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Abstract: Multidrug-resistant Klebsiella pneumoniae (MDR Kp), in particular carbapenem-resistant Kp
(CR-Kp), has become endemic in Italy, where alarming data have been reported on the spread of
colistin-resistant CR-Kp (CRCR-Kp). During the period 2013-2014, 27 CRCR-Kp nosocomial strains
were isolated within the Modena University Hospital Policlinico (MUHP) multidrug resistance
surveillance program. We retrospectively investigated these isolates by whole-genome sequencing
(WGS) analysis of the resistome, virulome, plasmid content, and core single nucleotide polymorphisms
(cSNPs) in order to gain insights into their molecular epidemiology. The in silico WGS analysis of
the resistome revealed the presence of genes, such as blaKPC, related to the phenotypically detected
resistances to carbapenems. Concerning colistin resistance, the plasmidic genes mcr 1-9 were not
detected, while known and new genetic variations in mgrB, phoQ, and pmrB were found. The virulome
profile revealed the presence of type-3 fimbriae, capsular polysaccharide, and iron acquisition system
genes. The detected plasmid replicons were classified as IncFIB(pQil), IncFIB(K), CoIRNAI, IncX3,
and IncFII(K) types. The cSNPs genotyping was consistent with the multi locus sequence typing
(MLST) and with the distribution of mutations related to colistin resistance genes. In a nosocomial
drug resistance surveillance program, WGS proved to be a useful tool for elucidating the spread
dynamics of CRCR-Kp nosocomial strains and could help to limit their diffusion.

Keywords:  Klebsiella pneumoniae; MDR nosocomial spread; whole-genome sequencing;
genetic relatedness
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1. Introduction

Klebsiella pneumoniae (Kp) is a Gram-negative bacterium that can colonize or cause infections in
hospitalized patients. Multidrug-resistant (MDR) Kp strains show high-level resistance to 3-lactams,
aminoglycosides, quinolones, tigecycline, and colistin. In particular, the carbapenem-resistant Kp
(CR-Kp) pathogen represents a worldwide challenge due to its high mortality rates. It has become
endemic in Italy, where there have been several reports of hospital outbreaks [1-5].

Various carbapenem resistance mechanisms have been identified; however, the mechanism that
most frequently occurs is related to Kp carbapenemase (KPC) production [6].

The increasing spread of nosocomial MDR Kp has led to the reintroduction of colistin, which is
one of the few widely available therapeutic options for CR-Kp infections [7]. As a consequence of this
renewed use, the isolation of colistin-resistant CR-Kp (CRCR-Kp) strains has gradually increased in
Italy [8,9].

Prior to 2015, colistin resistance had only been linked to mutational and regulatory changes
mediated by chromosomal genes [10]. Gene modifications involved in efflux pump component
encoding have also been correlated with colistin resistance [11]. Moreover, plasmid-encoded colistin
resistance genes have been reported to be transmissible resistance mechanisms in Enterobacteriaceae.
The presence of colistin resistance genes in mobile genetic elements poses a significant public health
risk, as these genes can spread rapidly by horizontal transfer and require global monitoring and
surveillance [12].

Methods for discriminating and characterizing different Kp isolates are essential to the optimization
of infection control resources. Systems based on phenotypes (serotype, biotype, or antibiogram) and
molecular methods (multi locus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE),
and repetitive extragenic palindromic PCR (rep-PCR)) have been used for many years. Despite the
increase in discrimination power from MLST to methods that interrogate the entire genome, such as
PFGE and rep-PCR, these techniques may not provide sufficient resolution between strains due to Kp’s
high clonality [13].

This limitation has been overcome with improvements in sequencing technologies.
Whole-genome sequencing (WGS) is positioned to become an essential epidemiological and clinical
tool for day-to-day infection control and, for some pathogens, a method for detecting the molecular
mechanisms that underlie antibiotic resistance, virulence factors, and plasmid diffusion [14].

At Modena University Hospital Policlinico (MUHP), a 677-bed tertiary care hospital in northern
Italy, CR-Kp has been continuously isolated since 2008, and a joint infection control and antimicrobial
stewardship program was initiated in 2012. During the period 20132014, 27 CRCR-Kp nosocomial
strains were isolated and investigated by MLST as part of the surveillance and infection control program.

The objective of this study was to use in silico WGS to retrospectively analyze these strains in
order to better understand CRCR-Kp spread dynamics. We used web tools and bioinformatics software
to characterize the resistome, virulome, plasmid content, and core single nucleotide polymorphisms
(cSNPs). WGS data were then correlated to the clinical-epidemiologic context.

2. Results

2.1. Antimicrobial Susceptibility, Carbapenemase Phenotype Detection and MLST

Allisolates showed resistance to carbapenems, beta-lactams, ciprofloxacin, fosfomycin, aminoglicosyde,
and colistin. Additionally, 21 of 27 (78%) and 18 of 27 (67%) strains were found to be resistant to
trimethoprim-sulphonamide and to tigecycline, respectively. Phenotype testing for carbapenemase showed
that all isolates were class A carbapenemases (Table 1 and Supplementary Table S1).

The MLST showed that all samples belonged to Clonal Complex (CC) 258. Twenty-five strains
were assigned to sequence type (ST) 512, and two strains were assigned to ST258 (Table 1).
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Table 1. Antimicrobial susceptibility profiles, carbapenemase class and MLST of 27 CRCR-Kp
isolates. Antimicrobial susceptibility profiles: dark grey, grey, and white colors represent resistant,
intermediate and sensitive strains respectively. GEN, Gentamicin; AMK, Amikacin; IPM, Imipenem;
MEM, Meropenem; ETP, Ertapenem; CIP, Ciprofloxacin; TMP/SMX, Trimethoprim/Sulphonamide;
TGC, Tigecycline; COL, Colistin; AMC, Amoxicillin clavulanate; TZP, Piperacillin/Tazobactam; AMP,
Ampicillin; CPM, Cefepime; CTX, Cefotaxime; FOX, Cefoxitin; CAZ, Ceftazidime; FOS, Fosfomycin.

2
Isolate Z % S 2 B~ & E Q 8 € & & 3 X X N @ Carbapenemase
ID 8 E: = E B O E 8 8 E} E E: b 5 8 U & C(lass (Enzyme) MLST
=
KpMO1 A 512
KpMO2 A 512
KpMO3 A 512
KpMO4 A 512
KpMO5 A 512
KpMO6 A 512
KpMO7 A 258
KpMO8 A 512
KpMO9 A 512
KpMO10 A 512
KpMO12 A 512
KpMO14 A 512
KpMO15 A 512
KpMO16 A 512
KpMO17 A 512
KpMO19 A 512
KpMO20 A 512
KpMO21 A 512
KpMO22 A 512
KpMO23 A 512
KpMO24 A 512
KpMO25 A 512
KpMO26 A 512
KpMO27 A 512
KpMO28 A 258
KpMO29 A 512
KpMO31 A 512

2.2. Whole-Genome Sequencing and in Silico Data Analysis

The assembly statistics for each genome are reported in Supplementary Table S2.

2.2.1. Resistome Analysis

The data on antibiotic resistance due to the presence/absence of genes and the mutations that were
detected in colistin resistance chromosomal determinants are reported in Figure 1.
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EpMO3 wt it Cl68A"* wit
KpMOd wt wi wi wi
FpMO35 wt wit ms TR0 1(GAC)H wit
EpMO6 wt wit meT9B0L(GAC) wi
KpMO7T wit wt T137A"
FpMOSs CE5T wit wit wit
KpMO3 155-Eke ot wt wi
EpMO10 C55T wit wit wit
EpMO12 wt wit ineT99/301(GAC)H* wi
EpMOI14 Antd1/T0* it wt C284T~
Kph'[OlE wt wit e TOOB01NGAC)” wit
KpMO16 wt wt nsT99/801(GAC)” wi
EpMO17 A locas A locus wit wi
K;MOI'B wt wit e TOOB01NGAC)” wit
EpMOZ0 AnteL/T0* wt wit wi
EpMOZ1 Ante1/70* wt wi wi
EpMOIZ Antel/T0* wit wit wit
EpMO2I3 AnteL/T0* wt wit wi
EpMOZ4 wt wt me7 9980 1GAC)H wi
Kph'ICIZE wt wit e TOOB01NGAC)” wit
EpMOZ6 AnteL/T0* wt wit wi
EpMO2Z7 Anta1/T0* it wt wit
KpMO25 wt wt T260C" wt
KpMO29 wt wwt nsT99/801(GAC)” wi
EpMO31 wt wt me7 9980 1GAC)H wi

Figure 1. Resistome data. Resistome data obtained by ResFinder-2.1 software, Pasteur MLST Kp database and running BLAST are here summarized. In particular,
in the left box, grey and white colors represent gene presence and absence respectively; in the right box the colistin-resistance related mutations are grouped.
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The revealed genes are grouped with respect to the related resistance mechanism.
Concernig colistin resistance, many different mechanisms have been reported. Prior to 2015,
colistin resistance had only been linked to mutational and regulatory changes mediated by chromosomal
genes controlling lipopolysaccharide (LPS) modifications. In Kp, the LPS modification is mediated
by the activation of different two-component regulatory systems (TCRSs): PmrA/PmrB, PhoP/PhoQ,
and CrrA/CrrB. TCRS mutations can cause constitutive expression of the pmrCAB and pmrHFIJKLM
operons. Moreover, inactivation of the PhoQ/PhoP negative regulator encoded by mgrB has been
suggested to play a prominent role in colistin-resistance in Kp [10] Moreover, plasmid-encoded
mcrl-mcr9 genes have been reported as a transmissible resistance mechanism in Enterobacteriaceae [12].

The mcr genes absence and the neutral mutations are not presented in the figure. * New mutations
in colistin-resistance related genes detected in this study.

The percentage similarity in the alignment between the best-matching resistance gene in ResFinder
and the corresponding sequence in the input genome ranged from 97.14 to 100, with a 100%
query/high-scoring segment pair (HSP) length.

We found the presence of genes associated with resistance to aminoglycosides (aadA2, aph(3’)-Ia,
and aac(6’)-Ib), quinolones (oqxA, ogxB, aac(6’')-Ib-cr, gyrA-B, and parC-E), macrolide (mphA),
sulfhonamide (sul1), fosfomycin (fosA), and trimethoprim (dfrA-12). Alleles of multidrug efflux
system and regulator genes (acrA-B-R, envR, fis, marA-R, oqxA-B-R, ramA-R, rarA, rob, sdiA, and soxR-S)
and heavy metal resistance determinants (pcoA-B-C-D-E-R-S and silC-E-R-S) were quite uniformly
detected as reported in Figure 1.

The p-lactamase characterization demonstrated the presence of blaKPC-2/blaSHV-12 and
blaKPC-3/blaSHV-11 in the ST258 and ST512 strains, respectively. blaTEM-1A and blaOXA-9 were
present in all but two isolates (KpMO4 and KpMO?).

Concerning genetic determinants related to colistin resistance, the BLAST results and ResFinder
analysis revealed several genetic modifications in chromosomal loci and the absence of the plasmidic
genes mcr 1-9, respectively. Compared with the Kp-ST512-K30BO and Kp-HS11286 reference sequences,
allisolates showed wild-type acrAB, pmrHFIJKLM, crrA, kpnEF, lpxM, phoP, and pmrACD loci. All samples
showed two neutral crrB point mutations (the silent A84C and the missense A887T, corresponding
to the neutral amino acid change L.296Q in the CrrB protein) and two silent pmrD point mutations
(T162C and C195T) with respect to the ST11-HS11286 reference sequence.

As shown in Figure 1, significant new alterations were found in mgrB, phoQ, and pmrB. In particular,
we found seven new mutations, including a 10-nucleotide deletion in mgrB, a point mutation in the
mgrB promoter, an insertion in phoQ, and two point mutations in both phoQ and pmrB.

These new variants were defined by a literature search and a BLAST search, and were found to
not match the Kp gene sequences/genomes in the GenBank database. Three different types of non-silent
mgrB alterations (deletions, nonsense mutations, and an insertional inactivation) were detected in 13
of 27 isolates. Eight isolates (KpMO1, KpMO14, KpMO20-23, KpMO26, and KpMO27) exhibited a
new 10-nucleotide (nt) deletion (Ant61/70). This deletion causes a frame shift with consequent double
amino acid (aa) substitutions (T21L and Q22T) and the production of a 22-aa, C-terminal truncated,
and most likely nonfunctional MgrB protein. At the level of the mgrB promoter, a new point deletion,
—-55AG, was detected in KpMO?.

Sequence analysis of the phoQ gene revealed mutations in 12 of 27 isolates. Ten of these (KpMO5,
KpMO6, KpMO12, KpMO15, KpMO16, KpMO19, KpMO24, KpMO25, KpMO29, and KpMO31) showed
a new 3-nt insertion (ins799/801(GAC)) generating the addition of an aspartic acid (D266_267insD).
KpMO12 also had the phoQ neutral mutation C1369G (the Q457E aa change). KpMO3 and KpMO28
each had one new missense mutation in phoQ (C168A (S56R) and T260C (L87P), respectively).

The pmrB gene was found to have two new missense mutations (T137A (V46E) in KpMO7 and
C284T (P95L) in KpMO14). In KpMO4, no mutation that could explain the colistin resistance was found.

PROVEAN analysis predicted a deleterious impact on the biological protein function of all of the
new mutations except one (C1369G in the phoQ gene) (Table 2).
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Table 2. PROVEAN analysis of new mutations in colistin-resistance related genes.

Nucleotide

Gene . Protein Variant PROVEAN Score Prediction (Cutoff = —2.5)
Mutation
T21L —2996 Deleterious
mgrB Ant61/70 Q22T —6000 Deleterious
M23_W47del —125,068 Deleterious
C168A S56R -3.359 Deleterious
phoQ ins799/801(GAC) D266_K267insD —-8.067 Deleterious
T260C L87P —4.65 Deleterious
T137A V46E —4.063 Deleterious
pmrB
C284T P95L -9.604 Deleterious

Apart from the new mutations in colistin-related genes, we found some well-known mgrB
resistance mechanisms, namely the C88T point mutation, a complete lack of the gene, and an
insertional inactivation.

Three samples (KpMO2, KpMOS, and KpMO10) showed the previously known C88T mutation,
which generates a premature stop codon and produces a truncated, nonfunctional, and 29-aa-long
protein. Moreover, KpMO17 exhibited a 1879-nt mgrB genetic environment deletion, including a large
region upstream (part of the gene encoding the major facilitator superfamily protein and the kdgR
and yobH genes) and within the mgrB gene (the mgrB promoter and the first mgrB 132/144 coding nt,
the A locus).

Finally, in KpMO9, mgrB was found to be completely disrupted by a 1196-nt insertion
sequence (IS5-like) at the level of the 74-75 nt positions (best match with the AO-1367 Kp strain,
accession No. KP967591.1) [15].

2.2.2. Virulome Analysis

The virulence repertoire was represented by type-3 fimbriae (the mrk operon),
capsular polysaccharides (cps cluster genes associated with the K type (K) and the K locus (KL)),
and iron acquisition systems (the fyu, irp, and ybt genes) (Figure 2).

The complete mrk operon was detected in all but three samples (KpMO20, mrkCD-defective;
KpMO? and KpMO28, mrkH-defective).

The ST258 (KpMO7/KpMO28) isolates had the 29/921 wzi/wzc alleles in association with K41 and
KL106. All ST512 isolates had the 154/916 wzi/wzc alleles associated with not defined (ND) K and KL107.
We did not find capsule synthesis loci associated with hypervirulent serotypes (i.e., serotypes K1, K2,
and K5).

Iron acquisition genes were found in two samples only. A complete yersiniabactin siderophore
system (fyuA, irpl, irp2, and the ybt operon) was found in KpMO28, while an incomplete ybt cluster
(AybtU) was detected in KpMO20.

2.2.3. Plasmid Content Analysis

Five replicon types were globally detected and characterized as IncFII(K), IncFIB(K), CoIRNAI,
IncX3, and IncFIB(pQil). The percentage similarity in the alignment between the best-matching plasmid
in the PlasmidFinder database and the corresponding sequence in the input genome ranged from 97.97
to 100. IncFII(K), IncFIB(K), and ColRNAI replicons were identified in all isolates, while IncFIB(pQil)
was not found in KpMO?. The absence of IncX3 was common to KpMO2, KpMOS, and KpMO10
(Figure 2).
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KpMO6 | 512 ND 107
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KpMOS8 | 512 ND 107
KpMO9 | 512 ND 107
KpMO10 | 512 ND 107
KpMO12 | 512 ND 107
KpMO14 | 512 ND 107
KpMO15 | 512 ND 107
KpMO16 | 512 ND 107
KpMO17 | 512 ND 107
KpMO19 | 512 ND 107
KpMO20 | 512 ND 107
KpMO21 | 512 ND 107
KpMO22 | 512 ND 107
KpMO23 | 512 ND 107
KpMO24 | 512 ND 107
KpMO25 | 512 ND 107
KpMO26 | 512 ND 107
KpMO27 | 512 ND 107
KpMO28 | 258 41 106
KpMO29 | 512 ND 107
KpMO31 | 512 ND 107

Figure 2. Virulome data and plasmid content. Virulome data were obtained by Pasteur MLST Kp

database; plasmid content data were obtained by PlasmidFinder-1.3. Grey and white colors represent

gene presence and absence respectively. ND, Not Defined.

2.2.4. Phylogenetic Analysis

We drew a maximum likelihood cSNPs tree of the 27 samples in order to provide high-resolution
strain tracking and discrimination. In total, we identified 1731 SNPs, of which 1002 were shared by
all samples.

The ¢SNPs analysis resulted in two major lineages corresponding to the ST512 and the ST258
samples. The ST512 lineage included two major clusters, A (n = 4) and B (n = 21). The B cluster
was grouped into two minor branches, B1 (1 = 2) and B2 (n = 19), with the latter consisting of two
subgroups, B2a (n = 13) and B2b (n = 6) (Figure 3).
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Figure 3. Core SNPs analysis data incorporated into the epidemiological metadata. Core SNPs tree (left) shows two major lineages corresponding to the ST512
(blue) and the ST258 (red). Clusters within ST512 lineage are indicated by capital letters (A, B) followed by a number in the minor branches (B1, B2) and by
additional lowercase letters in the subgroups (B2a, B2b). The right box represents patients’ movements inside the hospital, each color represents a ward. ICU, red;

Infectious Disease, cyan, Long Term Care, pink; Medicine II, yellow; Medicine ICU, blue; Nephrology, dark green; Oncology, brown; Orthopedics, light green;
Otolaryngology, orange; Pneumology, grey; Transplant Unit, fuchsia. ICU, Intensive Care Unit; A, deletion; IS, Insertion Sequence; ins, insertion; wt, wild type.

* days 15-31.
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2.3. The Molecular Data in the Clinical-Epidemiologic Context

The phylogenetic data, MLST results, and mutations detected in colistin resistance genes were
incorporated into the epidemiological metadata in order to elucidate the routes of transmission
(Figure 3).

The ST512/cluster A isolates were closely related and shared the same colistin resistance mechanism
and plasmid content. The ST512/cluster B isolates were characterized by a high level of molecular
and epidemiological heterogeneity, although many of them shared the same colistin-resistance-related
mutation. The two ST258 isolates were unrelated to all of the other strains, and each strain had a
unique colistin-resistance-related mutation.

3. Discussion

Our retrospective investigation of 27 CRCR-Kp, isolated at Modena University Hospital Policlinico,
by WGS analysis of the resistome, virulome, plasmid content, and cSNPs allowed us to obtain two
main results: the identification of new genetic variations in the colistin-resistance related genes and an
informative epidemiological picture of the spread of CRCR-Kp in our clinical setting.

The MLST analysis showed that all isolates belonged to the pandemic CC258. These data confirmed
the pandemic CC258’s global distribution and its ability to cause hospital outbreaks and disseminate
carbapenemase genes [1,6,16]. Nevertheless, the MLST results did not allow us to identify specific
relationships or possible patterns of transmission among the studied strains. On the other hand,
the WGS data provided us with an adequate amount of information about the evolution of CRCR-Kp
circulation in our hospital.

Concerning WGS resistome analysis, in all samples, genes coding for the main classes of antibiotic
resistance were found to be in agreement with the susceptibility test.

In particular, and as previously reported in Italy, we found that the carbapenemase blaKPC-3
allele-associated ST512 was more prevalent than the blaKPC-2-carrying ST258 [2,3,17].

Regarding genetic determinants related to colistin resistance, we confirmed, as reported by other
authors, the absence of the plasmidic genes mcr 1-9 [18]. Instead, both known and significant new
genetic modifications were identified in chromosomal loci, specifically in the mgrB, phoQ, and pmrB
genes. We identified some well-known chromosomal colistin resistance mechanisms involving
mgrB, such as a C88T point mutation [10], a complete lack of the gene [10,18,19], and an insertional
inactivation [10,15,19,20].

For all new mutations except one (C1369G in the phoQ gene), the PROVEAN analysis predicted a
deleterious impact on the biological protein function, suggesting a possible association between each
of these mutations and colistin resistance. This in silico analysis allowed us to overcome one limitation
of our study, namely the absence of the trans-complementation tests and evaluation of the mgrB, pmrB,
and phoQ expression levels that are commonly used to confirm an association between a new mutation
and colistin resistance.

The results of the virulence analysis of the studied samples showed the presence of type-3 fimbriae
known to be involved in biofilm formation on biotic and abiotic surfaces of medical devices in a hospital
environment [21]. The absence of capsule synthesis loci associated with hypervirulent serotypes
(i.e., serotypes K1, K2, and K5) indicates that MDR strains do not currently overlap with hypervirulent
CCs [22]. Moreover, we confirmed that KL107 and KL106 were associated with wzi/wzc154/916 and
wzi/wzc29/921, respectively [23].

Plasmids, which are considered to be the primary source of Kp gene variability, have been
used as molecular markers in epidemiological investigations [24]. However, the homogeneity of our
results limits the use of plasmid content as an epidemiological marker, except for KpMO2, KpMOS,
and KpMO10, which were found to be defective for IncX3, and KpMO7, which was found to be
defective for IncFIB(pQil).

Moreover, the restrictions intrinsic to short-read technologies (e.g., llumina) in the WGS approach
did not allow us to accurately reconstruct the genomic context surrounding the repeated sequences in
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the plasmids [25]. Nevertheless, the variability in plasmid content found in our collection may provide
support to the hypothesis that plasmidic exchanges and arrangements can occur in endemic healthcare
settings, generating additional plasmid types.

The incorporation of MLST and WGS data into the clinical-epidemiologic context allowed us to
draw some inferences. As CRCR-Kp can spread via person-to-person contact or environmental sources,
the WGS analysis allowed us to identify possible transmission patterns.

For example, the ST512/cluster A isolates, which were found to be closely related, could have
derived from a common source that was confined to the nephrology ward. Indeed, the KpMOS8
strain, which was the first to be isolated from the nephrology ward (January 2013), was found to
belong to ST512/cluster A and carry the C88T mutation in the mgrB gene. In the following months,
the ST512/cluster A isolates evolved in the same ward as KpMO10 and KpMO2, which were found
to be closely related to each other, and shared with KpMOS the same colistin resistance mechanism
and plasmid content. This result was confirmed by the characterization of plasmid content with a
unique profile in which IncX3 was absent. The KpMO?9 isolate, which first appeared in the intensive
care unit (ICU), slightly diverged from the other ST512/cluster A isolates, showing an mgrB insertional
inactivation. Moreover, it had the same plasmid content as all other isolates except for KpMO?7.
This latter isolate was the only one found to be defective for IncFIB(pQil). Therefore, WGS allowed us
to differentiate KpMO9 from KpMOS8, KpMO10, and KpMO2, while MLST grouped them together.

The ST512/cluster B isolates were characterized by a high level of molecular and
epidemiological heterogeneity.

KpMO17 and KpMO3 were isolated from different wards, and although both belonged to B1,
they did not share the same variation in colistin resistance determinants.

Ten strains, isolated in five wards during the period November 2013 to January 2014,
were characterized by a phoQ 799/801(GAC) insertion and belonged to the B2a subgroup. Eight strains,
isolated from six wards, carried the mgrB-Ant61/70 deletion and were isolated over a long period of
time (January 2013 to November 2013). Six of these isolates belong to the B2b subgroup, while two
isolates (KpMO1 and KpMO23) belong to the B2a subgroup. In the larger ST512/cluster B, the isolates’
molecular heterogeneity did not allow us to confirm the hypothesis of transmission or of exposure
to the same hospital source of CRCR-Kp. In particular, the closely related KpMO19/KpMO?5 strains
were isolated from the ICU at the same time, the KpMO25/KpMO29/KpMO31 strains were isolated
from Medicine II, and the KpMO20/KpMO27/KpMO22 strains were isolated from the infectious
disease ward.

4. Materials and Methods

4.1. Study Design

From January 2013 to March 2014, 85 non-duplicated CRCR-Kp strains were isolated from several
wards within the MDR surveillance program by means of universal patient rectal swab screening
at admission (t = 0) and thereafter at regular intervals (weekly) during hospitalization. The isolates
were immediately subjected to both routine phenotypic and traditional genotyping analysis (MLST).
Of these 85 strains, 27 strains that were isolated from inpatient rectal screening swabs or clinical
samples obtained during hospitalization (starting 48-72 h after admission) were selected and used for
a retrospective WGS analysis in order to gain insights into the molecular epidemiology of nosocomial
CRCR-Kp strains.

For each patient, we selected the first obtainable CRCR-Kp isolate, favoring more relevant clinical
samples (urine, blood, etc.) where available. Table 3 contains information on the isolates and each
patient’s characteristics; each isolate number corresponds to a particular case.
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Table 3. Isolates and patients’ characteristic. 2, BAL, Bronchoalveolar lavage; b Charlson Comorbidity Index; ¢, ICU, Intensive Care Unit; * Colistin treatment days
before CRCR-Kp isolation (9 millions Ul loading dose, then 4.5 millions twice a day).

Isolate ID Sample Collection Age Gender CCIb Colistin Admission Ward ¢ 2"d Admission 34 Admission  Discharge/Death Clinical
Type ? Date 8 Use* (Days) (Date) Ward (Date) Ward (Date) (Date) Outcome
Pneumology Pneumology
KpMO1 rectal swab  13/03/2013 82 M 3 no ICU (25/02/2013) (01/03/2013) (27/03/2013) recover
Nephrology B Nephrology L
KpMO2 rectal swab  24/05/2013 68 F 3 no (23/05/2013) (06/06/2013) chronic disease
Nephrology Nephrology S
KpMO3 rectal swab  24/07/2013 63 M 5 no (22/07/2013) (25/07/2013) chronic disease
Medicine II Medicine 1T .
KpMO4 rectal swab  21/03/2013 77 M 2 yes (13) (28/02/2013) (23/03/2013) death for sepsis
death for
Transplant Unit ICU . .
KpMO5 rectal swab  11/12/2013 78 F 3 no (08/11/2013) (01/12/2013) ICU (17/12/2013) non—;lf;asc;aous
Infectious Long Term Long Term Care
KpMO6 rectal swab  02/12/2013 67 M 4 no ICU (24/10/2013) Disease Care (2% /03/2014) chronic disease
(02/12/2013) (26/02/2014)
Transplant Unit Transplant Unit
KpMO7 rectal swab  22/01/2013 71 F 2 no (22/01/2013) (05/03/2013) recover
Medicine-ICU Nephrology Nephrology S
KpMO8 rectal swab  24/01/2013 68 M 6 no (26/12/2012) (09/01/2013) (11/02/2013) chronic disease
Otolaryngology ICU Pneumology Pneumology
KpMO9 rectal swab  25/03/2013 73 F 2 no 05/02/2013 (24/02/2013) (27/03/2013) (17/04/2013) recover
. Nephrology Nephrology
KpMO10 urine 05/04/2013 57 M 3 no (23/03/2013) (22/05/2013) recover
death for
KpMO12 rectal swab  05/12/2013 70 F 8 no Oncology Pneumology Pneumology non-infectious
(18/11/2013) (26/11/2013) (07/12/2013) cause
Pneumology Nephrology Nephrology —
KpMO14 rectal swab  02/05/2013 55 F 4 yes (30) ICU (20/02/2013) (02/03/2013) (19/03/2013) (11/06/2013) chronic disease
Infectious Disease Infectious Disease
KpMO15 rectal swab  09/01/2014 46 F 6 no (30/11/2013) (22/01/2014) recover
KpMO16 blood 20/11/2013 73 M 3 no ICU (21/10/2013) Pneumology Pneumology death for sepsis

(13/11/2013) (01/01/2014)
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Table 3. Cont.

Isolate ID Sample Collection Age Gender CCIb Colistin Admission Ward ¢ 2"d Admission 3'd Admission  Discharge/Death Clinical
Type ? Date & Use* (Days) (Date) Ward (Date) Ward (Date) (Date) Outcome
Transplant Unit ICU .
KpMO17 BAL 29/05/2013 47 M 3 yes (12) (14/03/2013) (17/05/2013) ICU (14/06/2013) death for sepsis
Infectious Infectious Disease
KpMO19 rectal swab  09/12/2013 66 M 1 yes (14) ICU (25/11/2013) Disease (30/01/2014) recover
(10/01/2014)
Infectious Disease Long Term Long Term Care
KpMO20 urine 18/07/2013 80 F 2 no @1 /Ol; /2013) Care (3% /07/2013) chronic disease
(08/07/2013)
Pneumology Pneumology death for
KpMO21 rectal swab  21/01/2013 43 M 2 yes (26) ICU (03/01/2013) (29/01/2013) (07/02/2013) non—;ralffscetlous
Infectious Disease Infectious Disease L
KpMO22 rectal swab  17/05/2013 91 M 2 no (23/04/2013) (30/05/2013) chronic disease
Oncology Oncology S
KpMO23 rectal swab  26/11/2013 76 F 2 no (20/11/2013) (04/12/2013) chronic disease
- Long Term - -
Medicine-ICU Medicine-ICU Medicine-ICU .
KpMO24  rectal swab  10/12/2013 88 M 4 no (17/11/2013) Care (03/01/2014) (04/01/2014) death for sepsis
(18/12/2013)
Orthopaedics Medicine II Medicine II
KpMO25 rectal swab  30/12/2013 91 M 11 no (07/12/2013) (17/12/2013) (13/01/2014) recover
Nephrology Nephrology S
KpMO26 rectal swab  22/05/2013 89 F 2 no (30/04/2013) (22/05/2013) chronic disease
KpMO27 rectal swab  12/07/2013 94 F 4 no Infectious Disease Infectious Disease death for sepsis
P (22/06/2013) (14/07/2013) p
. Infectious Disease Infectious Disease
KpMO28 urine 07/03/2014 24 M 6 no (11/02/2014) (11/03/2014) recover
Medicine II Medicine II
KpMO29 rectal swab  16/12/2013 60 F 1 no (03/12/2013) (24/12/2013) recover
.. .. death for
KpMO31 rectal swab  09/12/2013 85 M 4 no Medicine II Medicine II non-infectious

(28/11/2013) (18/12/2013) cause
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Nine (33.3%) patients died during their hospital stay. Five (55.5%) deaths were due to sepsis.
There were only two documented cases of CRCR-Kp infection: one blood stream infection and one
urinary tract infection.

This study was approved by Modena'’s provincial ethics committee and registered with protocol
no. 2655, 21/July/2016. No written informed consent was obtained from patients as all data were
analyzed anonymously after a de-identification process.

4.2. Antimicrobial Susceptibility, Carbapenemase Phenotype Detection and MLST

At the time of strain isolation (2013-2014), species identification and antimicrobial susceptibility
were determined using the Vitek2 automated system (BioMérieux, Marcy l’Etoile, France).
The susceptibility test results and minimum inhibitory concentration (MIC) were interpreted according
to the 2012 EUCAST breakpoints criteria [26]. Susceptibility to colistin and susceptibility to tigecycline
were verified using the E-test (BioMérieux). Carbapenemase phenotype testing was performed using
the KPC+MBL Confirm ID kit (Rosco Diagnostica A/S, Taastrup, Denmark).

To assign sequence types, an MLST analysis was performed using the Pasteur database scheme
available for K. pneumoniae (http://bigsdb.pasteur.fr/klebsiella/klebsiella.html).

4.3. Whole-Genome Sequencing and in Silico Data Analysis

Genomic DNA for molecular analysis was extracted from the 27 CRCR-Kp isolates using the
Maxwell-16 automated DNA/RNA extraction system (Promega, Madison, WI, USA). DNA quality,
quantity, and purity were determined using agarose gel, a NanoDrop 8000 spectrophotometer
(Thermo Fisher Scientific, Wilmington, DE, USA), and an E6150 Quantus™ Fluorometer (Promega).

The samples were fully sequenced by using a next-generation sequencing (NGS) approach on the
MiSeq platform (Illumina, San Diego, CA, USA). The Nextera XT DNA protocol was applied with
1-1.5 ng of starting DNA, and sequencing was performed with a v3 kit (600 cycles). Paired-end reads
were demultiplexed into separate samples, quality checked by removing adapter sequences and
bases (quality score <25) using the FastQC (Babraham Research institute, Cambridge, UK) and
Sickle software (https://github.com/najoshi/sickle), and de novo assembled into contigs using the
Abyss-pe v1.5.2 program (Canada’s Michael Smith Genome Sciences Centre, Vancouver, Canada)
(k parameter = 63) or the SPAdes v3.7.0 program (Center for Algorithmic Biotechnology St. Petersburg
State University, St. Petersburg, Russia) [27,28]. Contigs longer than 500 bp were selected using an ad
hoc script and kept for further analysis.

The 27 nucleotide sequences were deposited at DDBJ/ENA/GenBank under Bioproject
ID PRJNA504600.

4.3.1. Resistome, Virulome, and Plasmid Content Analysis

The resistome of all sequenced isolates was analyzed using the ResFinder-3.2 software (Center for
Genomic Epidemiology, Lyngby, Denmark) (http://www.genomicepidemiology.org; identity threshold
(ID) 90%) and the Pasteur MLST Kp database (Pasteur Institut, Paris, France). Furthermore, in order to
study molecular chromosomal mechanisms of colistin resistance, acrAB, pmrHFIJKLM, crrAB, KpnEF,
IpxM, mgrB/mgrB promoter, phoPQ, pmrCAB, and pmrD were analyzed by running the BLAST (National
Center for Biotechnology Information, Bethesda, MD, USA) program and using as references the
sequences reported in Table 4. The PROVEAN tool (J. Craig Venter Institute, La Jolla, CA, USA)
(http://provean.jcvi.org) was used to predict the (neutral or deleterious) biological impact of aa
substitutions/indels on protein function [29].

The virulome was investigated using the Pasteur MLST Kp database (https://bigsdb.pasteur.fr/
cgibin/bigsdb/bigsdb.pl?db=pubmlst_klebsiella_seqdef&page=sequenceQuery).

The PlasmidFinder-1.3 web tool (Center for Genomic Epidemiology, Lyngby, Denmark)
(http://www.genomicepidemiology.org; ID 95%) was used to define the replicon plasmid content type.


http://bigsdb.pasteur.fr/klebsiella/klebsiella.html
https://github.com/najoshi/sickle
http://www.genomicepidemiology.org
http://provean.jcvi.org
https://bigsdb.pasteur.fr/cgibin/bigsdb/bigsdb.pl?db=pubmlst_klebsiella_seqdef&page=sequenceQuery
https://bigsdb.pasteur.fr/cgibin/bigsdb/bigsdb.pl?db=pubmlst_klebsiella_seqdef&page=sequenceQuery
http://www.genomicepidemiology.org
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Table 4. Reference sequences used for BLAST analysis of chromosomal colistin resistance related genes.
The KpST512-K30BO and Kp-HS11286 choice was due to their belonging to the same Clonal Complex
of our isolates (CC258).

Bank A i
Head Reference Sequences GenBank Accession

Number

acrAB

K. pneumoniae subsp.

pmrHFIKLM preumoniae ST512-K30BO  NZ_CAJMO00000000.2
crrAB (Kp-ST512-K30BO)
KpnEF
Chromosomal loci IpxM _ _
mgrB
mgrB promoter K. pneumoniae subsp. c
; P003200.1
phoPQ pneumoniae HS511286
pmrABCD

4.3.2. Phylogenetic Analysis

To establish genetic relatedness among the 27 CRCR-Kp isolates, SNP discovery was performed
using the kSNP v3.0 program (Bellingham Research Institute. Bellingham, WA, USA (k-mer = 21).
SNP loci were defined by an oligo of k length surrounding a central SNP allele [30]. The maximum
likelihood tree based on the cSNPs detected in all genomes was visualized with the Dendroscope
v3.2.10 software (Center for Bioinformatics, Tiibingen, Germany) [31].

4.4. The Molecular Data in the Clinical-Epidemiologic Context

The results obtained from both the MLST and WGS-based analyses were incorporated into the
clinical-epidemiological metadata that were collected from the patients” medical records.

5. Conclusions

Due to the growing importance of MDR Kp, a fast and accurate identification and typing of
pathogens is essential for effective surveillance and outbreak detection. We need to know the genetic
arrangement related to the antibiotic resistance, to understand population structure in hospital settings,
and their relationship.

The most important result of this retrospective WGS analysis was the discovery of new genetic
variations involving the mgrB, phoQ, and pmrB genes related to colistin resistance and the absence of
the plasmidic mcr gene.

Moreover, this study proved to be useful to a program for monitoring the spread of nosocomial
CRCR-Kp strains, and allowed us to confirm what has already been shown in many other studies [32-36].
In particular, the distribution of mutations in colistin resistance determinants was consistent with
the cSNPs clustering. Thus, it may serve as a good epidemiological marker. As WGS was more
discriminating than MLST, it allowed us to identify possible CRCR-Kp transmission patterns and to
obtain a clustering reconstruction that was more consistent with the epidemiological analysis.

WGS produces results with an excellent cost/benefit ratio and a mean measured turnaround
time (TAT) of 4.4 days comparable to TAT required for investigations with less discriminatory
methodologies [33]. However, WGS-informed outbreak tracking is still usually performed only
retrospectively [37].

In our view, the data obtained retrospectively in this study, if available in real-time, could have
helped to surveil the alert nosocomial pathogens by directing the infection control team to focus its
attention and resources on those wards where WGS would have highlighted transmission events.
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Furthermore, the future routine clinical implementation in our hospital of real-time WGS would
provide the infection control team with reliable and timely data about the emergence and spread of
antimicrobial resistance, and hopefully the ability to prevent outbreaks by the rapid application of
infection control procedures and the implementation of a targeted antimicrobial stewardship program.

Finally, even if our findings have allowed us to better understand the spread of Kp in hospitals
at a local level, they add to the molecular CRCR-Kp epidemiology data at both the national and
international levels and contribute to defining a framework for the epidemiology of this pathogen.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6382/9/5/246/s1,
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