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Axon regeneration induced by environmental 
enrichment- epigenetic mechanisms

Introduction
Adult neurons, particularly those in the central nervous 
system (CNS), exhibit dismal levels of axon regeneration 
upon injury. Effective axon regeneration is blocked by both 
external inhibitory factors in the environment (Geoffroy and 
Zheng, 2014) and limited by neuronal intrinsic factors (He 
and Jin, 2016; Mahar and Cavalli, 2018), such as a robust 
response to injury with regards to new protein synthesis. 
In terms of cellular mechanisms that regulate axonal re-
generation upon injury, a well-known signaling axis that 
underlie successful regeneration is that of the mechanistic 
target of rapamycin (mTOR) and phosphatase and tensin 
homologue (PTEN) (Park et al., 2010). mTOR activates the 
pro-survival phosphoinositide 3 kinase-AKT kinase pathway 
and enhances somatic and axonal protein synthesis, while 
PTEN antagonizes mTOR signaling. The latter is thus a key 
intrinsic inhibitor of axon regeneration, and PTEN deletion 
or silencing is invariably favorable for regeneration (Park et 
al., 2008; Christie et al., 2010; Liu et al., 2010;  Zukor et al., 
2013). It is well known that peripheral neurons are superior 
to CNS neurons in terms of axon regeneration, and a popu-
lar model to study intrinsic factors governing axon regenera-
tion is the dorsal root ganglion (DRG) neurons (Nascimento 
et al., 2018). These pseudo-unipolar neurons have a stem 
axon with a peripheral and a central branch. Interestingly, 
the difficulty of axon regeneration by the central branch 
could be overcome by conditional injuries to the peripheral 

branch (Qiu et al., 2002), presumably via alteration of intrin-
sic regenerative capacity of the entire neuron. 

Environmental enrichment (EE) is an experimental para-
digm in which experimental animals are exposed to stimula-
tory physical and social surroundings. EE exposure has been 
shown, in general, to promote neuronal morphogenesis, syn-
aptogenesis and increasing neuronal activity (Alwis and Ra-
jan, 2014; Hannan, 2014). EE exposure has also been shown 
to be beneficial to a range of neurological disorder models. 
These include animal models of neurodegenerative diseases 
such as Alzheimer’s disease (Verret et al., 2013; Griñán-Ferré 
et al., 2018), Parkinson’s disease (Goldberg et al., 2012), amy-
otrophic lateral sclerosis (Stam et al., 2008) and Huntington’s 
disease (Spires et al., 2004), neurodevelopmental disorders 
such as Rett Syndrome (Kondo et al., 2008), as well as those 
of traumatic (de la Tremblaye et al., 2019) or ischemic 
(Gonçalves et al., 2018) brain injuries. 

The mechanism underlying the neuronal protective and 
beneficial effects of EE has not been particularly clear, but 
could involve the production of pro-regenerative neurotroph-
ins or cytokines (Ickes et al., 2000; Rossi et al., 2006; Zhang et 
al., 2016). Interestingly, epigenetic mechanisms involving his-
tone acetylation has been shown to underlie the increase in 
the pro-survival and regenerative neurotrophin brain-derived 
growth factor (BDNF) in the hippocampus of aged rats (Neidl 
et al., 2016). Furthermore, enhanced synaptic plasticity after 
EE in adult male mice could be transgenerationally inherited 
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via miRNAs (Benito et al., 2018). Pertaining to functional 
recovery after injury, EE-based factors likely act by promot-
ing survival as well as the intrinsic regenerative capacity of 
adult neurons, including the capacity to regenerate severed 
or damaged axons. Recent findings made in DRG neurons 
have indeed implicate epigenetic changes in the form of en-
hanced histone acetylation in the damaged neuron as a major 
underlying driving processes for regeneration resulting from 
EE exposure. Here, I provide a short review of these findings, 
as well as other epigenetic mechanisms modulating axon re-
generation that has come to light in the past 2–3 years. This 
narrative is informed by Medline database searches with the 
key word combinations of “environmental enrichment”, “epi-
genetics” and “axon regeneration”.   

An Underlying Epigenetic Mechanism for 
Environmental Enrichment-Mediated 
Enhancement in Axon Regeneration of 
Proprioceptive Dorsal Root Ganglion Neurons
Hutson et al. (2019) have recently investigated the neuro-
nal activity enhancement basis of EE on DRG neurons. The 
authors first observed that neurite outgrowth from DRG 
neurons from mouse placed in EE housing is significantly 
enhanced compared to those placed under standard housing. 
This enhancement was comparable to that induced by a con-
ditioning injury, was gene transcription dependent, and was 
long lasting. Importantly, this enhancing effect of EE is larg-
er than that induced by physical exercise alone. EE housing 
not only enhanced sciatic nerve axon regeneration, but also 
regeneration of sensory axons in a spinal cord injury (SCI) 
model, as traced by a retrograde marker. These regenerating 
sensory axons conferred a larger amplitude of compound 
action potentials recorded above the lesion site, which was 
selectively abolished by a chemo-genetics approach (using 
the Designer Receptors Exclusively Activated by Designer 
Drugs (DREADD) technology) targeting DRG neurons. The 
authors further noted that DRG neurons with axons regen-
erated across injury sites are positive for the proprioceptive 
neuron marker parvalbumin (PV), and that EE specifically 
enhanced neurite outgrowth from DRG neurons labeled 
by a PV promoter-driven fluorescent marker. Interestingly, 
EE-dependent (but not injury conditioning-dependent) 
DRG neurite outgrowth is largely abolished in Egr3–/– mice, 
which are defective in muscle spindle proprioceptive feed-
back but not PV-positive neuron population. These findings 
indicate that EE rather specifically enhances proprioceptive 
DRG axon regeneration, and that this enhancement is de-
pendent on proprioceptive afferent feedback. 	

How did EE promote axonal regeneration? Interestingly, 
the authors observed no significant changes in either the 
DRG neurons or in the circulation in terms of neurotro-
phin and cytokine levels. RNAseq and proteomics analysis 
of whole DRGs (of mixed DRG neuronal cell types) or 
laser-captured DRG neurons with large diameter (which 
would include the proprioceptor and mechanoreceptor neu-
ron populations) showed marked changes in the latter. In 

particular, EE induced an upregulation of genes and proteins 
associated with molecular pathways that are associated with 
regeneration, including those that regulate neuronal activity, 
calcium signaling, energy metabolism, neuronal projection 
and cytoskeleton dynamics. These changes in transcriptional 
and protein expression profiles are in line with the notion 
of an EE-induced pro-regenerative gene expression profile 
and activity in the DRG neuron subtypes examined. Indeed, 
Gi-coupled DREADD-mediated inhibition of adenylate 
cyclase and silencing of DRG neuronal activity attenuated 
axon regeneration of EE-exposed mice. Conversely, neuronal 
activity enhancement by Gq-coupled DREADD (which elic-
its inositol 1,4,5-trisphosphate-mediated Ca2+ release from 
intracellular stores) in mice on standard housing enhanced 
their DRG neurite outgrowth to a degree similar to those 
observed for the EE-exposed mice. Furthermore, the authors 
directly confirmed that EE exposure increases potassium 
stimulated Ca2+ release in the proprioceptive DRGs of trans-
genic mice carrying a calcium indicator GCaMP under the 
PV promoter (Hutson et al., 2019).

How did EE-induced neuronal activity elicit a global 
change in the proprioceptive DRG gene expression profile 
so as to enhance axon regeneration? The authors examined 
histone epigenetic marks and found that EE enhanced the 
acetylation of H3K27 and H4K8 in PV-positive DRG neu-
rons. In line with the RNAseq finding of transcriptional 
upregulation, H4K8ac and H3K27ac are indeed markers of 
transcriptional activation. These histones could be acetyl-
ated by the CREB-binding protein (CBP), which harbors 
Ca2+-sensitive transactivation domains and is known to play 
important roles in activity-dependent neuroplasticity. In 
this regard, CBP activity is known to be controlled by Ca2+ 

and the calcium/calmodulin-dependent (CaM) protein ki-
nases II and IV (CaMKII/IV) (Chawla et al., 1998; Hu et al., 
1999). CBP has also been previously shown to be necessary 
for EE-induced neurogenesis and cognitive enhancement 
(Lopez-Atalaya et al., 2011). Indeed, the current work shows 
that EE exposure increased CBP phosphorylation and acetyl-
ated (active) CBP levels in PV-positive DRG neurons. Levels 
of acetylated H4K8, like the enhancement of neurite out-
growth capacity, persisted in PV-positive DRG neurons for 
a long time, even 5 weeks after EE exposure. Both the levels 
of acetylated H4K8 and acetylated CBP were reciprocally 
enhanced or inhibited by the DREADD-mediated manip-
ulations of neuronal activity, thus linking calcium-depen-
dent neuronal activity to both CREB activation and histone 
acetylation. Importantly, in mice with CBP conditionally 
knocked out in Ca2+-calmodulin-dependent protein kinase 
IIa (CaMKIIa)-positive neurons (including DRGs), loss of 
CBP abolished EE-exposure induced increase in neurite out-
growth. CBP-based acetylation is thus critical for mediating 
the persistent enhancement of neurite outgrowth and axon 
regeneration phenotype associated with neuronal activity 
resulting from EE exposure.

Could enhancement of CBP activity in the CNS therefore 
promote axon regeneration after injury? The authors demon-
strated this point (Hutson et al., 2019) with a small molecule 
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activator of CBP (TTK21) conjugated to glucose-derived 
carbon nanospheres (CSP) (Chatterjee et al., 2013), with 
the latter allowing effective delivery across the blood-brain 
barrier. CSP-TTK21 increased neurite outgrowth of DRG 
neurons in culture and promoted axonal regeneration as well 
as sensorimotor function in vivo after mid-thoracic dorsal 
hemisection in a mouse SCI model. In another SCI model 
of mid-thoracic spinal cord contusion in rats, CSP-TTK21’s 
enhancement of functional recovery appeared to correlate 
with the enhanced sprouting of both descending motor and 
ascending sensory axons, as well as an increase in the densi-
ty of vGlut1-positive synaptic boutons from proprioceptive 
neurons found at the proximity of motor neurons. These 
findings, taken together, further supports the role of CBP 
activity in axon regeneration and attests to the translational 
value of this notion (Figure 1). 

Epigenetics-Based Regulation of Axon 
Regeneration – Important Recent Findings
The findings of Hutson et al. (2019) illustrated an epigenetic 
mechanism underlying axon regeneration enhancement. In 
this regard, these findings add to other recent advances in 
our understanding of modulation of axon regeneration by 
several epigenetic mechanisms (Weng et al., 2016). There 
are major recent advances in our understanding of the role 

of DNA methylation in axon regeneration (Loh et al., 2017; 
Weng et al., 2017; Oh et al., 2018). Axotomy of mouse DRG 
neurons elevated the levels of the methylcytosine dioxy-
genase Ten-eleven translocation 3 (Tet3) (Loh et al., 2017; 
Weng et al., 2017). Tet3 mediates active DNA demethyla-
tion by catalyzing the conversion of 5-methylcytosine to 
5-hydroxymethylcytosine and iteratively oxidizing it to 
5-formylcytosine and 5-carboxycytosine. Genome-wide 
5-hydroxymethylcytosine mapping showed that injury leads 
to distinct changes associated with regeneration-associated 
genes (RAGs), including the well-known ones such as Atf3, 
Bdnf, and Smad1 (Loh et al., 2017). Tet3 silencing signifi-
cantly reduced the axonal outgrowth capacity of DRG neu-
rons, and methylation at CpG dinucleotides was significantly 
reduced in the gene body and enhancer regions of Atf3 fol-
lowing injury (Weng et al., 2017). Thymine DNA glycosylase 
(Tdg) acts downstream of Tet3 by removing 5-formylcytosine 
and 5-carboxycytosine, thereby initiating base-excision re-
pair to generate an unmodified cytosine. Weng et al. (2017) 
found that silencing or conditional knockout of thymine 
DNA glycosylase also attenuated axon regeneration and 
reduced RAGs expression. Interestingly, PTEN deletion-in-
duced axon regeneration of mouse RGCs could be atten-
uated by the silencing of Tet1 instead of Tet3 (Weng et al., 
2017). 

Figure 1 Schematic diagram summarizing the findings of environmental enrichment (EE)-mediated enhancement in axon regeneration of 
proprioceptive dorsal root ganglion (DRG) neurons. 
EE exposure enhanced axon regeneration through EE-elicited neuronal activity resulting in long lasting epigenetic markings in terms of CREB 
binding protein (CBP)-mediated histone acetylation, which promotes the expression of regeneration associated genes (RAGs). Among the latter 
are those that promote the ease of Ca2+ release with stimuli. Ac: Acetyl group; H3: histone protein 3; H4: histone protein 4; P: phosphorylation; SCI: 
spinal cord injury.  
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On the other hand, another report by Oh et al. (2018) 
found that DNA methylation contributes to robust axon 
regeneration in the context of specific gene silencing. These 
authors showed that sciatic nerve injury of DRG neurons re-
duced the levels of the microRNA miR-9 (Jiang et al., 2017), 
which in turn resulted in the upregulation of the latter’s tar-
gets, including ubiquitin-like containing PHD ring finger 1 
(UHRF1) and the RE1 silencing transcription factor (REST/
NRSF), a master transcriptional regulator of neuron-specific 
genes (Hwang and Zukin, 2018). The DNA methytransferase 
inhibitor RG108 reduced the length of axons regenerating 
though the lesion site. Contrastingly, UHRF1 promoted axon 
regeneration of DRG neurons. UHRF1 silences gene expres-
sion by interacting with dimethylated and trimethylated 
H3K9, and by recruiting  DNA methytransferase1 and  DNA 
methytransferase3a to promote DNA methylation of gene 
promoters, which include that of PTEN. REST also appears 
to be important for axon regeneration as its inhibition or si-
lencing both impaired the process in DRG (Oh et al., 2018). 
Presumably, REST’s suppression of neuron-specific genes 
promoted regeneration by a temporary loss of the terminal 
differentiation expression profile of adult neurons. However, 
the role of REST in this regard may be complex as it is itself 
transcriptionally repressed by UHRF1. 

Epigenetic regulatory mechanisms are of course not lim-
ited to histone protein acetylation and DNA demethylation. 
A complex network of miRNAs regulates axonal growth and 
regeneration (Yoo, 2017), and the roles of a number of dif-
ferent miRNAs in axon regeneration have been extensively 
described in multiple species (Song et al., 2012; Liu et al., 
2013; Gaudet et al., 2016; van Battum et al., 2018; Wang et 
al., 2018). More recently, Wenk et al. (2018) showed that sci-
atic nerve injury also elevates N6-methyladenosine (m6A)-
tagged mRNA or transcripts of RAGs and those that encode 
components of the protein translation machinery in DRG 
neurons. m6A modification of mRNAs is mediated by a 
methyltransferase complex consisting of methyltransferase 
like 3 (Mettl3) and Mettl4 (Wang et al., 2016). Conditional 
knockout of Mettl14 or knockout of the m6A reader YTH 
domain-containing family protein 1 attenuated injury-in-
duced translation of proteins in DRGs, reducing axon regen-
eration as well as associated functional recovery. PTEN dele-
tion-induced axon regeneration of RGC neurons is likewise 
attenuated by Mettl14 silencing (Weng et al., 2018).

Environmental Enrichment-Elicited 
CREB-Binding Protein-Mediated 
Acetylation - Signaling Pathways and 
Connections
As EE has been previously shown to induce the expression 
of neurotrophins such as BDNF (Ickes et al., 2000; Rossi et 
al., 2006; Zhang et al., 2016), a lack of clear elevation of these 
factors in the Hutson et al (2019) study is mildly surprising. 
This is particularly so when the mechanism deciphered, CBP 
activation, is also known to induce BDNF expression (Chat-
terjee et al., 2013; Palomer et al., 2016). In particular, the use 

of CSP-TTK21 (Chatterjee et al., 2013) is likely to elevate 
BDNF expression in the SCI models, and this point would 
therefore need further confirmation. 

CBP is a signal mediated transcription coactivator (Chawla 
et al., 1998) which has been previously shown to be necessary 
for EE-induced neurogenesis and cognitive enhancement 
(Lopez-Atalaya et al., 2011). If CBP activation resulting 
from neuronal activity elicited Ca2+ influx underlies the 
pro-regenerative phenotype, how is CBP activated by Ca2+? 
Although not specifically explored by the authors, funda-
mental mechamisms of neuronal calcium signaling are likely 
involved. Synaptic calcium influx of from excitatory neural 
transmission, for example activates synaptic CaMKII (Penny 
and Gold, 2018). CBP activity is known to be controlled by 
cAMP, CaMKII and CaMKIV (Hu et al., 1999). CaMKIV 
could shuttle from the cytoplasm to the nucleus and is a ma-
jor nuclear CaM kinase (Lemrow et al., 2004). In the context 
of a pituitary cell line AtT20 (Chawla et al., 1998), nuclear 
calcium and CaMKIV are the major regulators of CBP/
CREB-based transcription. Whether this is the case for DRG 
neurons remains to be ascertained. 

Is the epigenetic mechanism of CBP activation in anyway 
related to the PTEN-mTOR pathway? Although the work 
of Hutson et al. emphasized on the role of CBP in histone 
acetylation, thus affecting axon regeneration via changes 
in gene expression, it should also be borne in mind that 
CBP also acetylates PTEN (Ikenoue et al., 2008), and PTEN 
acetylation is known to attenuate its activity (Okumura et al., 
2006) and function (Ikenoue et al., 2008; Tang, 2019). Given 
that PTEN is a prominent inhibitor of axon regeneration in 
both PNS and CNS neurons (Park et al., 2010), CBP elevated 
during injury could conceivably also act through PTEN in 
terms of promoting DRG axon regeneration. On the other 
hand, the activity of mTOR, or one of its functional protein 
complex mTORC1, is essential for axon regeneration, and 
enhanced mTORC1 activity promotes the latter process 
(Miao et al., 2016; Carlin et al., 2019). In this regard, EE is 
known to improve learning and memory in young adult 
rats (Hullinger et al., 2015) as well as protect against photo-
receptor neuron death in Retinitis Pigmentosa (Barone et 
al., 2012) through mTORC1 signaling. mTORC1 is conven-
tionally consider to function in the cytoplasmic context on 
organellar membranes, but its non-canonical activity in the 
nucleus is gaining prominence (Audet-Walsh et al., 2017; 
Giguère, 2018). Interestingly, CBP has been recently shown 
to be a substrate of mTORC1, and the latter directly activates 
CBP by phosphorylation of several Ser residues at its C-ter-
minal domain (Wan et al., 2017). The CBP-based epigene-
tic enhancement of axon regeneration via upregulation of 
pro-regeneration genes could therefore cross-talks extensive-
ly with the PTEN-mTOR pathway.  

Some Caveats and Reservations 
The recent findings on how epigenetic mechanisms modulate 
axon regeneration discussed above provided fresh insights 
and perspectives on the neuronal intrinsic aspects of axon 
regeneration upon injury.  However, to fully comprehend the 
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implications of some of these findings would require under-
lying mechanistic details to be better deciphered. Further-
more, some of the findings also appear, at least superficially, 
to contradict each other. Several caveats and unresolved 
issues remain. Firstly, whether DNA methylation is pro- or 
against axon regeneration appears unsettled, despite the use 
of similar models. The inferences drawn in different reports 
at the moment are therefore likely to be context-dependent. 
Secondly, the role of REST in axon regeneration appears to 
be complex, and both its levels and its impact on regenerative 
transcription profile may vary temporarily upon injury. Fi-
nally, mechanisms such as CBP-mediated histone acetylation 
is likely more prominent in some neuronal cell types (such as 
proprioceptive DRGs) than others. Taken together, the recent 
findings of epigenetic regulation of axon regeneration should 
be interpreted with some caution, and should prompt future 
work. Importantly, despite the above uncertainties, all these 
findings could have immense translation potential.

Could Environmental Enrichment-Mediated 
Enhancement in Axon Regeneration be 
Clinically Useful?
It is a conceivable future prospect that a cocktail of drugs 
eliciting multiple epigenetic pathways or mechanisms could 
be used to promote regeneration of injured axons in clinical 
settings. In terms of EE, clinical implementation has been 
discussed pertaining to enhancement of recovery from 
neuronal injuries, such as stroke (McDonald et al., 2018). A 
number of clinical trials with reasonably positive outcomes 
have also been reported (Janssen et al., 2014; Khan et al., 
2016). However, a lack of qualitative understanding and 
quantitative gauge of which aspects of EE would be most 
useful or effective as well as the lack of a clear mechanistic 
understanding of how EE works, have not helped in its im-
plementation in clinical settings beyond that of general neu-
ro-habilitation. Now, along with the deciphering of the EE 
elicited, CBP-based histone acetylation mechanism and the 
somewhat promising efficacy of CSP-TTK21 (Chatterjee et 
al., 2013) as demonstrated in animal neuronal injury models 
(Hutson et al., 2019), the time may have come for further 
human subject-based investigations into EE’s use in neuro-
nal injury recuperation settings, and for the development of 
EE mimetic drugs (Hannan, 2014).
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