative functions of uncharacterized genes can be inferred 
based on genes with a known function in the same community. A total of 338 of 708 genes in the network are 
uncharacterized, whereby processes and functions can be assigned based on the nodes with known functions that 
integrate the community.

Figure 3.  A directed graph representation of the T. gondii gene regulatory network. Nodes are grouped in 
seven communities. The color of the nodes identifies the membership with the corresponding community. By 
definition, nodes that are members of a community are more connected to each other than nodes belonging to 
other communities. Blue links represent up-regulation interactions between nodes, while red links represent 
down-regulation interactions. The arrows indicate the direction of regulation, i.e., from regulator to regulated. 
Additional details of communities and nodes are described in Fig. 4 and Supplementary Table S2.
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Nodes in community 1 participate, mainly, in oxidation-reduction and proteolytic process; 44 uncharacterized 
genes are part of this community. The analysis of community 2 indicates that 48 member genes with no known 
function, could participate in the DNA repair process. Community 3, that contains 66 uncharacterized genes, 
is integrated of genes associated to a variety of processes, but translational elongation stands out. Community 
4 genes are mainly associated to the biosynthesis of lipopolysaccharides, and include 50 uncharacterized genes. 
Community 5 contains 105 unknown genes while the rest of the genes are associated with proteolysis and cell 
adhesion. Interestingly, genes from community 6 participate in pathogenesis, including 25 uncharacterized genes. 
Members of this last group should be studied in more detail since genes associated to this community might 
be novel pathogenic determinants. Finally, community 7 does not contain uncharacterized genes, but the gene 
products that integrate it participate in the translation process. By means of a word cloud representation we illus-
trate the results obtained from the graph analysis in an intuitive manner, Fig. 4 and Supplementary Table S2. In 
conclusion, combining clustering methods and graph structure analysis allows to systematically assign processes 
and functions to a large group of genes in the network.

Obtaining meaningful information from a network with more than 10,000 links can be a bottleneck in the 
genome-wide network analysis. One manner to overcame this difficulty is by considering only those nodes which 
are key for the maintenance of each stage of the life cycle. Inasmuch as regulatory function of a given gene relies 
on its activity level, there genes with a key regulatory role in a particular stage, but which are irrelevant in states 
when their activity level is almost null (i.e., xi~0). With this idea in mind, we have built for each steady state 
graphs which emphasize those nodes with a key role as regulators. In this sense we have displayed only those 
nodes that markedly regulate more than 5 other nodes. We have considered a regulatory interaction as marked 
when it explains more than 5% of the activity of regulated node, i.e., when |wi,jxj| ≥ 5% of |xi|. Thus, this feature 
depends not only on the weight of the link, but also on the current activity level of the regulator node. The 
Supplementary Figs S2–S6 depict the link-derived networks corresponding to parasite’s stages Od0, Od10, Tzd2, 

Figure 4.  Main gene ontology terms of the communities. A word cloud plot resulting from the analysis of the 
gene ontology terms (biological processes) of the annotated genes belonging each community. Communities 
are composed by gene clusters (nodes) that participate in similar biological processes. The size of the words are 
proportional to the frequency of the term within community.
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Bzd21 and Mc52, respectively. The main regulatory nodes represented in these plots are listed in Supplementary 
Table S3. We have found that the five analyzed stages share thirty-three of these nodes, twenty one of these nodes 
are present in the network showed Fig. 3, and are listed in Table 1.

Modeling the phenotypic T. gondii transitions.  The second step in our analysis is to include in the GRN 
dynamics the phenotypic transitions between the stages embedded in the previous section. To this end we create 
a trajectories set, denoted by Dt, that consider the shortest possible path that join the initial stage of the pheno-
typic transition and the associated ending state, as indicated in Methods section. For construction, the size of Dt 
is smaller than the size of the GRN (i.e., M < N), consequently there are boundless solutions consistent with Dt. 
Among them we are interested in a particular one, the closest to the connectivity matrix Wss. Thus, the selected 
connectivity matrix, denoted by Wt, can be found by:

= + ⋅W W C V , (2)t D ss
T

t

where WDt
 is the solution of minimum norm in L2 computed by SVD for the trajectories set Dt. Css is matrix 

numerically obtained by optimizing the overdetermined problem posed in the Method section; Eq. (10). In this 
manner, the obtained matrix Wt is compatible with the trajectories set associated to the phenotypic transitions, 
but moreover supports the multistability associated with the different life cycle stages of the parasite. To check 
how this connectivity matrix is able to reproduce the dynamics of the parasite during its life cycle we implement 
the model Eq. (1) with the connectivity matrix Wt to make simulations by considering different environmental 
cues μ. In each case, the network model simulations run by 44 times steps starting from one stage of the life cycle, 
and storing the states of the system at each time step. The time course of the 545 variables corresponding to the 
activity level of nodes (gene clusters) of the network can be illustrated by mean of the principal components or is 
compiled in a movie. In Fig. 5 we plot 10 alternative trajectories for the phenotypic transitions Od0 → Od10, 
Od10 → Tzd2, and Bz21 → Mc52, in the principal components space. Each trajectory, associated to a given simu-
lated phenotypic transition is affected by identical environmental cue and start at the same initial state, however 
have a particular noise realizations. After 44 time steps the state of the system reached is consistent with the 
expected state considering the acting environmental cue. Alternatively, the complete temporal course of the sys-
tem, from the oocyst to merozoite stage is compiled in a movie, which is available as Movie S1. Hence, the model 
can emulate the observed dynamical behavior of T. gondii during its life cycle.

In our model the external cues that drive the phenotypic transitions are represented by parameters kμ. To get 
insights on which genes could be modulated by environmental signals we have identified gene clusters associated 
with μki -values greater than 95th percentile as those which are strongly activated by the acting environmental 
signals μ. In a similar manner, we identified those clusters associated with μki -values lower than 5th percentile as 
the ones which are strongly inhibited by the same external cue. In this analysis we identify 140 gene clusters as 
externally regulated nodes, listed in Supplementary Table S4. This set comprises a total of 220 genes, 96 of which 
are still functionally uncharacterized. Interestingly, 40 of these genes are related with antigens, like microneme 

Figure 5.  Environmental signals drive phenotypic transitions in T. gondii. The plot depicts three phenotypic 
transitions of the system under the influence of external cues obtained with our model Eq. (1), in the principal 
components space. Each transition comprises 44 time steps indicated by dots. In the plot we display 10 trajectories 
for each transition obtained with different noise realizations. Only the transitions Od0 → Od10, Od10 → Tzd2 and 
Bz21 → Mc52 are here represented. The transition Tzd2 → Bzd21 is better appreciated in Fig. 7A.
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(MIC) proteins, dense granule (GRA) proteins, SAG-related sequence (SRS) proteins, and rhoptry proteins 
(ROP). Likewise, two genes that encode glycolytic enzyme enolases are indicated as externally regulated during 
transition Tzd2 → Bz21 by our analysis (clusters 364 and 376). It is important highlight that enolases are recog-
nized as moonlight proteins, i.e., proteins that have dual functions24,25; in T. gondii enolases fulfill a second func-
tion as transcriptional regulators implicated in parasite differentiation and cyst formation26,27.

Further analysis is conducted to identify the circuit that drives the state of the system along the life cycle of 
the parasite as result of the external cues. This step requires to identify an small set of regulatory links and cluster 
genes from a network with more than 17,000 links. The number of putative gene circuits within a network with 
this dimension is quite large and the assessment of all subnetworks can result in an unfeasible task. As such, we 
scale down the space of the search by considering only those subnetworks formed mainly by gene clusters with 
many links. To that purpose, we search for cyclic graphs, that contain only regulatory clusters, in matrix Wt and 
evaluate the ability of the module to emulate the dynamics associated with the parasite life cycle. In order to do 
that, we have reduce our model to a binary version of Eq. (1), where the variables xi are binary and the system 
evolves following the equation:

∑+ Δ =





+ Θ +






μ

∗
x t t Sign w x t k( ) ( ) ,

(3)
i

j
i j j i i,

where∗ indicates that summation runs over the nodes belonging to the module. As final result we are able to 
recover a subnetwork with sixteen nodes whose topology is illustrated in Fig. 6. The parameter values associated 
to this subnetwork are the same that the ones determined by Eq. (2), and they are listed in Supplementary 
Table S5. The subnetwork illustrated in Fig. 6 is able to reproduce many features of the dynamics of T. gondii life 
cycle, such as the phenotypic transitions Od0 → Od10, Od10 → Tzd2, Tzd2 → Bzd21 and Bzd21 → Mc52. The list 
of nodes that composes this subnetwork includes: 274, 294, 327, 371, 442, 445, 460, 518 519, 520, 530, 531, 533, 
540, 542 and 545, which in turn comprises a total of twenty six genes. Fifteen of these genes still have no assigned 
known function, while the rest of genes already characterized include four genes associated with GRA proteins 
and other three genes associated with ribosomal proteins, and one coding for a redoxin domain-containing pro-
tein. Additional information about these clusters is given in Supplementary Table S6.

Finally, we perform in silico perturbation experiments on the clusters of this module with the aim to confirm 
the relevant role of these nodes in the network dynamics. With the aim to identify relevant genes for the system’s 
dynamics and since bradyzoite phenotype has an important role for the development of the chronic disease2, the 
perturbation analysis is focused over the tachyzoite to bradyzoite transition. Table 2 summarizes the result of the 
complete perturbation experiment over all subnetwork nodes in this transition. Figure 7 illustrates the influence 
of perturbation of node 274 in such phenotypic transition. While Fig. 7A depicts the transition of wild-type 
(WT) in the 3-dimensional space of principal components, Fig. 7B illustrates that deletion or knock-out (KO), 
of the 274 node prevents the system from reaching the bradyzoite stage. Additionally, over-expression (OE) of 
this node drives the state of the system even far from the expected fate like is depicted in Fig. 7C; this is consist-
ent with the expression matrix listed in Supplementary Table S7, line 276. Perturbations which are in the same 
direction of the WT does not impair the system to reach the expected fate. In this sense, Table 2 shows that there 
is always at least one perturbation without effect in the final fate, for example, the knock-down (KD) of the 274 
node does not cause any effect because this node is down regulated during this transition as can be appreciated in 

Figure 6.  Subnetwork module associated with life cycle of T. gondii. This module is the minimal subnetwork 
that explains the studied phenotypic transition of T. gondii. Green links represent up-regulation between nodes, 
while red links represent down-regulation. The arrows indicate the direction of regulation, i.e., from regulator 
to regulated. Detailed information about node composition of this module can be found in Supplementary 
Tables S5 and S6.
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Supplementary Table S7, line 276. Other examples are shown in Fig. 8A, where perturbation of nodes 519 (KO), 
442 (KD) and 540 (OE) impairs the ability of the system to achieve the bradyzoite stage from tachyzoite. It should 
be noted that node 442 is composed mostly of genes that codify for dense granule antigens, see Supplementary 
Table S6. This observation is interesting since these antigens are proposed as important factors to the develop-
ment of the asexual phase of the cycle, particularly in tachyzoite and bradyzoite stages28. In order to give signif-
icance to the above perturbation analysis of the module, we also perform perturbations on nodes which are not 
members of this subnetwork. In this sense we select at random 30 nodes with each one analyzed by perturbation 
in terms of knock-out, over-expression and knock-down during Tzd2 → Bzd21 transition. Figure 8B shows three 
examples of these control perturbations, where the system reaches the bradyzoite stage. We find that in only 6 
cases (~6.6%) the perturbation is successful in impairing that system to reach the final fate. Thus, the perturbation 
experiments suggest that the nodes proposed here could be suitable candidates for master key regulators.

Discussion
In this work, we integrated microarray expression data from five different phenotypes of the life cycle of T. gondii 
in a GRN model. The information of the phenotypic transitions between the different stages was used to imple-
ment a reverse engineering procedure which allowed us to reconstruct the connectivity matrix and determine 
parameter values linked to external modulations. From this matrix we identified a key network module that 
drives the phenotypical transitions, as well as the gene targets of the external modulations. In this way we embed-
ded the dynamics of the pathogen’s life cycle in a high-dimensional network system. Analysis of the reconstructed 
network can help in the search of master regulators in the adaptation of T. gondii to different environments. This 
adaptation is the result of the expression of certain genes during each state of the cycle and can be explained by 
predicted regulatory relationships between gene clusters, providing us a blueprint that characterize each pheno-
type. In this sense, our work can contribute to the search of new antigens specific for each phenotype of T. gondii 
life cycle with potential applications as diagnosis tools, for example, to differentiate between acute and chronic 
infections.

Clustering methods have been traditionally used to infer functions of uncharacterized genes18. Basically, 
genes with known function grouped with not yet characterized one would allow inferring the functionality of 
the latter genes. In particular, experimental data have confirmed that genes participating in similar processes are 
co-expressed during the T. gondii replication cycle, even preserving the same cis-regulatory elements29. However, 
since of the 7,798 genes represented on the T. gondii chip 3,671 are not characterized, many clusters were com-
pletely integrated by uncharacterized genes. This feature, common in non-model organisms, can impair the 
gene function prediction task, via clustering methods. Alternatively, in a previous study on the Apicomplexa 
Plasmodium falciparum, authors have assigned functions to thousands of uncharacterized gene modeling the 
parasite interactome, by using the Bayesian approach30. Here we performed a further analysis based on com-
munities in the gene interaction network23 to improve the gene annotation task. The identification of commu-
nities in a graph and the subsequent study of the structure of these communities allow to determine functional 
motifs within a molecular network31,32. Our enrichment analysis over the biological process of every gene in each 

Cluster 
ID #genes

#marked 
links Community Molecular Function Biological Process

1 1 67 1 microtubule motor activity (GO:0003777) oxidation-reduction process (GO:0055114)

6 1 83 2 DNA repair (GO:0006281) DNA recombination (GO:0006310)

75 14 2 3 nucleic acid binding (GO:0003676) translational elongation (GO:0006414)

263 1 132 1 microtubule motor activity (GO:0003777) oxidation-reduction process (GO:0055114)

327 4 66 5 aspartic-type endopeptidase activity (GO:0004190) proteolysis (GO:0006508)

330 2 70 5 aspartic-type endopeptidase activity (GO:0004190) proteolysis (GO:0006508)

359 1 66 2 DNA repair (GO:0006281) DNA recombination (GO:0006310)

374 1 105 4 protein kinase activity (GO:0004672) protein phosphorylation (GO:0006468)

442 5 102 6 protein kinase activity (GO:0004672) pathogenesis (GO:0009405)

459 1 95 4 protein kinase activity (GO:0004672) protein phosphorylation (GO:0006468)

474 2 178 3 nucleic acid binding (GO:0003676) translational elongation (GO:0006414)

478 1 157 1 microtubule motor activity (GO:0003777) oxidation-reduction process (GO:0055114)

501 1 52 1 microtubule motor activity (GO:0003777) oxidation-reduction process (GO:0055114)

513 6 76 5 aspartic-type endopeptidase activity (GO:0004190) proteolysis (GO:0006508)

518 1 97 5 aspartic-type endopeptidase activity (GO:0004190) proteolysis (GO:0006508)

519 3 91 5 aspartic-type endopeptidase activity (GO:0004190) proteolysis (GO:0006508)

520 1 73 5 aspartic-type endopeptidase activity (GO:0004190) proteolysis (GO:0006508)

531 1 98 2 DNA repair (GO:0006281) DNA recombination (GO:0006310)

540 1 67 3 nucleic acid binding (GO:0003676) translational elongation (GO:0006414)

542 1 74 5 aspartic-type endopeptidase activity (GO:0004190) proteolysis (GO:0006508)

545 1 134 2 DNA repair (GO:0006281) DNA recombination (GO:0006310)

Table 1.  Regulatory clusters common to all the parasite’s stages. The communities to which each cluster belongs 
and the most representative gene ontologies are detailed.
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Cluster ID KO OE KD

274 − − +

294 + − +

327 + + −

371 + + −

442 + + −

445 + + −

460 + − −

518 + − +

519 − − +

520 + − +

530 + − +

531 + − +

533 + − +

540 + − +

542 − − +

545 + + −

Table 2.  Summary of in silico perturbation experiments over subnetwork nodes. The experiment was 
performed on the transition from tachyzoite to bradyzoite steady states. The cases in which the system reaches 
the bradyzoite stage are indicated with the symbol “+” while those in which it is not reached are indicated with 
symbol “−”. KO: knock-out; OE: over-expression; KD: knock-down.

Figure 7.  The role of node 274 on phenotypic transition Tzd2 → Bzd21. (A) A three principal components 
representation of Tzd2 → Bzd21 transition obtained with our model Eq. (1). Colored large dots represent 
the Tzd2 (green), Bzd4 (yellow) and Bzd21 (gray) states, while small dots represent transient states during 
the transition; (B) Trajectory of the system when node 274 was deleted. Our model predicts that with this 
mutation the system can not complete the Tzd2 → Bzd21 transition. (C) Time course of the overlap between the 
current state of the perturbed network and Bzd21 stage obtained with our model. We explore four alternative 
simulations of two different perturbations over node 274: over-expression (OE) and knock-out (KO).
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community reveals that particular processes are predominant in different communities. By combining cluster-
ing and communities analyses it could be possible to infer the biological processes of uncharacterized genes. 
Using this analyses over a net of 708 genes grouped by clusters, Fig. 3, we were able to predict the function of 
338 uncharacterized genes. Thus, our extended gene clustering procedure could be useful to predict common 
cis-regulatory elements, design experiments for determination of protein-DNA interactions, and to improve our 
current knowledge of the transcriptional regulatory network, as previously reported13,16.

Furthermore, our framework was able to predict a module that governs transitions between T. gondii steady 
states. This key network module is formed by sixteen clusters that could explain transitions between steady states. 
Most of these genes that integrate the master regulator of T. gondii are uncharacterized proteins. We have high-
lighted in this module the presence of dense granule proteins, as components of the cluster 442. GRA proteins 
constitute a group of relatively small proteins that are important for the development and metabolism of the par-
asitophorous vacuole, a highly dynamic compartment defining the replication permissive niche for the actively 
growing tachyzoite form of the parasite28,33,34. Our in silico perturbations experiments confirm that knock-out or 
over-expression of the cluster 442 do not prevent transition from tachyzoite steady state to bradyzoite steady state 
but knock-down of these genes could affect parasite cell fate when tachyzoite to bradyzoite transition is evaluated 
in our model. This observation is consistent with previous published results for GRA6 protein, where a biological 
role in cyst differentiation is proposed35. In addition, previous studies on a mutant ΔGRA2 strain are interesting 
since it tends to develop cysts in vivo unlike the wild-type counterpart36; while GRA1 is an essential factor for host 
invasion and replication37,38. A similar perturbation analysis over thirty clusters selected at random, have scarce 
ability to alter the dynamics of the system, supporting the key regulatory role proposed by our model.

In conclusion, in this work we confirm that our previous mathematical approach can be extrapolated to other 
protozoan pathogens allowing to reveal a subnet of master regulators that explain the dynamics of the transitions 
between the different phenotypes of T. gondii. These findings suggest that genes coding for GRA proteins could 
have a key role as regulators in tachyzoite to bradyzoite differentiation. This result is in agreement with a former 
study and reinforces the postulated role of GRA proteins in bradyzoite cysts development39. Consequently, exper-
imental data based on perturbation experiments of the modeled network are necessary to confirm these observa-
tions. Finally, the methodologies here employed for the analysis of the modeled GRN could be useful to predict 
processes and functions of uncharacterized genes.

Methods
Data normalization.  In this work we have used two microarray experiments made with the same chip40 and 
performed over type II clonal strains, M4 and TgNmBr1. In one of the studies Fritz et al.20 presents transcriptomic 
series of in vitro tachyzoite, in vivo and in vitro bradyzoite and complete oocyst development. On the other hand, 
in the second study Behnke et al.19 describes global gene expression of merozoite stage and integrate his results 
with the data obtained in the first study. Data sets are comparable19 and are accessible on GEO-database 
(Accession no.: GSE32427 & GSE51780). These experimental series represent expression analysis of five of the 
seven stages that comprises the life cycle of T. gondii. Expression was evaluated per replicate at different times for 
each state and we selected the following data sets to analyze: oocysts day 0 (Od0) and oocysts day 10 (Od10, 
mature oocysts), tachyzoite day 2 (Tzd2), bradyzoite day 4 (Bzd4) and bradyzoite day 21 (Bzd21), and merozoite 
of cat #52 (Mc52). The chip used in both studies provide whole genome expression profiling, using at least 11 
perfect match probes for each of the ~8000 genes in the T. gondii genome, including both the apicoplast and 
mitochondrial genomes. Its also includes a variety of controls (actin, hypoxanthine-xanthine-guanine phosphor-
ibosyl transferase, yeast housekeeping genes and mismatch probes), immune effector molecules (cytokines, 
receptors, etc.), and genes whose expression is suspected from previous studies to be altered by infection. More 
information about microarray can be found in the web41 and in40. Microarray data of the two data sets were 
loaded into R software using the affy package from Bioconductor Project and processed using Robust Multi-array 

Figure 8.  Perturbation experiments of transition Tzd2 → Bzd21. (A) Time course of the overlap between the 
network state at time t and the Bzd21 stage predicted by our model Eq. (1) for three perturbation over different 
nodes (519, 442 and 540) affecting the transition Tzd2 → Bzd21. (B) Time course of the overlap between the 
network state at time t and the Bzd21 stage predicted by our model for three different knock-outs: node 314 
(red), node 318 (blue) and node 387 (green). Notice that these disturbances do not prevent the system from 
reaching stage Bzd21. In all cases dots represent transient states between the steady states.
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Average (RMA) and quantile normalization42. The relative signal recorded at stages α = 1, 2, 3, 4, 5, 6, for the 
probe i and biological replicates j = 1, 2, was denoted by αyi

j. These relative intensities were averaged over all rep-
licates, i.e, = ∑α αy yi j i

1
2

j j. Control data was eliminated and only expression data from specific T. gondii probes 
were analyzed, which give us a normalized expression set of 7,798 probes for each sample. Thus, the expression 
level at time point α for the probe i is the quantity denoted by = 〈 〉α α α

αx y yln[ / ]i i i . Supplementary Table S8 pro-
vides the normalized expression levels, αxi , for each probe i and stage α, used in the next step.

Redundancy reduction procedure.  With the aim of reducing the redundancy in the experimental data 
set, we use an agglomerative hierarchical clustering method to group genes with similar expression levels. In 
particular, we use an unweighted pair group method known as UPGMA. The clustering procedure is halted 
when it reach a number of clusters, Nc, that is convenient for the data-set under study, but which is not known in 
advance43. In order to estimate Nc, we perform the agglomerative procedure for different Nc values, and calculate 
a measure of the clustering merit, known as Davies-Bouldin index (DBI)44. This index is defined as:

∑
δ δ
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where 
 −c ck j  denotes the distance between the centroids of clusters k and j, and 

 N c xk k i k i
1δ = ∑ −−  is a meas-

ure of the gene dispersion within the cluster k, which has Nk genes. Low DBI-values indicate good cluster struc-
tures. However, we can always obtain lower DBI-values just by increasing Nc enough. Consequently, the adequate 
value of Nc must be a trade-off that involves a balance between accuracy and redundancy reduction. 
Supplementary Fig. S7 depicts the DBI versus the number of cluster for the data set used here. One can see that the 
clustering merit presents a local minimum at Nc = 545, and because of this we chose this value as the suitable Nc 
for the agglomerative procedure. As a result, the expression values of the 7,798 genes were organized in 545 clus-
ters, and the intra-cluster averages (i.e., = 〈 〉α α

∈x xj i i clusterj) were taken as dynamical variables for the subsequent 
modeling. The cluster membership of each gene is listed in Supplementary Table S9, while Supplementary 
Table S7 gives the mean values of the expression levels, αxj  for each stage α and cluster j. The resulting average 
levels, αxj , corresponding to the six stages of life cycle of T. gondii are illustrated in 2D array plots of Fig. 1B.

Reverse engineering methods.  The gene network model and parameter estimation.  In this study we use 
a linear model for the network, as in other previous works that have dealt with temporal profiles of expression 
data18,45–47. In particular, we implement this model in the framework of continuous variables but with discrete 
time for the evolution. This framework has two interesting advantages: (i) the assessment of model parameters 
does not have a high computational cost18, and (ii) it can take into account additive fluctuations. In this network 
model, the system state at time t is determined by the activity level of the N clusters of genes forming the network, 
denoted by the vector = …t x x xx( ) ( , , , )N1 2 . The equation governing the temporal evolution of the linear GRN 
can be written as:

∑ θ ε+ Δ = + + +μx t t w x t k t( ) ( ) ( ),
(5)

i
j

i j j i i i,

where we have added a white Gaussian noise term, ε(t). wi,j are the weights of the regulatory links present in the 
connectivity matrix W, θi is a constant that indicates how much the gene cluster i is expressed in the lack of inputs, 
and μki  is the impact of the external signal cue μ over gene cluster i. Notice that we can write the predicted state of 
cluster i in a more compact manner:

θ+ Δ = … . …μx t t w w w k x x x( ) ( , , , , , ) ( , , , , 1, 1), (6)i i i i N i i N,1 ,2 , 1 2

where μ corresponds to the acting external signal and parameters θi and μki  have been used to extend the matrix 
W. We assume that our available gene expression data can be represented by M pairs of input-output, defining the 
training set D = {X, Y}. The columns of the input matrix xμ, which represents the state of the system at time t, can 
be mapped by the model to the columns of the output matrix, that is:

= = …v My Wx 1, , , (7)v v

where yv is the state of the system at time t + Δt. To compute the matrix W that performs this mapping we mini-
mize the cost function ∑ −⁎y yv v v , where ⁎yv  is the predicted state, =⁎y Wxv v. This minimization problem has 
many alternative solutions when M < N, one of which is the minimum L2–norm solution, denoted here by WL2

. 
This solution can be written as = ⋅ ⋅X U S VT T, where U, S, and V are the matrices of the singular value decom-
position of X46,48. Thus, the minimum L2–norm solution WL2

 is given by:

= ⋅ ⋅ ⋅ .−sW Y U Vdiag( ) (8)L j
T1

2

Unfortunately, when we are dealing with GRN the number of genes is usually larger than the number of exper-
iment (i.e., M N ) and there is an infinite number of solutions compatible with the training set D. However, 
there exist a closed-form expression for all solution of Eq. (7) in terms of WL2

:

= + ⋅CW W V , (9)L
T

2
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where elements cij are 0 if sj ≠ 0, otherwise they have arbitrary values. Following previous studies12,46 we can take 
advantage of this arbitrariness. First, we use the minimum L2–norm solution WL2

 to insert the six stages of T. 
gondii as steady states of the network dynamics. This will be described in the next subsection. Second, we take into 
account the knowledge about phenotypic transitions to reveal the influence of environmental signals. For this 
purpose we use Eq. ((9)) and the minimum L2–norm solution WL2

 computed in the first step.

Embedding the steady states.  In this first step of the inferring procedure we construct a training set Dss with size 
M. To this end, different noise realizations associated with each stage α were added to obtain the columns of input 
and output matrices as follows:

ε

ε

= +

= + = …

α

α ′

x

x j N

x

y

{ } { },

{ } { } with 1, , ,

v
j j

i

v
j j

i

where the index α runs from 1 to 6, the index v runs form 1 to M and the indexes i and i′, which correspond to 
different realizations of noise, run from 1 to 50; consequently M = 6 × 50 = 300. εj is taken from a Gaussian dis-
tribution (ε = 0 and σε equal to 1% of the standard deviation of the data). This procedure extends the size of the 
training set and allows the network to have a dynamic similar to that of the behavior of the parasite during its life 
cycle.

In order to construct a connectivity matrix with a low connectivity degree we need to discriminate whether 
the estimated matrix elements wi,j are 0 or a value significantly different from 0. To this end, we have constructed a 
number of 500 training sets and computed the associated solution to each set. From this set of 500 slightly differ-
ent solutions we have computed the histogram distribution for each weight, P(wi,j). Then, we implemented a loca-
tion test for the distributions P(wi,j), as described in12. After that, we set to zero all weights with p-value greater 
than 0.01, otherwise the hypothesis is accepted, the assigned to wi,j the average of the distribution. In this manner 
we construct a sparse matrix, denoted hereafter by Wss, which is consistent with the set of states present in D.

Embedding the phenotypic transitions.  In the second step, we extend our analysis to insert the phenotypic transi-
tions and determine the environmental cues that drive the transitions. We assume that transitions between states 
take place progressively passing through transient states along the shortest trajectory that link the initial stage α 
and final stage β. In this manner, when the system is driven by external cue, from state xα to the target state xβ, it 
makes successive transitions between transient states. The succession of these transient states, denoted by xα,β(t), 
can be constructed by:

= − + = … .α β α βt n t t n t nx x x( ) (( ) )/ with 0, 1, 2, ,i i i
,

In order to embed the transitions α β→  into the network dynamics, we make a further training set, denoted 
by Dt, by means of the transient states xα,β(t). The matrix’ columns xv and yv are given by:
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In this paper we have considered four phenotypic transitions: Od0 → Od10, Od10 → Tzd2, Tzd2 → Bzd21, 
and Bzd21 → Mc52. The transition Tzd2 → Bzd21 includes the stage Bzd4 as part of the transition trajectory. For 
each transition, we consider 44 small transitions, i.e. ni = 44, bringing the size of Dt to M = 176. Since size of Dt is 
smaller than the number of clusters N, there are many solutions consistent with this training set. Among all of 
them we are interested in the solution which is the nearest to the previously determined Wss. In order to deter-
mine this solution, we computed the smallest L2 norm solution associated to Dt, denoted by WDt

, and by using Eq. 
(9) we estimate the matrix Css by mean of the equation:

= + ⋅ .W W C V (10)ss D ss
T

t

Determining the elements of matrix Css from Eq. (10) is an overdetermined problem. We address this optimi-
zation problem by using the interior point method as in12,46. Then, the elements of matrix C so obtained were used 
to calculate the particular solution, represented by Wt, by using = + ⋅W W C Vt D ss

T
t

. This new connectivity 
matrix is compatible with the phenotypic transitions present in training set Dt, and it is also the most similar 
solution to Wss.

Community analysis.  One innovative concept for network analysis is known as community structures. 
Communities can be defined as groups of nodes with many edges joining nodes within the same group and 
comparatively few edges joining nodes of different groups or communities. To find communities on the regula-
tory network obtained in the previous inference process we use the method of random walk edge betweenness, 
proposed by Newman and Girvan23. This method is based on the concept of edge betweenness, which is defined 
as the number of shortest paths between node pairs that run along this edge, summed over all node pairs. Briefly, 
the Newman-Girvan algorithm involves calculating the betweenness of all edges in the network and removing 
the one with highest betweenness. By repeating this process the groups are separated from one another and the 
underlying community structure of the network is revealed. This analysis was implemented with the R-package 
Community Detection using Modularity Suite49. The procedure above leads to some partition of the network into 
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communities even in networks without a significant community structure. For this reason, a measure of the good-
ness of the structure found is mandatory. For this purpose we used in this paper a measure called modularity23 
which is defined as:

∑ ∑=
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where the element eij is the fraction of all links in the network that connect nodes in community i to nodes in 
community j and N is the number of communities in the network. The modularity ranges in values from 0, when 
number of intra-community edges is equal or less than a in random network, to 1 which corresponds to the 
strongest community structure.
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