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Abstract: Glioblastoma multiforme (GBM) is one of the most aggressive and common types of brain
tumor. Due to its high proliferation ability, a high lethality rate has been observed with this malignant
glial tumor. Terminalia catappa L. (T. catappa) is currently known to have anti-inflammatory and
anti-carcinogenesis effects. However, few studies have examined the mechanisms of the leaf extracts
of T. catappa (TCE) on GBM cells. In the current study, we demonstrated that TCE can significantly
inhibit the migration and invasion capabilities of GBM cell lines without showing biotoxic effects.
Matrix metalloproteinases-2 (MMP-2) activity and protein expression were attenuated by reducing
the p38 phosphorylation involved in the mitogen-activated protein kinase (MAPK) pathway. By
treating with TCE and/or p38 inhibitor (SB203580), we confirmed that p38 MAPK is involved in the
inhibition of cell migration. In conclusion, our results demonstrated that TCE inhibits human GBM
cell migration and MMP-2 expression by regulating the p38 pathway. These results reveal that TCE
contains potent therapeutic compounds which could be applied for treating GBM brain tumors.

Keywords: glioblastoma multiforme; invasion; migration; brain cancer; Terminalia catappa L.

1. Introduction

Brain tumors are divided into two major types: cancerous and benign tumors. In
the cancerous type, the glioblastoma multiforme (GBM) is the most common type of
brain tumor in humans [1]. Due to its high proliferation rate and invasiveness, GBM is
recognized as a lethal brain tumor that shows a 2-year survival rate of less than 5% [2,3]. The
standard treatments for GBM are surgery, radiotherapy and chemotherapy. Combinations
of radiotherapy and the conventional chemotherapy drug, temozolmide (TMZ), show
a higher survival rate than radiotherapy alone [4,5]. Currently, multimodal treatment
including feasible surgical resection, radiotherapy and adjuvant TMZ is still not sufficient,
exhibiting survival rates of only around 14.6 months after diagnosis [6]. The chemotherapy
drug TMZ can cause significant toxic side effects in nearly 20% of treated patients [7]. Due
to this limitation of TMZ, the development of a new approach for GBM treatment is an
important task today.
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The high lethality of GBM is largely caused by its infiltrative invasion and recurrence
at adjacent or distant regions of the brain after surgery [8,9]. The metastasis of cancer cells
commences with the invasion of adjacent cells and the formation of new tumors [10–12].
The hydrolysis of the extracellular matrix (ECM) is a critical process in cell metastasis that
promotes the mobility and metastasis of cancer cells [13–15]. Various secreting proteases
are involved in this hydrolysis process; one of the major protease groups is referred to
as the matrix metalloproteinases (MMPs) [16–19]. MMP-2 (gelatinase A) is a type IV
collagenase that plays a vital role in glioma carcinogenesis [20,21]. Clinical studies have
indicated that high levels of MMP-2 activity are associated with intracerebral invasion
and metastasis of GBMs [20]. Numerous in vitro studies have revealed that suppression
of MMP-2 expression contributes to the inhibition of cell migration in GBM cells [22–25].
Thus, inhibition of MMPs could be effective for preventing the metastasis of cancer cells.

Currently, enormous numbers of studies in different fields, such as pharmacology,
medical science, food science, agriculture, etc., have focused on the application of plant
secondary metabolites. Pharmacological effects in the prevention or intervention of disor-
ders is a most attractive topic these days. Terminalia catappa L. (T. catappa) is a large tree
species belonging to the family Combretaceae and is widely distributed over the tropical and
subtropical regions of Asia and Australia. It grows quickly and propagates easily in suitable
environment via seeds. Various parts of this tree, most commonly leaves, barks and fruits,
have been applied as traditional remedies, and are reputed for treating dermatitis and fever
in India, Malaysia and the Philippines [26]. More recently, a number of plant compounds
including flavonoids, triterpenoids and hydrolysable tannins have been identified from
the chloroform extract or water extract of T. catappa leaves [27–30]. These results might
also explain the anti-oxidative, anti-inflammatory, anti-carcinogenesis and hepatoprotec-
tive effect of water extracts of T. catappa leaves that have been found in many research
reports [31–33]. Therefore, further studies on the leaf extracts of T. catappa (TCE) and their
applications would benefit human health. Previous studies from our research team have
demonstrated that TCE can inhibit the metastasis of Lewis lung carcinoma, oral squamous
cell carcinoma and hepatocellular carcinoma in vitro and/or in vivo [31,34]. In this study,
we characterized the anti-carcinogenesis effect of TCE on malignant primary brain tumor
GBMs and tried to understand its inhibitory mechanisms. The results showed that TCE
can also inhibit the migration and invasion of GBM by suppressing MMP-2 expression.

2. Results
2.1. Effects of TCE on Cell Viability in U251 and GBM8401 Cell Lines

By using the MTT assay, the cytotoxic effects of TCE at various concentrations
(0–40 µg/mL) following its application for 24 and 48 h on U251 and GBM8401 cells were
characterized. The results clearly showed that U251 and GBM8401 cell lines were not signifi-
cantly affected at all treatment concentrations after 24 h and 48 h of treatment (Figure 1A,B).
Moreover, TCE treatment did not reduce cell viability in immortalized human astrocyte
cells (Figure 1C). Therefore, the tested range of TCE concentrations did not exhibit any
toxic effects and so was applied for the following experiments.

2.2. Effects of TCE on Migration and Invasion of U251 and GBM8401 Cell Lines

To investigate the motility of U251 and GBM8401 cell lines after TCE treatment, a
scratch-wound assay was performed. A significant inhibition at 12 h was found with the
higher dosages of TCE, at 20 and 40 µg/mL (Figure 2A,B), and all TCE-treated samples also
exhibited significant inhibition (p < 0.05) after 48 h. Both cell lines demonstrated dose and
time-dependent effects on their motility. Moreover, using a Boyden chamber-based assay,
we found that the migration and invasion ability of both glioma cell lines were decreased
significantly by treatment with TCE (p < 0.05), except at the lowest concentration (5 µg/mL;
Figure 2C–F). These outcomes revealed that TCE is able to prohibit migration and invasion
in both tested glioma cell lines.
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Figure 1. Effects of T. catappa L. extract (TCE) on cell viability. U251 (A) and GBM8401 (B) cells were treated with different
concentrations (0, 5, 10, 20 and 40 µg/mL) of TCE for 24 and 48 h before being subjected to an MTT assay for cell viability.
(C) Immortalized human astrocyte cells were treated with TCE for 24 h before being subjected to an MTT assay for cell
viability. The values shown represent the means ± SD of at least three independent experiments.
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Figure 2. Effects of T. catappa L. extract (TCE) on migration and invasion of U251 and GBM8401 cells. 
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Figure 2. Effects of T. catappa L. extract (TCE) on migration and invasion of U251 and GBM8401
cells. The motility of U251 (A) and GBM8401 (B) cells were assessed by in vitro wound closure assay
with different concentrations of TCE (0, 5, 10, 20 and 40 µg/mL) at 12, 24 and 48 h. Cell migration
(C,D) and invasion (E,F) were measured using a Boyden chamber for 24 h with polycarbonate filters.
* p < 0.05, compared with the vehicle group.
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2.3. TCE Inhibits the Enzyme Activity and Protein Expression of MMP-2

MMPs are the major proteases involved in the cancer cell migration. Thus, we would
like to clarify the role of MMP-2 in the TCE inhibition of glioma cells. The enzyme activity
and protein expression of MMP-2 were characterized by a gelatin zymography assay
and Western blotting, respectively. MMP-2 activity gradually decreased along with the
increase of TCE concentrations in both cell lines (Figure 3A,B). TCE reduced the MMP-2
enzymatic activity by 66% and 59% in U251 and GBM8401 cells, respectively, at the highest
concentration (40 µg/mL). MMP-2 protein expression was downregulated in both TCE-
treated cells, which corresponds with the enzymatic activity assay (Figure 3C,D). Thus,
inhibitory effects on migration in TCE-treated U251 and GBM8401 cells were found to
occur via the suppression of MMP-2 activity and protein expression.
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Figure 3. Effects of T. catappa L. extract (TCE) on the enzymatic activity and protein expression
of MMP-2. A gelatin zymography assay was applied for the measurement of MMP-2 activity in
TCE-treated (A) U251 and (B) GBM8401 cells (0, 5, 10, 20 and 40 µg/mL). The expressions of MMP-2
protein during the same treatments of (C) U251 and (D) GBM8401 cells were assessed by western
blot. The values represent the means ± SD of at least three independent experiments. * p < 0.05,
compared with the vehicle group.

2.4. Effects of TCE on Signaling Cascades in U251 and GBM8401 Cell Lines

Based on the results above, we wanted to investigate the regulatory mechanisms of
TCE-treated cell signal transduction. Given that the MAPK pathway is involved in the
regulation of MMP-2 expression, we therefore examined the levels of phosphorylated
ERK1/2, JNK1/2, p38 in U251 and GBM8401 cells after TCE treatment. Results showed
a significant decrease in p38 phosphorylation, while neither phosphorylation of ERK1/2
nor JNK1/2 activation was observed (Figure 4A,C). In addition, the FAK/Src and AKT
pathways have previously been associated with increased tumor metastasis and upstream
signaling pathways of MMP-2 expression. However, the phosphorylation levels of FAK/src
and AKT expression in U251 and GBM8401 cells with or without the addition of TCE were
nearly unchanged (Figure 4B,D). Therefore, we suggested that the suppression of MMP-2
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by TCE was regulated via a component of the mitogen-activated protein kinase (MAPK)
pathway—p38.
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Figure 4. Effects of T. catappa L. extract (TCE) on signaling cascades in U251 and GBM8401 cells.
After 6 h culture with various concentrations of TCE (0, 5, 10, 20, and 40 µg/mL), the lysates
of U251 and GBM8401 cells were subjected to SDS-PAGE followed by a Western blots assay
with (A,C) anti-ERK1/2, anti-JNK1/2, anti-p38 and (B,D) anti-FAK, anti-AKT, anti-Src (total and
phosphorylated) antibodies.

2.5. Effects of TCE and p38 Inhibition in U251 Cell Lines

To further confirm the role of p38 in the TCE-induced anti-migration of glioma cells,
the p38 inhibitor SB203580 was utilized and combined with TCE at 20 µg/mL for the
following assays. A Boyden chamber-based assay showed that application of either the
inhibitor or TCE alone could decrease U251 cells’ migrative ability. Combined TCE and
SB203580 significantly reduced this migrative ability more than by treatment with either
alone (Figure 5A). Similar results were observed on MMP-2 activity and protein expression
levels, which were dramatically reduced with the combination treatment of inhibitor
and TCE, as shown by zymography and a Western blot assay (Figure 5B,C). Sequential
assays with the SB203580 inhibitor clearly indicated that p38 is involved in TCE-induced
anti-migration in the glioma U251 cell line (Figure 5D).
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Figure 5. Effects of T. catappa L. extract (TCE) and p38 inhibitor (SB203580) on MMP-2 activity, protein expression and
migration of U251 cells. U251 cells were treated with SB203580 combined with or without 20 µg/mL of TCE for 24 h.
Analysis of (A) the migration of U251 cells was assessed as described in Section 4. A gelatin zymography assay was used
for measurement of MMP-2 activity (B) and protein expression (C). (D) Schematic illustrates the mechanisms by which TCE
inhibits GBM cell migration through the p38 pathway. * p < 0.05, compared with the vehicle group. # p < 0.05, compared
with the TCE-treated group.

3. Discussion

According to the 2021 World Health Organization (WHO) classification, GBM has
been recognized as one of the most aggressive type of primary brain cancer [35]. Only
a 9.8% 5-year survival rate of patients is found with adjuvant chemotherapy of TMZ
following safe surgical resection [36]. The high proliferation of gliomas is the main factor
causing the death of patients. More and more studies have demonstrated that natural
compounds have the potential to inhibit the proliferation, migration and/or invasion of
various tumor cell lines as novel anti-cancer drugs [37]. Therefore, preventing metastasis is
one critical approach for cancer disease treatment. In the current study, the results exhibited
that treatment with TCE suppressed the migration and invasion of U251 and GBM8401
cell lines (Figure 2), and showed no cytotoxicity at the applied concentrations (Figure 1).
Through inhibition of the phosphorylation of p38 expression in the MAPK pathway, TCE
lowered the expression of MMP-2 protein and its enzymatic activity. We deemed that
TCE could inhibit cell migration by interfering with MMP-2 expression by inhibiting the
activation of p38 phosphorylation.

T. catappa plants have long been used in folk medicine and also show anti-cancer
capabilities in many in vitro and in vivo studies [31,34,38–40]. In a previous study, two
triterpenoids, ursolic acid and asiatic acid, were identified from TCE [41]. In a recent study,
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Conway et al. provided evidence that ursolic acid has a high capacity for inducing GBM
cell death and inhibiting GBM cell migration [42]. Moreover, ursolic acid was shown to
increase sensitivity to TMZ in TMZ-resistant GBM cells [43]. Based these findings, ursolic
acid, one of the most abundant components of TCE, could be applied to act as an inhibitor
of GBM cell migration. However, further investigations are required to fully elucidate
whether TCE can pass through the blood–brain barrier.

The degradation of the ECM is considered an important marker of the progress of
metastasis [13,14,44–46]. Numerous previous studies have revealed that this process is
catalyzed by proteins secreted by cancer cells and allows cancer cells to migrate to other
tissues or organs [17]. It has been demonstrated that extracellular matrix (ECM) remodeling
regulates GBM cells’ migratory and infiltrative potential [47]. The MMPs are the major
secreted enzymes that are involved in different types of malignant tumors [48]. MMP-2, also
known as gelatinase A, is known to be expressed in most tissues and cells [49]. It has also
been shown to play a key role in the invasion and metastasis of different types of human
cancer cells [50–54]. A few studies have found high expression of MMP-2 has in high-grade
astrocytic tumors in comparison to normal brain tissue [55,56]. In addition, the expression
levels of MMP-2 were significantly elevated in TMZ-resistant GBM cells in comparison
to parental GBM cells [57]. The use of novel compounds derived from natural products
is suggested as a potential solution for the treatment of GBM [58]. Jiang et al. revealed
that tetrandrine, which is isolated from the root of Stephania tetrandra S. Moore, inhibits
GBM8401 cancer cell migration and invasion in vitro [59]. A novel caffeic acid amide
derivative, PT93, suppresses MMP-2 and MMP-9 expression in human GBM cell lines [55].
Our results reveal that TCE inhibits the migration abilities of GBM cells by suppressing
MMP-2 expression. Thus, TCE may serve as a potential agent for GBM therapy.

The MAPK network has been shown to be activated in over 88% of gliomas, regu-
lating gliomagenesis and progression [60,61]. Research has shown that targeting MAPK-
interacting kinases (MNK1/2) downstream of the MAPK-signalling pathway may be an
effective strategy for treating GBM [62]. Moreover, Wu et al. reported that knockdown
uncoupling protein 2 reduces glioblastoma cell invasiveness by inhibiting the p38 path-
way [63]. Similarly, our study reported p38 MAPK activity as affecting human glioma
cell migrative ability via TCE, which controls the metastatic processes of glioma cells.
However, our studies only focused on the mechanistic roles of human U251 and GBM8401
glioma cell lines, and the effect of TCE on GBMs was not studied in vivo. Further in vivo
investigations are needed to verify the anti-metastatic effects of TCE in GBM in the future.

4. Materials and Methods
4.1. Preparation of T. catappa L. Extract (TCE)

T. catappa L. leaves were purchased from local herb stores in Taichung, Taiwan. The
plant material was identified at the Department of Biochemistry, Chung Shan Medical
University in Taichung by Dr. Yih-Shou Hsieh. Ethanol was utilized for the preparation
of T. catappa L extracts (TCEs) as described previously [34]. In brief, 100 g of the air-dried
leaves were extracted twice by 50% ethanol (500 mL) in a flask which was boiled at 70 ◦C
for 24 h. After filtration of the pooled extract, the solvent was removed using a rotary
evaporator under a low pressure. The condensed extract was then lyophilized and stored
at −20 ◦C. The chemical profile of the TCE was also characterized using HPLC–MS as
described previously [34]. Analysis of TCE using the HPLC–MS system revealed one major
peak with a retention time of 11.13 min. The main product peak was then subjected to mass
spectrometry and ellagic acid (the major peak was at the m/z 301.03); hydrolysable tannins
(punicalin and punicaligin) and gallic acid were identified, which were consistent with
previous reports [64–66]. The results revealed that ellagic acid and hydrolysable tannins
are the major chemical constituents of TCE. In this study, the TCE extract was prepared
with 50% ethanol under the same conditions and the chemical profile was similar to our
previous study [34].
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4.2. Cell Lines and TCE Treatment

Two human glioma cell lines, U251 and GBM8401, utilized for the TCE inhibitory
experiments were purchased from the BCRC Center, Inc., Hsinchu, Taiwan. Both cell lines
were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum, 2 mM
L-glutamine, 100 µg/mL streptomycin and 100 U/mL penicillin at 37 ◦C in a humidified
5% CO2 incubator. Immortalized human astrocyte cells were purchased from Creative
Biolabs, Inc., Shirley, NY, USA. The TCE powder was dissolved in 50% DMSO to prepare
a serial stock of 0, 5, 10, 20 and 40 µg/mL for treatments. The p38 inhibitors (SB203580;
10 µM) were also utilized to reveal if the inhibitory effects of TCE were produced via the
MAPK pathway.

4.3. Cell Viability Assay

For evaluating the cytotoxicity of TCE, we applied a colorimetric assay using a tetra-
zolium dye, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), to de-
termine cell viability. Both U251 and GBM8401 cells were seeded in 24-well plates at a
density of 6 × 104 cells/well and treated with TCE at 0, 5, 10, 20 and 40 µg/mL for 24 h
under the same culture conditions. After the TCE treatments, the medium was removed
and washed by PBS. The attached cells were further incubated with 20 µL of 5 µg/mL MTT
(Sigma chemical Co., St. Louis, MO, USA) at 37 ◦C for 4 h. The number of viable cells was
evaluated by the production of formazan, which was measured spectrophotometrically at
563 nm.

4.4. In Vitro Wound Closure

U251 and GBM8401 cells (2 × 105 cells/well) were plated in 6-well plates for 24 h and
wounds were produced by scratching with a pipette tip. The wounded cells were then
incubated in RPMI medium and treated with TCE (0, 5, 10, 20 and 40 µg/mL). Images
were recorded at 0 (immediately after wounding), 12, 24 and 48 h after treatment using a
phase-contrast microscope (×100).

4.5. Migration and Invasion Assays

The assays for characterization of cell migration and invasion were as described
in Chu et al. [34]. After treatment with or without TCE (0, 5, 10, 20 and 40 µg/mL) or
in combination with the p38 inhibitor SB203580 (10 µM) for 24 h, surviving cells were
collected and seeded onto the upper Boyden chamber (Neuro Probe, Cabin John, MD, USA)
at 104 cells/well in serum-free medium.

4.6. Assessment of MMP-2 by Gelatin Zymography

The activity of MMP-2 in the medium was measured by gelatin zymography assays,
as described previously [40]. The cultured medium was collected after TCE treatment
(0, 5, 10, 20 and 40 µg/mL) or in combination with the p38 inhibitor SB203580 (10 µM), and
subjected to 0.1% gelatin-8% SDS-PAGE electrophoresis.

4.7. Western Blot Analysis

Total cell lysates from different treated cells were prepared. Equal amounts of protein
samples (20 µg) from each cell lysates were separated by SDS-PAGE on 10% polyacrylamide
gels and electrotransferred onto polyvinylidene fluoride (PVDF) membranes (Millipore,
Belford, MA, USA). After blocking, the PVDF membranes were incubated with primary
antibodies as described previously [34].

4.8. Statistical Analysis

The SigmaStat 2.0 software package (Jandel Scientific, San Rafael, CA, USA) was em-
ployed for statistical analyses. Differences between untreated and TCE-treated groups were
calculated by Student’s t-test, and a p value of < 0.05 was considered statistically significant.
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5. Conclusions

In conclusion, the present study demonstrated that TCE at noncytotoxic concentra-
tions (0–40 µg/mL) noticeably reduced the cell migration and invasion of human GBM
cells (U251 and GBM8401 cell lines). Moreover, TCE inhibits cell migration and MMP-2
expression by regulating the p38 pathway. Thus, our results have put forward evidence for
TCE being a potential agent for clinical application in the inhibition of the migration and
invasion of human glioma cells.
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