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Abstract: The Yenyuan stream salamander (Batrachuperus yenyuanensis) has been previously evaluated
with regards to phylogeny, population genetics, and hematology, but genomic information is sparse
due to the giant genome size of salamanders which contain highly repetitive sequences, thus resulting
in the lack of a complete reference genome. This study evaluates the encoding genetic sequences and
provides the first transcriptome assembly of Yenyuan stream salamander based on mixed samples
from the liver, spermary, muscle and spleen tissues. Using this transcriptome assembly and available
encoding sequences from other vertebrates, the gene families, phylogenetic status, and species
divergence time were compared or estimated. A total of 13,750 encoding sequences were successfully
obtained from the transcriptome assembly of Yenyuan stream salamander, estimated to contain 40.1%
of the unigenes represented in tetrapod databases. A total of 88.79% of these genes could be annotated
to a biological function by current databases. Through gene family clustering, we found multiple
possible isoforms of the Scribble gene—whose function is related to regeneration—based on sequence
similarity. Meanwhile, we constructed a robust phylogenetic tree based on 56 single-copy orthologues,
which indicates that based on phylogenetic position, the Yenyuan stream salamander presents the
closest relationship with the Chinese giant salamander (Andrias davidianus) of the investigated
vertebrates. Based on the fossil-calibrated phylogeny, we estimated that the lineage divergence
between the ancestral Yenyuan stream salamander and the Chinese giant salamander may have
occurred during the Cretaceous period (~78.4 million years ago). In conclusion, this study not only
provides a candidate gene that is valuable for exploring the remarkable capacity of regeneration in
the future, but also gives an interesting insight into the understanding of Yenyuan stream salamander
by this first transcriptome assembly.
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1. Introduction

The Yenyuan stream salamander (Batrachuperus yenyuanensis [1]), belonging to the family
Hynobiidae, order Caudata, is an aquatic organism that is endemic to Western China. This species has a
low migration capacity and resides in the eastern edge around the Tibetan Plateau at altitudes ranging
from 2900 to 4400 m [2]. Only a few studies have paid attention to this species and contributed to the
limited understanding of its phylogeny and population genetics [3,4]. It was revealed that past variance
events might have resulted in a dominant effect on their evolution [4]. The elevation, topography,
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and cold tolerance may have driven the evolutionary patterns of diversification and demography in
this species and other relatives [5]. In addition, a recent hematological study of hynodiid salamanders
indicated that hematological parameters presented a species-specific and genus-specific disparity,
which may be related to adaption to the corresponding living environment [6].

Besides these studies, genomic studies have given no attention to this species and only a little to
other salamanders [7]. The reason is that salamanders have highly repetitive sequences in their
genomes, leading to an extremely large genome size. The only complete genomic assembly of
a salamander (Mexican axolotl, Ambystoma mexicanum) contains 30 gigabases (Gb) of content [7].
The highly repetitive sequences bring about a technical obstacle for complete genome assembly, despite
a third-generation sequencing platform which seems to have overcome this obstacle to a certain extent.
However, large amounts of high-throughput third-generation sequencing would be expensive for
such a large genome size. Although these reasons hinder the completion of whole-genome assembly
for salamanders, the corresponding whole protein-encoding sequences present a similar number
to other vertebrates. An example would be the Mexican axolotl [7], which has more than twenty
thousand protein-coding genes, which is similar to other vertebrates. Thus, an alternative approach to
understanding the genomic information of salamander might be available in the transcriptome, which
contains an amount of accessible encoding sequences by RNA sequencing (RNA-seq). This strategy
provides a direct way of understanding the encoding genetic sequences in salamander.

In this study, we sampled Yenyuan stream salamanders in southwestern China. Considering
the specificity of RNA expression in different tissues, we collected multiple tissues to generate a
mixed transcriptome library, which can contain more encoding genetic sequences than just one type
of tissue. The mixed samples contained the liver, spermary, muscle, and spleen which are crucial for
metabolism, reproduction, growth, and immunity. Through RNA-seq, we successfully assembled the
first transcriptome of Yenyuan stream salamander. Subsequently, we utilized this assembly to compare
the inside gene families with other vertebrates, and deduced the phylogenetic position and lineage
divergence time between this species and other vertebrates. Using this approach, we attempted to
provide an improved recognition of the molecular evolution of Yenyuan stream salamander.

2. Results

2.1. Sampling and Transcriptome Assembly of the Yenyuan Stream Salamander

The Yenyuan stream salamanders (B. yenyuanensis) used in this study were sampled from Bailing
Mountain, Yanyuan Town, Xichang City, Sichuan Province, China (elevation: 3846 m; see details
in Figure 1). An adult individual, with a snout–vent length (SVL) >8 cm, was chosen for the study.
Its sex was determined to be male by anatomy. Sample tissues from the liver, spermary, muscle,
and spleen were collected to generate a mixed sample. The tissues were initially placed in a 1.5 mL
tube filled with RNAlater (Ambion, Carlsbad, CA, USA). The tube was then immediately frozen in
liquid nitrogen for storage. This sampled individual was also vouchered in Henan University of
Science and Technology Museum and numbered as “HNUSTM201605092”. All salamander handling
and experimental procedures performed in this study were approved (January 1, 2015) by the Animal
Care and Use Committee of the College of Animal Science and Technology, Henan University of
Science and Technology (CAST2015040010).
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Figure 1. The sampling location and a sample picture of Yenyuan stream salamander. The red dotted
line(s) in left indicate the amplified sampling location and right indicates the sampling salamander.

After the completion of transcriptome sequencing and removal of low-quality reads,
24,962,019 clean reads containing 3,744,302,850 bases were retained. A total of 115,495 raw contigs
were initially assembled with the whole content of 88,019,795 bp (see the length distribution in
Figure S1). After removing possible redundant contigs, the retained unigenes contained a total
length of 71,498,614 bp from 70,540 sequences (see the length distribution in Figure S2). Based on
the expression calculation of fragments per kilobase million (FPKM), we screened 26,179 unigenes
with an FPKM expression level ≥1 as relatively reliable unigenes. From these unigenes, we predicted
13,750 protein-coding sequences (see the length distribution in Figure S3), which presented 40.1%
completeness (see details in Table S1) by searching 3950 BUSCO groups from tetrapods. Overall,
in the functional annotations, 88.79% of the predicated protein-coding sequences were annotated as
biological function (see annotated states in Table S2). Based on the expression of FPKM, we determined
the biological function of those genes included in the list of top 20 expression levels, of which 18 genes
were able to be allocated to a biological function. Two of them may not be included in the database.
The gene with the highest expressional level (FPKM = 15,004) was eEF1a1, which encodes the protein
elongation factor 1-alpha 1, which is responsible for the enzymatic delivery of aminoacyl tRNAs to the
ribosome. Details of the 18 annotated genes with the highest expression are listed in Table S3.

2.2. Gene Families of the Yenyuan Stream Salamander

By comparing the gene families of Yenyuan stream salamander and other vertebrates, we found
10,829 sequences from Yenyuan stream salamander that can be clustered with other species and
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distributed in 7088 gene families (Table S4). There are 4911 gene families shared among the coelacanth,
Chinese softshell turtle, High Himalaya frog, and Yenyuan stream salamander. There are 162 special
gene families that are shared between the Himalaya frog and Yenyuan stream salamander, which
is higher than the coelacanth (151) and Chinese softshell turtles (102) (Figure 2a). We also found
3417 gene families shared by four amphibians, including Western clawed frog, American bullfrog,
High Himalaya frog, and Yenyuan stream salamander. The Western clawed frog has 332 special gene
families shared with the Yenyuan stream salamander, which is higher than the Himalaya frog (152)
and American bullfrog (107) (Figure 2b). These results indicate that the Yenyuan stream salamander
presents the highest number of shared gene families with the Western clawed frog.
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Figure 2. Gene family clustering among the six vertebrates: (a) The clustering state among coelacanth,
Chinese softshell turtle, High Himalaya frog, and Yenyuan stream salamander; (b) The clustering state
among Western clawed frog, American bullfrog, High Himalaya frog, and Yenyuan stream salamander.

In addition, through gene family clustering, we found nine Scribble isoforms in the transcriptome
of the Yenyuan stream salamander (Figure S4). These isoforms displayed multiple alternative
splicing forms (see Figure S4). The Scribble isoform encoding the scribbled planar cell polarity
protein is a member of the Hippo pathway, which plays a crucial role in animal development and
regeneration [8]. These Scribble isoforms in Yenyuan stream salamander may be responsible for
its remarkable regeneration capacity. Thus, we provide a candidate gene which deserves further
exploration regarding its role in regeneration in salamanders.

2.3. Evolutionary Status of the Yenyuan Stream Salamander

A total of 56 single-copy gene families are shared between the Yenyuan stream salamander and
other vertebrates. The total length of these single-copy orthologues reached 127,746 bp, and all the
first positions from each codon were cascaded with a length of 42,582 bp. Based on this dataset,
we constructed a robust evolutionary relationship between the Yenyuan stream salamander and
20 other species. The topologies deduced from maximum likelihood (ML) and Bayesian inference (BI)
were totally coincided; both presented strong branch supports (Figure 3). In these robust topologies,
we found that the Yenyuan stream salamander originated from a second primitive status in the
tetrapod, which descended from the coelacanth; its ancestral branch formed a sister relationship with
the ancestral branch of Anura. This relationship coincides with the general recognition that Caudata
and Anura originated from the same lineage. In Caudata, the Yenyuan stream salamander presents
a closer relationship with the Chinese giant salamander (Andrias davidianus) than with the axolotl
(A. mexicanum). Based on the fossil-calibrated phylogeny, the ancestral lineage divergence between
the Yenyuan stream salamander and the Chinese giant salamander was estimated at Cretaceous
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(~78.4 Mya) and the split between Caudata and Anura occurred at about Carboniferous (~295 Mya)
(Figure 4).
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Figure 4. Molecular timing of species divergences among the Yenyuan stream salamander and other
investigated vertebrates. The bar within each node represents the confidence interval (5~95%) for
time divergence.

3. Discussion

In this study, we provided the first transcriptome assembly of Yenyuan stream salamander.
This assembly contains 13,750 predicted protein-coding sequences, of which 88.79% were annotated
as biological functions. Although the large genome size challenged the whole-genome assembly of
salamanders, we were able to provide alternative encoding of the genetic information of Yenyuan
stream salamander from multiple tissues using RNA-seq. Previous studies on this species were
limited to mitochondrial genes [4,5]. In this current study, we obtained numerous single-copy nuclear
genes from Yenyuan stream salamander which contain phylogenic signals through comparison with
other salamanders and vertebrates. These nuclear genes may be considered as effective candidate
phylogenetic markers that are appropriate for further evolutionary studies.

Coelacanths are known as the slowest-evolving vertebrate [9]. We observed that the branch length
of Yenyuan stream salamander, representing an accumulated variation in nucleotide substitution,
is closer to the length of Chinese giant salamander and coelacanth. It is apparently shorter than frogs
such as the High Himalaya frog, American bullfrog, African clawed frog, and Western clawed frog.
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In addition, through gene family clustering, we observed that more gene families were shared with
coelacanth than with Chinese softshell turtle. These results delineate a conserved evolution of the
Yenyuan stream salamander which is similar to the Chinese giant salamander and the coelacanth.

Previous transcriptome studies on salamanders gave insights into the identification of the
sex-biased genes in Chinese giant salamander [10], but more transcriptome studies paid attention
to the exploration of the genes related to the regenerative capacities of salamanders such as
axolotl (A. mexicanum) and two of its relatives (A. andersoni and A. maculatum) [11], Eastern newt
(Notophthalmus viridescens) [12], Japanese fire belly newt (Cynops pyrrhogaster) [13], plethodontid
salamander (Bolitoglossa ramosi) [14], and Iberian ribbed newt (Pleurodeles waltl) [15]. These salamanders
were investigated due to having remarkable regenerative capabilities in the retina, lens, heart,
appendage, tail, and limb [10–16]. It has been found that the species-restricted genes may contribute to
limb regeneration [7]. In this study, we found nine Scribble isoforms in the transcriptome assembly
of Yenyuan stream salamander. This encoding scribbled planar cell polarity protein is involved
in the Hippo tumor-suppressor pathway, which plays a crucial role in animal development and
regeneration [8]. A previous study demonstrated that this pathway is required for Xenopus limb
bud regeneration [17]. In addition, the protein encoded by Scribble is required in central nervous
system (CNS) myelination and remyelination [18]. Based on these roles of the Scribble-encoded protein,
we speculated that multiple Scribble isoforms may be involved in the remarkable regenerative capability
of the salamander. Thus, we provided a valuable candidate gene for the study of regeneration in
salamander, but it needs to be verified further.

In addition, the timing of lineage divergence between Caudata and Anura had been estimated by
many studies [19–24]. However, controversies have also been presented in previous studies. The reason
behind these controversies is the presence of differences in the evolutionary rates within different
phylogenetic markers and the use of divergent fossil-calibrated points. Based on the 56 single-copy
orthologues and fossil-calibrated phylogenetic topology, we estimated that the split between Caudata
and Anura occurred at about 295.4 Mya, which is close to the previous estimates of 302.5 [21], 305.7 [19],
and 308 Mya [24]. Our current study was based on numerous nuclear genes, thus giving new support
to these estimates.

4. Materials and Methods

4.1. Total RNA Extraction and Sequencing

Total RNA was extracted according to the protocol of PureLink™ RNA Mini Kit (Thermo Scientific,
Waltham, MA, USA). The transcriptome isolation started with phase separation using TRIzol reagent
(Ambion, Carlsbad, CA, USA), followed by binding, washing, and elution. The completeness and
quality of the RNA was examined by 1.2% agarose electrophoresis and NanoDrop 2000 Nucleic Acid
Protein Detector (Thermo Scientific, Wilmington, NC, USA). The RNA integrity number (RIN) was
examined using an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA) with Agilent RNA
6000 Nano Reagents (Agilent, Santa Clara, CA, USA). Samples with RIN ≥8.0 were chosen for next
generation sequencing (NGS). The RNA sample was separated and purified using oligo(dT) magnetic
beads and a magnetic separator (Illumina, San Diego, CA, USA). It was subsequently broken into
fragments to construct a cDNA library by PCR amplification and enrichment. This cDNA library was
used to generate transcriptome (RNA-seq) data on Illumina HiSeq 4000 platform (San Diego, CA, USA)
with paired-end reads at a length of 150 bp.

4.2. De Novo Transcriptome Assembly and Annotation

Prior to the de novo transcriptome assembly, we carried out a filtering process to remove the
redundant reads. The reads with adaptor contamination were discarded first. The low-quality reads
with ambiguous characters “N” were also discarded. Finally, the reads with more than 10% Q < 20
bases were ruled out. A de novo assembly was performed using Trinity (version 2.0.6, [25]) with the
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minimum assembled contig length of 150 bp and maximum length expected between fragment pairs of
530 bp; reads outside this distance were treated as single-end. After the initial assembly, we performed
contig clustering to obtain the dataset of all unigenes, which was implemented in the TGICL (version
2.0.6, [26]) program. All reads were aligned to the dataset of unigenes using Bowtie 2 (version
2.2.5, [27]) and, subsequently, the expression level of each unigene calculated using RSEM (version
1.2.12, [28]). In this step, the unigenes with an FPKM value ≥ 1 were regarded as reliable unigenes,
and were used for further analysis. We employed BUSCOs [29] to assess the completeness of the
unigenes. All reliable unigenes were used to predict the encoding sequences by Transdecoder (version
3.0.1, [25]) with a minimum length of more than 150 bp. To understand the biological function of the
predicted encoding sequences, we annotated them using information from five databases, including
Nr (non-redundant) [30], Swiss-Prot [31], KEGG (Kyoto Encyclopedia of Genes and Genomes) [32],
and KOG (EuKaryotic Orthologous Groups) [33] databases.

4.3. Gene Family Comparisons

To determine the phylogenetic position of Yenyuan stream salamander in vertebrates, we chose
whole-genome encoding sequences from 17 vertebrates to perform the phylogenetic analysis.
The jawless vertebrate known as sea lamprey was employed as the outgroup, and all the encoding
sequences from Yenyuan stream salamander and 17 other vertebrates were subjected as in-group
species, which contained the lamprey (Petromyzon marinus) [34], elephant shark (Callorhinchus milii) [35],
whale shark (Rhincodon typus) [36], spotted gar (Lepisosteus oculatus) [37], Asian arowana (Scleropages
formosus) [38], zebrafish (Danio rerio) [39], medaka (Oryzias latipes) [40], fugu (Takifugu rubripes) [41],
coelacanth (Latimeria chalumnae) [9], High Himalaya frog (Nanorana parkeri) [42], American bullfrog
(Rana catesbeiana) [43], African clawed frog (Xenopus laevis) [44], Western clawed frog (Xenopus
tropicalis) [45], Chinese softshell turtle (Pelodiscus sinensis) [46], zebra finch (Taeniopygia guttata) [47],
red junglefowl (Gallus gallus) [48], human (Homo sapiens) [49], and cattle (Bos taurus) [50]. Additionally,
to further investigate the phylogenetic position of Yenyuan stream salamander in order Caudata, axolotl
and Chinese giant salamander were also added into the phylogenetic analysis. The transcriptome
assembly of axolotl and the RNA-seq raw data of Chinese giant salamander were retrieved from the
TSA (GFZP00000000.1) and SRA (SRR7396733) databases of NCBI, respectively. The RNA-seq raw
data were assembled according to the process used for Yenyuan stream salamander.

Initially, we translated the encoding regions to proteins from each vertebrate and performed
all-to-all alignments by BLAST (mode blastp, version 2.26, [51]) with an E-value cutoff of 10−5.
OrthoMCL (OrthoMCL DB: Ortholog Groups of Protein Sequences, [52]) was employed to distinguish
gene families based on the similarity among the all-to-all alignments, and Markov chain clustering
(MCL) with the parameter “−inflation 1.5” was assigned. Six species, including African clawed frog,
American bullfrog, High Himalaya frog, Western clawed frog, Chinese softshell turtle, and coelacanth
were used for gene set comparisons with Yenyuan stream salamander.

4.4. Phylogenetic Construction and Estimation of Species Divergence Time

The single-copy orthologues among the investigated species were translated to proteins, and
we performed multiple alignments using MUSCLE (version 3.7, [53]). Subsequently, the alignments
were converted to corresponding coding sequences (CDS). The first site in each codon was chosen
to perform a phylogenetic construction based on the maximum likelihood (ML) method, which was
implemented in PhyML (version 3.0, [54]) with a gamma distribution across aligned sites and HKY85
substitution model. The approximate likelihood ratio test (aLRT) was employed to evaluate the branch
supports. To further confirm the deduced topology based on ML, we simultaneously performed
Bayesian inference (BI) using the software MrBayes (version 3.2.2, [55]) with HKY85 substitution
model. Two parallel runs of 200,000 generations and sampling every 200 generations were performed.
The initial 25% runs were abandoned due to unreliability, while the retained samples were used to
estimate the maximum clade credibility tree.
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For estimation of the ancestral split of Yenyuan stream salamander from other vertebrates, we set
two fossil-calibrated nodes in the phylogenetic topology to estimate the divergence of the Yenyuan
stream salamander from other vertebrates, which was based on the Bayesian method using MCMCtree
in the PAML (version 4.9e, [56]). Two fossil-calibrated nodes (C1 and C2) and an additional calibrated
node (C3) from a previous study [57] were employed as normal distributions and soft constraint bands
(allowing a small probability (0.025) of violation). The C1 calibration point was estimated to be the
most recent common ancestor (MRCA) of Sarcopterygii based on the fossils from Latimeria with a
hard minimum age of 408 Mya and a 95% soft maximum age of 427.9 Mya [58]. The C2 calibration
point was estimated as the MRCA of Teleostei from Danio with hard minimum age of 151.2 Mya and a
95% soft maximum age of 252.7 Mya [59]. The C3 calibration point was estimated to be the MRCA of
Otophysa (~157.2–166.0 Mya, [57]). A total of 100,000 samples were used for the Markov chain Monte
Carlo (MCMC) analysis [56], and the first 20% samples were discarded as burn-in. An independent
rate model (clock = 2) following a lognormal distribution was applied for the MCMC search.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/20/7/1529/
s1, Figure S1: Length distributions of the raw contigs assembled by Trinity. Figure S2: Length distribution of the
unigenes. Figure S3: Length distribution of the unigenes with FPKM ≥ 1. Figure S4: The multiple alignments of
Scribble isoforms in Yenyuan stream salamander and other vertebrates. Table S1: The completeness estimation of
predicted protein-coding sequences from the transcriptome of Yenyuan stream salamander by BUSCOs. Table S2:
The annotated state of all predicted encoding sequence based on nr, Swiss-Prot, KEGG, and KOG. Table S3:
The functional annotation of the top 20 genes based on RNA expression. Table S4: The statistics of gene family
clustering among the Yenyuan stream salamander and other vertebrates. Data Availability: The transcriptome
assembly of the Yenyuan stream salamander has been deposited at the NCBI Genbank under the project ID
of PRJNA515112.
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