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Abstract 
 
Background 
Hirschsprung disease (HSCR) is a rare neurodevelopmental disorder caused by disrupted 
migration and proliferation of enteric neural crest cells during enteric nervous system 
development. Genetic studies suggest a complex etiology involving both rare and common 
variants, but the contribution of ultra-rare pathogenic variants (PAs) remains poorly understood. 
 
Methods 
We perform whole-exome sequencing (WES) on 301 HSCR probands and 109 family trios, 
employing advanced statistical methods and gene prioritization strategies to identify genes 
carrying de novo and ultra-rare coding pathogenic variants. Multiple study designs, including 
case-control, de novo mutation analysis and joint test, are used to detect associated genes. 
Candidate genes are further prioritized based on their biological and functional relevance to 
disease associated tissues and onset period (i.e., human embryonic colon). 
 
Results 
We identify 19 risk genes enriched with ultra-rare coding pathogenic variants in HSCR 
probands, including four known genes (RET, EDNRB, ZEB2, SOX10) and 15 novel candidates 
(e.g., COLQ, NES, FAT3) functioning in neural proliferation and neuromuscular synaptic 
development. These genes account for 17.5% of the population-attributable risk (PAR), with 
novel candidates contributing 6.5%. Notably, a positive correlation between pathogenic 
mutational burden and disease severity is observed. Female cases exhibit at least 42% higher 
ultra-rare pathogenic variant burden than males (P = 0.05). 
 
Conclusions 
This first-ever genome-wide screen of ultra-rare variants in a large, phenotypically diverse 
HSCR cohort highlights the substantial contribution of ultra-rare pathogenic variants to the 
disease risk and phenotypic variability. These findings enhance our understanding of the genetic 
architecture of HSCR and provide potential targets for genetic screening and personalized 
interventions. 
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Introduction 
 

Hirschsprung disease (HSCR), also known as aganglionic megacolon, is a rare, multi-factorial 
complex genetic disorder (Bolande, 1974; Goldberg, 1984; Taraviras & Pachnis, 1999), in which 
coding and non-coding pathogenic variants additively contribute to disease risk (Carter, 1969; 
Emison et al., 2010). This disorder results from defects of proliferation, differentiation and 
migration of enteric neural crest cells (ENCCs) into enteric neurons (Heanue & Pachnis, 2007). 
Therefore, mutations that disrupt the functions of genes and gene regulatory networks (GRNs) in 
enteric nervous system (ENS) development may lead to increased disease susceptibility 
(Chatterjee & Chakravarti, 2019).  
 
Through multiple statistical and functional genetics studies, our laboratory has identified at least 
24 genes and 9 chromosomal loci associated with an increased HSCR risk (Chatterjee et al., 
2021; Chatterjee & Chakravarti, 2019; Kapoor et al., 2015, 2021; Tilghman et al., 2019). We 
estimate that these genes collectively explain more than 62% of the PAR, considering both rare 
coding pathogenic variants and common non-coding enhancers (Tilghman et al., 2019). Among 
them, two genes – RET and EDNRB, anchoring both rare coding and common enhancer variants 
and regulated by multiple transcription factors (TFs), are the two major HSCR risk genes in the 
GRN, exhibiting strong epistasis (Chatterjee & Chakravarti, 2019). Additionally, our recent 
study, which analyzed human fetal gut transcriptomes, has identified 24 additional functional 
TFs, expanding the RET-ENDRB GRN (Chatterjee et al., 2023).  
 
The Tilghman et al. (2019) study is notable for two key achievements: the identification of many 
novel HSCR risk genes by focusing on rare coding pathogenic variants, and the estimation of 
population attributable risk using the largest HSCR cohort of European ancestry at the time 
(Tilghman et al., 2019). However, the study primarily centers on the most common phenotype – 
patients with short segment length – and investigates rare variants with minor allele frequencies 
(MAF) less than 5%. Given that risk variants with large effect size are estimated to have MAFs 
less than 0.5% (Manolio et al., 2009), a significant gap remains in understanding the contribution 
of ultra-rare variants. 
 
In this study, we extend and complement the previous study by integrating and analyzing both 
case control and family-based de novo mutation data from WES of over 300 HSCR probands and 
109 trios with diverse phenotypes. Our analysis focuses on ultra-rare (MAF < 0.1%) coding 
variants to capture their substantial impact on HSCR risk. Furthermore, we explore the potential 
genetic factors underlying HSCR phenotypic variability, including sex difference and disease 
severity (Amiel et al., 2008). 
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Results 
 
Genes Identified by Case Control Analysis 
We first perform a gene-based case-control study to identify HSCR candidate genes enriched 
with ultra-rare pathogenic coding variants in 301 HSCR cases compared to UKB controls. This 
approach, leveraging large sample sizes, offers great statistical power to detect potential disease-
gene associations. We focus on two variant categories: loss-of-function (LoF) variants and 
overall pathogenic variants (PAs) including LoF, missense variants and INDELs. We use a 
comprehensive workflow that incorporates three statistical methods: Firth-logistic regression, 
bootstrapping, and SKAT-O (see Methods). Our analysis includes 1,152 genes for LoF and 4,011 
genes for PA. 
 
After multiple testing correction, we identify seven genes significantly enriched with LoFs in 
HSCR cases compared to controls. Two genes—RET (OR = 699.2, P = 6.03×10⁻²⁰) and IFNL2 
(OR = 372.4, P = 6.27×10⁻⁶)—show robust significance across all three statistical methods. 
Additionally, one gene, PGLYRP4 (OR = 55.7, P = 1.93×10⁻⁵), is significant in two methods, 
while four genes—CDRT15 (OR = 578.2, P = 1.91×10⁻⁵), SOX10 (OR = 116.7, P = 2.53×10⁻⁵), 
SHISAL2A (OR = 354.2, P = 4.04×10⁻⁵), and TMPRSS15 (OR = 11.9, P = 2.58×10⁻⁵)—are 
significant by single methods. Additionally, a known HSCR risk gene – ZEB2, is marginally 
significant in burden test (OR=454.8, P = 9.09 × 10!"#) (Figure 1A, Figure 1C & 
Supplementary Figure S.3A).  
 
Similarly, we discover four genes with significant enrichment with PAs in cases. Among them, 
RET (OR = 17.9, P = 4.57×10⁻³¹) and EDNRB (OR = 76.7, P = 2.58×10⁻⁸) show consistent 
significance across all three statistical methods. SERPINB2 (OR = 13.5, P = 7.64×10⁻⁶) and 
IFNL2 (OR = 372.4, P = 5.14×10⁻⁶) are significant by single methods. Additionally, six genes—
including a known HSCR risk gene SOX10—are marginally significant, all by single methods: 
CDRT15 (OR = 578.2, P = 1.60×10⁻⁵), SHISAL2A (OR = 56.3, P = 3.42×10⁻⁵), SOX10 (OR = 
5.42, P = 2.13×10⁻⁵), PGLYRP4 (OR = 55.7, P = 1.62×10⁻⁵), PHGDH (OR = 3.52, P = 
1.94×10⁻⁵), and TMPRSS15 (OR = 5.81, P = 2.44×10⁻⁵)  (Figure 1B, Figure 1D & 
Supplementary Figure S.3B). We include these marginally significant genes in subsequent 
analyses because genomic control adjustments could reduce power in rare variant studies leading 
to false negatives (Georgiopoulos & Evangelou, 2016). The inclusion of marginally significant 
known risk genes SOX10 and ZEB2 further suggests that some of these signals may represent 
true associations warranting functional validation. 
 
In total, we identify 11 genes significantly enriched with LoF or PA in HSCR cases, with ZEB2 
only enriched with LoF and the other 10 genes enriched with both LoF and PA. Four genes—
RET, EDNRB, SOX10, and ZEB2—are known HSCR risk genes. Among the remaining seven 
novel genes, three (PHGDH, TMPRSS15, and SHISAL2A) are expressed in the human embryonic 
gut (Supplementary Table S.2), supporting their potential relevance as HSCR candidate genes. 
 
Genes Identified by de novo Mutation (DNM) Analysis 
In addition to pathogenic variants discovered in case control analysis, we also investigate the 
contribution of DNMs to HSCR risk, focusing on ultra-rare, pathogenic variants identified in 70 
simplex trios. DNMs represent a compelling genetic mechanism in simplex families, given their 
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spontaneous occurrence and potential to disrupt critical disease relevant pathways (Kosmicki et 
al., 2016). 
 
Using a bioinformatics pipeline optimized for DNM detection, we identify a total of 31 DNMs 
across the 70 simplex trios, including 15 synonymous variants (0.21 per exome), 8 missense 
variants (0.11 per exome), and 8 loss-of-function (LoF) variants (0.11 per exome). These rates 
are consistent with previously reported background rates for ultra-rare variants (P synonymous=0.45, 
P missense=0.47, P LoF=0.15, Supplementary Table S.3) (Samocha et al., 2014), supporting the 
robustness of our dataset. 
 
In total, we identify 16 pathogenic DNMs across 15 genes in our case cohort, with a significant 
enrichment of pathogenic DNMs in these genes in cases compared to the ASD controls (P = 
5.36x10-35, Table 1A). Among these identified genes, the known HSCR risk genes RET and 
ZEB2 harbor two and one pathogenic DNMs, respectively. Notably, 13 novel genes with 
pathogenic DNMs are also identified, 11 (84.6%) of which are expressed in the human 
embryonic gut (Table 1B), suggesting their potential relevance to HSCR. This enrichment of 
DNMs in genes specifically identified in our case cohort underscores their specificity to HSCR, 
rather than other neurodevelopmental disorders, such as ASD.  
 
To assess the significance of DNMs in individual genes, we compare the observed number of 
DNMs to the expected derived from gene- and variant type-specific mutation rates (Nguyen et 
al., 2017), using a one-sided Poisson test (Samocha et al., 2014). Three genes—RET (P = 
4.07×10⁻⁷), FAT3 (P = 1.46×10⁻⁸), and NES (P = 1.90×10⁻⁶)—show significant enrichment of 
DNMs, and are all expressed in the human embryonic gut (Table 1C). These results are 
consistent with their relevance to HSCR: RET is the primary known risk gene for HSCR (Amiel 
et al., 2008; Chatterjee & Chakravarti, 2019), FAT3 has been reported in three additional HSCR 
cases in another study (Luzón-Toro et al., 2015), and NES plays a fundamental role in enteric 
nervous system development (Belkind‐Gerson et al., 2013). 
 
We additionally perform a gene set based burden analysis to evaluate whether the overall burden 
of pathogenic DNMs across the 15 genes is enriched in HSCR cases compared to ASD controls. 
We restrict the analysis to a gene set of human embryonic gut expressed, highly constrained 
genes with selective disadvantage 𝑆$%&>0.1 (Zeng et al., 2023). One-sided Poisson test shows no 
significant difference in the rate of ultra-rare synonymous variants between cases and controls, 
confirming cohort comparability (Table 2). However, loss of function (LoF) variants are 
significantly enriched in HSCR cases compared to controls (P = 0.05) (Table 2). Consistent 
results are obtained when using another constraint metric pLI (Lek et al., 2016) (Supplementary 
Table S.4). 
 
In summary, the finding of 15 genes carrying 16 DNMs highlight the significant contribution of 
ultra-rare pathogenic DNMs, particularly LoF variants, to HSCR risk. The enrichment of DNMs 
in highly constrained and gut-expressed genes underscores the critical role of these genes in 
enteric nervous system development and their potential as HSCR candidate genes. 
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Genes Identified by Joint Analysis  
To maximize discovery power, we perform a joint analysis using an integrated Bayesian 
framework, extTADA (Nguyen et al., 2017). This approach combines pathogenic variant data 
from trio families and case-control cohorts into a unified algorithm, enabling the identification of 
significant genes with enhanced statistical power. Joint analysis is particularly advantageous for 
detecting associations that might be missed in individual analyses due to sample size limitations 
or sparse data (Nguyen et al., 2017). 
 
Using extTADA, we identify five genes significantly associated with HSCR at a false discovery 
rate (FDR) < 0.05 (Figure 2). Four of these genes—RET, ZEB2, IFNL2, and S100A2—have been 
previously identified in either the DNM or case-control analyses, validating their roles in HSCR 
risk. Notably, the joint analysis uniquely identifies the COLQ gene, which is expressed in human 
embryonic gut, suggesting its potential role in enteric nervous system development. 
 
HSCR Risk Gene Variant Burden and Pathways Analysis 
Building on the discovery of HSCR candidate risk genes, we next evaluate the burden of 
pathogenic variants across risk genes in cases compared to controls and explore their roles in 
relevant biological pathways. This gene set level analysis provides insights into the collective 
contribution of these genes to HSCR risk and their involvement in disease associated pathways.  
 
Across all analyses (DNM, case-control, and joint), we identify 25 significant genes 
(Supplementary Table S.5), of which 19 (76%) are expressed in the human embryonic gut, 
qualifying them as HSCR candidate risk genes. Among these, four—RET, EDNRB, ZEB2, and 
SOX10—are known HSCR risk genes. Comparing the overall burden of pathogenic variants in 
these 19 risk genes between cases and controls, we observe significantly higher burdens across 
all variant types in cases: INDELs (OR = 230.4, 95% CI = 26.8–1978.3), LoF (OR = 21.7, 95% 
CI = 12.8–36.9), missense (OR = 4.14, 95% CI = 2.94–5.81), and all PAs (OR = 6.29, 95% CI = 
4.71–8.41), while synonymous variants do not differ significantly (OR = 0.77, 95% CI = 0.52–
1.14) (Figure 3A), indicating sample comparability.  
 
When excluding the four known HSCR risk genes, the 15 novel risk genes still show a 
significant burden of pathogenic variants in cases compared to controls: INDELs (OR = 90.0, 
95% CI = 8.25–1012.3), LoF (OR = 9.87, 95% CI = 5.00–19.88), missense (OR = 2.34, 95% CI 
= 1.46–3.71), and all PAs (OR = 3.13, 95% CI = 2.09–4.62), with no significant difference for 
synonymous variants (OR = 0.86, 95% CI = 0.56–1.31) (Figure 3B). These findings suggest that 
both novel and known HSCR risk genes contribute significantly to the genetic architecture of the 
disease (Supplementary Table S.6). 
 
To elucidate the biological roles of the 15 novel risk genes, we perform pathway enrichment 
analysis using the Gene Ontology database (Thomas et al., 2022). The results reveal significant 
enrichment in pathways related to neuronal migration, regulation, and neuromuscular junction 
development (Figure 4). Notably, COLQ, NES, and FAT3 are the primary drivers of these 
enriched pathways (Supplementary Table S.7A). COLQ, in particular, is implicated in synaptic 
assembly and neuromuscular junction development, suggesting potential interactions between 
neuronal and muscular tissues in HSCR etiology, an underexplored aspect of the disease 
(Chatterjee et al., 2019; Mandel et al., 1993). 
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To validate the relevance of the novel risk genes to HSCR associated pathways, we repeat the 
pathway enrichment analysis including all 19 HSCR risk genes (known and novel). The results 
confirm that pathways related to neural development are primarily driven by RET, EDNRB, 
SOX10, ZEB2, COLQ, NES, and FAT3 (Supplementary Table S.7B). Notably, we observe 
specific pathway contributions from gene pairs such as RET/FAT3 and SOX10/NES, suggesting 
that FAT3 and NES may interact with the RET-EDNRB GRN implicated in HSCR (Chatterjee & 
Chakravarti, 2019). 
 
In addition to pathway associations with known HSCR risk genes, there is substantial external 
evidence supporting the relevance of COLQ, NES and FAT3 to neural development and HSCR. 
FAT3 mutations have been observed in another 3 HSCR cases in a HSCR family study, with all 
mutations belonging to cadherin domains, critical for calcium signaling pathways and neural 
development (Luzón-Toro et al., 2015). COLQ is essential for acetylcholinesterase function in 
synaptic development at neuromuscular junction. While homozygous missense mutations in the 
gene would lead to a rare congenital neuromuscular disorder – congenital myasthenia (CMS) 
(Luo et al., 2021), our HSCR patients with COLQ missense mutations are heterozygous and do 
not manifest CMS-like symptoms. NES is a marker for central nervous system (CNS) progenitor 
cells (Dahlstrand et al., 1995), and our HSCR case with a NES missense mutation shows multiple 
CNS symptoms, such as microcephaly and encephalopathy. Interestingly, the Mouse Genome 
Informatics database (MGI) (Eppig, 2017) reports abnormal neuromuscular synapse phenotypes 
in mouse strains carrying COLQ or NES mutations (MGI:2176897 and MGI:5285586), 
suggesting a potential role for neuron-muscle interactions in HSCR etiology. 
 
To quantify the HSCR risk contribution of the 15 novel risk genes, we estimate the population 
attributable risk (PAR) of the risk genes using established methods (Tilghman et al., 2019). The 
24 previously known HSCR risk genes collectively account for a PAR of 13.8%, which is lower 
than earlier estimates (31.1%, Tilghman et al., 2019) due to the stricter allele frequency and 
pathogenicity criteria used in this study. The 19 risk genes identified in this study account for a 
PAR of 17.5%, with the 15 novel genes contributing 6.5%. These results indicate that while the 
known HSCR risk genes—RET, EDNRB, ZEB2, and SOX10—explain the majority of the PAR, 
the novel genes significantly expand the understanding of HSCR genetic risk. When combining 
all 24 known genes and the 15 novel genes, the total PAR for ultra-rare pathogenic variants 
reaches 19.6% (Table 3).  
 
Our analyses identify 15 novel HSCR candidate risk genes and confirm four known HSCR risk 
genes. Pathway enrichment analysis links these genes to neuronal cell proliferation, migration, 
and neuromuscular junction development, with the novel genes COLQ, NES, and FAT3 driving 
key pathways. Collectively, the 15 novel genes contribute a PAR of 6.5%, while all 19 risk genes 
explain 17.5% of the PAR for HSCR. These findings highlight the necessity of employing both 
statistical and molecular/biological methods to comprehensively map the genetic architecture of 
rare diseases like HSCR. 
 
Variant Burden and Phenotype Variability in HSCR 
To investigate the relationship between genetic burden and the phenotypic variability of HSCR, 
we explore associations between pathogenic variant (PA) burden and clinical severity, as well as 
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differences in variant burden between male and female probands. This analysis aims to link the 
genetic landscape to the variable clinical presentations of HSCR, including sex ratios, segment 
length, familiality, and syndromic status (Amiel et al., 2008). 
 
We first examine whether clinical severity correlates with PA burden across HSCR-associated 
genes. Severity scores are assigned to each proband based on sex, segment length, syndromic 
status, and familiality (Kapoor et al., 2021). Scores are grouped into three categories: score 0 
(least severity, n = 74), score 1 (intermediate severity, n = 81), and score ≥2 (high severity, n = 
77). While there is no significant difference in PA burden between the least and intermediate 
severity groups (score 0 vs. score 1), individuals in the high severity group (score ≥2) exhibit a 
significantly higher burden of PAs across the combined set of 19 HSCR risk genes (OR = 2.58, 
95% CI = 1.16–5.75) and the combined set of 24 known HSCR risk genes plus 15 novel risk 
genes (OR = 2.12, 95% CI = 1.02–4.44) (Figure 5A).  
 
To identify potential biological processes underlying HSCR severity, we stratify genes by their 
association with each severity group and perform pathway enrichment analysis. Genes unique to 
the least severe group are enriched in both neuronal and cell growth pathways, whereas genes 
associated with the most severe group are predominantly enriched in neuronal pathways (P = 
0.012) (Figure 5B, Supplementary Table S.8). Notably, the HSCR major risk driving gene, RET 
is enriched more than twofold in the high severity group. These findings suggest that individuals 
in the high severity group are more likely to carry pathogenic variants in genes that directly 
impact neuronal pathways, highlighting their disproportionate contribution to the clinical 
severity of HSCR. 
 
HSCR is more prevalent in males, with an established sex ratio of 3.6:1 in short-segment length 
patients (BODIAN & CARTER, 1963). To explore whether male and female patients carry 
different genetic burdens, as observed in other neurodevelopmental disorders (Jacquemont et al., 
2014; T. N. Turner et al., 2019; Zhang et al., 2020), we compare the PA burden between male 
and female cases. Female probands carry at least 42% more PAs per case than males across 
multiple HSCR risk gene sets (24 known genes: 55%, P = 0.07; 19 candidate genes: 67%, P = 
0.02; 24 known plus 15 novel genes: 42%, P = 0.05) (Table 4).  
 
Given the dosage differences in X-linked genes between males and females, we perform a sex-
specific case-control analysis of X chromosome genes in the non-pseudoautosomal region. We 
identify 56 X-linked genes harboring PAs, including two male-specific genes significantly 
enriched with PAs, EGFL6 (OR = 9.97, 95% CI = 1.97–18033.7, P = 0.0003) and GRPR (OR = 
13.5, 95% CI = 1.35–24343.0, P = 0.0001) (Supplementary Table S.9). EGFL6 is highly 
expressed in the human embryonic gut, suggesting its potential relevance to HSCR. Notably, no 
PAs are detected in the known X-linked HSCR gene, L1CAM, likely due to differences in variant 
frequency thresholds between this study (AF < 0.1%) and previous work (AF < 5%) (Tilghman 
et al., 2019). 
 
In summary, we identify a significant positive association between PA burden and clinical 
severity in HSCR. Female probands carry at least 42% more PAs than males, while sex-specific 
analysis of X-linked genes identifies two male-specific genes, EGFL6 and GRPR, enriched with 
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PAs in cases. These findings provide new insights into the genetic architecture underlying the 
phenotypic variability and sex differences in HSCR.  
 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 8, 2025. ; https://doi.org/10.1101/2025.01.07.25320162doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.07.25320162
http://creativecommons.org/licenses/by-nd/4.0/


10  

Discussion 
 

Hirschsprung disease (HSCR) exemplifies the complexity of rare neurodevelopmental disorders, 
with its genetic etiology spanning a spectrum of coding and non-coding variants. In this study, 
we significantly advance the understanding of HSCR’s genetic architecture by focusing on ultra-
rare pathogenic variants and identifying 19 risk genes carrying such variants – 4 known and 15 
novel. These genes collectively explain 17.5% of the PAR, with the novel candidates 
contributing 6.5%. The discovery of these 15 novel genes, all expressed in the human embryonic 
gut, underscores the value of integrating diverse analytical approaches, including family based de 
novo, case-control and joint analysis, to capture the multifactorial nature of HSCR genetics 
(Carter, 1969). 
 
Our findings reinforce the central role of established HSCR risk genes such as RET, EDNRB, 
ZEB2, and SOX10, while revealing novel candidate risk genes like COLQ, NES, and FAT3. 
Functional evidence supports the relevance of these novel genes to HSCR pathology. For 
instance, COLQ and NES are associated with neuromuscular junction phenotypes in mouse 
models (MGI:2176897 and MGI:5285586, respectively) (Eppig, 2017), suggesting a previously 
underexplored interaction between neuronal and muscular tissues in ENS development. FAT3, 
enriched with pathogenic variants in our cohort, has been observed in other patients, with a 
suggested function in calcium-cadherin signaling pathway (Luzón-Toro et al., 2015), further 
highlighting its potential significance. These results point to a critical intersection of neuronal 
pathways and neuromuscular interactions in HSCR etiology (Chatterjee et al., 2019), expanding 
the scope of ENS-related research. 
 
The correlation between pathogenic variant burden and HSCR phenotype severity further 
emphasizes the role of multifactorial genetic risks in modulating disease outcomes. Cases with 
the high severity group harbor a higher mutational burden in genes directly impacting neuronal 
pathways, underscoring the contribution of these pathways to disease progression. Moreover, we 
observe a sex-specific difference in genetic burden, with female cases carrying at least 42% more 
pathogenic variants than males. This aligns with the “female protective effect” observed in other 
neurodevelopmental disorders (Jacquemont et al., 2014; Zhang et al., 2020), suggesting that 
females may require a higher genetic burden to manifest HSCR, reflecting the complex interplay 
of genetic and biological factors underlying the disease’s penetrance and variability. 
 
While our study identifies critical components of HSCR’s genetic architecture with ultra-rare 
coding variants, expanding variant scope to include non-coding regulatory elements and 
structural variants is crucial. Enhancer variants, in particular, play a pivotal role in regulating 
HSCR risk genes, as demonstrated in prior studies (Chatterjee et al., 2016, 2021, 2023; Kapoor et 
al., 2021; Tilghman et al., 2019), and warrant deeper investigation. Integrative approaches 
combining genetic, epigenetic and transcriptomic data are essential to capture the full spectrum 
of HSCR risk factors. 
 
In summary, our study underscores the importance of a multifaceted approach to enhance the 
power of expanding the genetic architecture of HSCR. By integrating diverse analytical methods, 
prioritizing on disease relevant tissue type and development stage, and focusing on functional 
pathways, we provide a comprehensive framework to understand the etiology of rare complex 
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genetic disorders, like HSCR. These findings lay the groundwork for future research aimed at 
expanding genetic discovery, refining genetic risk to phenotype variation, and advancing 
personalized medicine in HSCR. 
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Materials & Methods 
 
Study Participants  
HSCR affected probands and their relatives were obtained from our laboratory’s internal 
collection, HSCR-AC (IRB# i17-01813). HSCR-AC is a long-term (>30 years) project aimed at 
recruiting HSCR patients and their relatives in the U.S. We collected participants’ demographic, 
phenotypic and clinical information and stored them into a REDCap database. Participants’ 
blood and saliva samples were also collected and documented in a Laboratory Information 
Management System (LIMS/LabVantage).  
 
For this study, we obtained 833 participants from our HSCR-AC collection. This included 345 
independent probands (301 European ancestry, 3 African/African American ancestry, 1 East 
Asian ancestry and 40 admixed) and 109 distinct families (70 simplex & 39 multiplex). 
Participants’ clinical symptoms were mapped onto corresponding Human Phenotype Ontology 
(HPO) terms.  
 
Among the 301 probands of European ancestry, 70.8% (n=213) were male and 29.2% (n=88) 
were female; 46.5% (n=140) had short segment disease, 10% (n=30) had long segment disease, 
20.6% had total colonic aganglionosis (TCA) (n=62), and 22.9% (n=69) were of unknown 
segment length; 69.4% (n=209) were from simplex families and 30.6% (n=92) were from 
multiplex families; and 12% (n=36) were syndromic cases.  
 
As a source of control samples, we obtained individual-level whole exome data (in VCF format) 
and phenotype data from 194,335 participants from the UK Biobank (UKB) database 
(Szustakowski et al., 2021), of which 182,634 were of European ancestry. The disease status of 
these individuals was coded with International Classification of Diseases (ICD9 and ICD10).  
 
WES Pipeline 
DNA Extraction and QC: DNA samples from 833 participants in the HSCR-AC collection were 
extracted from blood using Gentra Puregene Kits (Cat. #69504). DNA quantity and 
concentration were measured using PicoGreen assay (Cat. #P11496). DNA quality (260/280) 
was measured using NanoDrop (Thermo Scientific T042). We obtained an overall DNA 
concentration range of 20.2 – 135.5 ng/µl, and 260/280 range of 1.79 – 1.89.  
 
Whole Exome Sequencing and Variant Calling: Paired-end reads from WES were aligned to the 
hg38 human reference gnome using Burrows-Wheeler Aligner (BWA-MEM v0.7.17). 
Subsequent steps followed the Broad Institute’s Genome Analysis Toolkit (GATK4) best-
practices pipeline for germline short variant discovery. To ensure full coverage of exome target 
regions, we used the union of the capture regions from multiple capture kits (SureSelect Human 
Exon V5, SureSelect Human Exon V7 & Broad’s customized kit). We also set different ploidy 
for males and females on sex chromosomes when generating gVCF files, a method employed by 
the New York Genome Center for the 1000 Genome project (1000G) samples (Byrska-Bishop et 
al., 2021). In obtaining a combined gVCF, we included data from 1,245 unrelated samples from 
1000G with WGS at 30X coverage, restricted to the WES intervals used in HSCR-AC samples 
alongside our 833 HSCR-AC samples. Including these 1000G samples facilitated post-alignment 
QC and ancestry assessment in subsequent steps.  
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For variant quality score recalibration (VQSR), we set the false discovery rate (FDR) at 1% and 
10% SNPs INDELs, respectively. After VQSR, additional hard filters were applied to remove 
SNPs with FS>50, DP<10, HRun>5, and INDELs with FS >200, DP<10, HRun >10. We also 
filtered out variants with more than 10% missing genotypes. Potentially contaminated samples 
were identified and removed using verifyBamID (Jun et al., 2012) and Haplocheck 
(Weissensteiner et al., 2021). Finally, multi-allelic variants were excluded from the call set, 
resulting in a total of 461,559 variants across 833 samples. GATK’s 
CollectVariantCallingMetrics and GenotypeConcordance tools confirmed a high-quality call set 
(Supplementary Table S.1A-B).  
 
Family-based de novo Mutation Calling & Validation: We identified 109 trios with WES data 
consisting of unaffected parents and affected probands. For these trios, we followed GATK’s 
genotype refinement workflow (GATK Team, 2024), and filtered for high-confidence de novo 
mutations (DNMs).  Each DNM was manually confirmed by inspecting BAM files using the 
Integrative Genomics Viewer (IGV) (Robinson et al., 2011), with inclusion criteria of DP ³10, 
GQ³20, no strand bias for all individuals, and 30%-70% and <1% reads with alternative alleles 
in probands and parents, respectively. We then validated our findings with Sanger sequencing 
(Sanger et al., 1977). 
 
Sample QC for Sex: The genetic sex of the samples was analyzed using two methods: (1) read 
depth on the sex differential SRY gene region (R. Harley & N. Goodfellow, 1994) and (2) reads 
ratio on chrY versus chrX, normalized by the total reads for each sample. Both methods 
generated consistent results. In cases where genetic sex was inconsistent with self-reported sex, 
an in-depth chart-review was conducted to determine the final sex. The final sex of HSCR-AC 
probands ultimately included 88 females and 213 males.  
 
Sample QC for Relatedness: Pairwise similarity analysis (Li et al., 1993) was used to estimate 
individual sample relatedness. Details have been described in our previous WES study 
(Tilghman et al., 2019). Briefly, observed and expected relatedness scores were estimated and 
compared for each individual pair (Supplementary Figure S.1A). If an unexpected relatedness 
was observed, a thorough chart review was conducted to decide final relatedness. 
 
Ancestry and Admixture Analysis: Sample ancestry was analyzed by comparing our samples 
with samples from the 1000G project, using principal component analysis (PCA). Plink (v1.9) 
was used for such analysis, considering only common (MAF>10%), LD-pruned (𝑟'< 0.3), 
biallelic, autosomal variants present in both HSCR-AC and 1000G or UKB and 1000G. 
Admixture analysis was conducted with ADMIXTURE software (Alexander & Lange, 2011). 
We set k=3 for meta-population clusters of Asian (EAS), European (EUR) and African (AFR) 
populations and defined a sample admixed if he/she had less than 85% ancestral component from 
a single meta-population.  

 
Variant Annotation and Pathogenic Variant Prioritization 
We functionally annotated each variant with Ensembl Variant Effect Predictor (VEP) (McLaren 
et al., 2016), based on each variant’s genomic location and protein impact. Protein coding 
variants were restricted to the exonic regions of individual genes, as defined by GENCODE 
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project (NHGRI: HG007234). To predict the pathogenicity of each variant, we further annotated 
them with various tools based on conservation (i.e., phylop241way (Sullivan et al., 2023), 
protein impact (i.e., VEST4 (Douville et al., 2016), LOFTEE (Karczewski et al., 2020) and 
spliceAI (Jaganathan et al., 2019) ) and both (i.e., REVEL (Ioannidis et al., 2016) and metaRNN 
(C. Li et al., 2022)). We then defined and prioritized pathogenic coding variants as follows: 
missense with REVEL >0.5, stop gain or frameshift with LOFTEE as HC, splice donor/acceptor 
with LOFTEE as HC or spliceAI > 0.8, and INDELs with VEST4 > 0.5, metaRNN > 0.5 or 
phylop241way > 6. Rare variants were defined as those with a MAF less than 0.1% in the global 
or non-Finnish European population from the gnomadAD-v3 database (Gudmundsson et al., 
2022). The MAF cutoff of 0.1% was selected to include variants with large effect size (Manolio 
et al., 2009).  

 
Sample selection 
Case Control Analysis: After ancestry analysis, we identified 301 cases of European ancestry and 
146,737 unaffected, independent samples of European ancestry from UKB, the largest, ancestry-
matched control pool at the time (Supplementary Figure S.1B). We included all 301 independent 
cases of European ancestry as our case group. For controls, we used the software FlashPCA2 
(Abraham et al., 2017) and PCAmatchR (Brown et al., 2021) to select controls matched on the 
first three principal components from 146,737 UKB samples of European ancestry, with a case to 
control ratio of 1:50. This selection yielded 13,654 unique controls. We chose a 1:50 case-to-
control ratio to optimize detection power while maintaining a low type I error rate (Zhao et al., 
2020). Because cases and controls were sequenced on different platforms, we compared the per 
sample total number of variants, singletons and rare (MAF<0.1%) synonymous variants in cases 
and controls. We assumed rare synonymous variants were neutral and unrelated to disease status. 
For controls we selected 10,000 iterations of the same sample size as cases but randomly 
sampled without replacement from the UKB. No significant difference was found, indicating 
case and control samples were comparable (Supplementary Figure S.1C).  
 
de novo Analysis: We identified 109 distinct trios, all of European ancestry, with complete 
phenotype and genotype (WES) data for unaffected parents and affected probands. This set 
included 70 simplex families and 39 multiplex families. The 70 simplex trios were primarily 
used for de novo analysis, while multiplex families served as internal controls. Additionally, we 
obtained 1423 unaffected sibling trios of European ancestry from an autism spectrum disorder 
(ASD) study (Iossifov et al., 2014) as external controls to compare DNM rates.  

 
Gene Prioritization and Gut-Expressed Gene Definition 
HSCR is a neurodevelopmental disease, which occurs during early embryonic gastrointestinal 
development stage as early as embryonic week 4 (Goldstein et al., 2013; Wallace & Burns, 
2005). To define gut-expressed genes relevant to HSCR’s developmental stage and tissue types, 
we used human embryonic single-cell RNA sequencing (sc-RNAseq) data, from human 
embryonic gut tissues collected at weeks 6–11 (Elmentaite et al., 2021), which reflected the 
appropriate developmental stage and tissue context for HSCR. By examining the percent cell 
expression of the known HSCR risk genes in the RET-EDNRB GRN (Chatterjee & Chakravarti, 
2019; Tilghman et al., 2019), we defined a gene as “gut expressed” if it was expressed in at least 
5% of cells within any cell cluster (Supplementary Figure S.2). With this definition, we 
prioritized on gut expressed genes in subsequent analyses for HSCR gene discovery.  
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Statistical Methods 
Case Control Analysis: We selected 13,654 unique controls from a pool of 146,737 WES 
available, healthy, and unrelated individuals of European ancestry in UKB (Szustakowski et al., 
2021), using PCA (see Sample Selection in Methods). A case-to-control ratio of 1:50 was chosen 
to optimize detection power while maintaining a low type I error rate (Zhao et al., 2020). 
Knowing that different statistical methods for rare variant and gene discovery have distinct 
strengths and limitations (Lee et al., 2014), we applied three approaches: burden test using Firth 
logistic regression (Wang, 2014), bootstrapping as previously described by our laboratory 
(Tilghman et al., 2019), and a combined test with SKAT-O (Lee et al., 2012). These analyses 
were conducted separately for putative loss-of-function (LoF) variants and all pathogenic (PA or 
allPA) variants. 
 
Each statistical approach assessed gene-disease association on a per gene basis. Briefly, burden 
test fitted disease status and pathogenic variant count data into a Firth’s bias-reduced logistic 
regression model (Wang, 2014) adjusting for covariates of sex and the first ten principal 
components. Firth logistic regression, as an unbiased prediction for rare events (Wang, 2014), 
was easily interpretable with both 𝛽 (effect size) and P value (significance). However, it assumed 
additive, fixed effect size for each variant at the same gene locus, which cannot always be 
accurate. Bootstrapping estimated the empirically expected PA distribution by randomly 
sampling UKB controls, matching the sample size of cases (n=301), with replacement for 10,000 
iterations. The observed PA in cases and the expected PA distribution in controls were then 
compared. Significance was calculated under a Poisson distribution. This approach allowed 
empirical estimation of the expected PA distribution in controls without relying on parametric 
assumptions, although its performance relies on the quality and comparability of the control 
samples, which could potentially be biased by population substructure. SKAT-O used kernel 
transformation to integrate variants with different effect sizes and directions in a combined 
association test to increase detection power (Lee et al., 2012). This method was able to adjust for 
population substructure with covariates of sex and the first ten principal components, and 
overcame the caveats of fixed effect size and direction in Firth logistic regression. However, it 
was less interpretable and computationally complex.  
 
After statistical tests, to reduce noise, we considered only genes with at least one variant each in 
the cases and controls, or genes with at least two variants in the cases. Recognizing the potential 
biases from population stratification, we additionally calculated genomic inflation factor (l), and 
used it to adjust the resulting statistics (Devlin & Roeder, 1999). We then compared and 
integrated the adjusted results from the three methods, and assigned each gene the minimum P 
value across all three methods. 
 
de novo Analysis: The pre-computed, expected, per gene based, type-specific mutation rates 
were obtained from Nguyen et al., 2017. Briefly, for each gene, a sequencing context table in 
trinucleotide pattern was built, and the probability of each base changing was estimated, 
adjusting for coverage depth. The mutation type specific probability was then estimated by 
summing up the trinucleotide changing probabilities of the same mutation type (Samocha et al., 
2014). Significance was assessed with a one-sided Poisson test, by comparing the observed 
mutation rates in cases to the expected value. 
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To compare the observed mutation rates in our case cohort with the mutation rates in external 
controls, we obtained data of 1,423 unaffected sibling trios of European ancestry from an ASD 
study (Iossifov et al., 2014), and subset their DNMs according to our criteria. We then calculated 
a per trio mutation rate by dividing the total number of DNMs of a specific mutation type (i.e., 
synonymous, LoF, PA) by the total number of trios, separately for cases and controls. After that, 
we used a Poisson-based test to compare the event rates in the two cohorts (cases and controls). 
 
Joint-analysis with extTADA: To optimize power, we used a Bayesian-based statistical model 
extTADA, which integrated de novo and case control data together (Nguyen et al., 2017). 
Briefly, this method first obtained the prior mutation probability for each variant using the 
trinucleotide method described earlier, and then unified de novo and case control data into a 
Bayesian hierarchical framework, which calculated the posterior probability of a given variant 
being associated with disease. A gene’s posterior probability of disease association was then 
estimated by aggregating the probabilities of all variants at the same gene locus. 
 
The genetic significance cutoff was adjusted for multiple testing, as  "."#

#*%+%&,-	&%/&/
. 

 
All analyses, tests and plots were performed using R version 4.3.  
 
Data Availability 
WES data of the HSCR case cohort: The data can be available upon reasonable request from the 
corresponding author, A.C. Due to the inclusion of individual genetic information, the data is not 
publicly available to protect the privacy of research participants. 
WES data of the UKB controls: The data is available by applying for access through UK 
Biobank website.  
ASD control trio data: The data is available from Iossifov et al., 2014 (Supplementary Table 2). 
Single cell RNA sequencing data of human embryonic gut: The data can be downloaded with the 
link https://cellgeni.cog.sanger.ac.uk/gutcellatlas/final_fetal_object_cellxgene.h5ad   
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Figure 1: Case control results for ultra-rare putative loss of function (LoF) and all pathogenic 
variants (PA) 
A. QQplot for genes enriched with loss of function (LoF) variants after genomic control. Statistically 
significant genes are highlighted in red, and marginally significant genes in orange. For a gene to be 
significant in multiple methods, the smallest observed P value is plotted. Significance is adjusted for 
multiple testing as 1.25 × 10!"# (0.05/1,152). 
B. QQplot for genes enriched with pathogenic variants (PA) after genomic control. Statistically 
significant genes are highlighted in red, and marginally significant genes in orange. For a gene to be 
significant in multiple methods, the smallest observed P value is plotted. Significance is adjusted for 
multiple testing as 4.34 × 10!"# (0.05/4011).  
C. Natural odds ratios (loge) and 95% confidence intervals for significant and marginally significant genes 
enriched for LoF variants. 
D. Natural odds ratios (loge) and 95% confidence intervals for significant and marginally significant 
genes enriched for PA. 
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Figure 2: Manhattan plot of genes discovered by joint analysis of extTADA 
The 5 statistically significant genes over false discovery rate (FDR) < 0.05 are marked in blue. 
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Figure 3: Burden comparison of HSCR risk genes by variant type in cases and controls 
A. Disease risk of all 19 risk genes expressed in human embryonic gut, identified in this study by multiple 
analyses (DNM, case control & joint analysis), including the four known risk genes – RET, EDNRB, 
SOX10 and ZEB2. 
B. Disease risk contributed only from the 15 novel risk genes expressed in human embryonic gut 
identified in this study. 
Burden is calculated as the number of individuals carrying at least one variant in cases and controls, for 
each variant type (syn: synonymous; LoF: putative loss of function; allPA: all pathogenic variants). 
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Figure 4: Pathway enrichment analysis of the 15 novel HSCR risk genes 
Significantly enriched biological pathways (Gene Ontology database) with Benjamini-Hochberg adjusted 
P value (padj) < 0.1 are plotted for 15 novel risk genes expressed in human embryonic gut.  
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A 

  
B 

  
Figure 5: Burden and pathway analyses of HSCR known and novel risk genes by phenotype 
severity 
A. Comparison of pathogenic variant (PA) burden with various clinical severity criteria in different gene 
sets of interest. Severity groups: least severity (score=0, reference group, as an affected individual being 
male, simplex, short segment length and non-syndromic); moderate severity (score=1); high severity 
(score³2). 
B. Significantly enriched (padj <0.05) Gene Ontology (GO)-Biological pathways in genes unique to least 
severity group (score=0, left panel) or genes enriched in (³2 fold more cases) or unique to high severity 
group (score ³2, right panel). 
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Tables 
 

# DNMs in HSCR (case) trios 
per exome 

(n) 

# DNMs in ASD (control) trios 
per exome 

(n) 
P 

0.228 (16) 0.0007 (1) 5.36x10-35 
Table 1A: Comparison of ultra-rare, pathogenic de novo mutation (DNM) burden in genes 
identified from 70 HSCR simplex trios and the burden in the same genes in 1423 ASD control trios 
P value is calculated with 1-sided Poisson test.  
 
 

Gene # DNMs Known/novel risk gene Expressed in human embryonic gut  
RET 2 known yes 
ZEB2 1 known yes 
FAT3 1 novel yes 
NES 1 novel yes 

S100A2 1 novel yes 
GPN1 1 novel yes 
YARS2 1 novel yes 

HSD17B6 1 novel yes 
RPF1 1 novel yes 

GIGYF1 1 novel yes 
RPS6KA1 1 novel yes 
SUPT16H 1 novel yes 
EFTUD2 1 novel yes 

PNLIPRP3 1 novel  
SYCP2 1 novel  

Table 1B: Property of genes carrying ultra-rare, pathogenic DNMs identified from 70 HSCR 
simplex trios 
Property of 15 genes carrying ultra-rare, pathogenic DNMs in 70 HSCR simplex trios are shown in the 
table. Human embryonic gut (week 6-week 11) gene expression data is obtained from Elmentaite et al., 
2021. A gene is considered expressed in human embryonic gut if it has >5% expression in any cell cluster 
(totally 17 cell clusters including 2 neuronal cell clusters).  
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Gene Known/novel 
risk gene 

Expressed in 
human 

embryonic 
gut 

Mutation 
type 

Type specific 
mutation rate 

# Expected 
DNMs 

# Observed 
DNMs  P 

RET yes yes stopgain 
missense 6.45x10-06* 9.03x10-04 2 4.07x10-07 

FAT3 novel yes missense 1.04x10-10 1.46x10-08 1 1.46x10-08 

NES novel yes missense 1.36x10-08 1.90x10-06 1 1.90x10-06 

S100A2 novel yes stopgain 2.71x10-07 3.80x10-05 1 3.80x10-05 

GPN1 novel yes splice 1.18x10-06 1.65x10-04 1 1.65x10-04 

YARS2 novel yes stopgain 1.43x10-06 2.01x10-04 1 2.01x10-04 

HSD17B6 novel yes missense 1.50x10-06 2.09x10-04 1 2.09x10-04 

ZEB2 yes yes frameshift 2.31x10-06 3.24x10-04 1 3.24x10-04 

RPF1 novel yes missense 3.22x10-06 4.50x10-04 1 4.50x10-04 

GIGYF1 novel yes frameshift 3.69x10-06 5.16x10-04 1 5.16x10-04 

RPS6KA1 novel yes missense 7.69x10-06 1.08x10-03 1 1.08x10-03 

SUPT16H novel yes missense 8.03x10-06 1.12x10-03 1 1.12x10-03 

EFTUD2 novel yes INDELs 1.19x10-05 1.67x10-03 1 1.67x10-03 

PNLIPRP3 novel  missense 8.37x10-07 1.17x10-04 1 1.17x10-04 

SYCP2 novel  INDELs 1.68x10-06 2.35x10-04 1 2.35x10-04 

Table 1C: Comparison of expected and observed number of ultra-rare, pathogenic DNMs in genes 
identified from 70 HSCR simplex trios 
The pre-computed, mutation type-specific rate, the expected number of DNMs, the observed number of 
DNMs, and P values by one-side Poisson test for each gene are shown in the table. Genes with a 
statistically significantly higher number of observed mutations than the expected are highlighted in bold. 
The significance cutoff is corrected for multiple testing, by considering a total of 4,011 genes carrying at 
least one ultra-rare pathogenic variant in our case cohort. The pre-computed, mutation type specific rates 
are obtained from Nguyen et al., 2017.  
*The mutation rate for RET is calculated as the weighted rates of missense and LoF by considering the 
total numbers of ultra-rare missense and LoF variants at the gene in the gnomAD database. 
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Mutation type 
DNM rate 

(n) 
Case 

DNM rate 
(n) 

Control 

Rate ratio 
(case vs control) 

P 
(Poisson) 

Synonymous (syn) 0.029 (4) 0.019 (55) 1.48 0.28 
Missense  

(mis) 0.014 (2) 0.014 (41) 0.99 0.58 

Loss of function 
(LoF) 0.021 (3) 0.006 (17) 3.59 0.05 

mis + LoF 0.036 (5) 0.020 (58) 1.75 0.15 
Table 2: Case control comparison of the ultra-rare de novo mutation (DNM) burden in gut 
expressed, constrained genes 
Cases are from 70 HSCR simplex trios. Controls are from 1,423 unaffected sibling trios from an autism 
spectrum disorder (ASD) study (Iossifov et al., 2014). Constraint is defined as Shet>0.1 by Zeng et al., 
2023. The data shows the rate and count of DNMs by each mutation type in gut expressed constrained 
genes. The rate is calculated as the count of DNM over 2 times the total number of trios. P value is 
obtained with a one-sided Poisson test. 
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Gene set 

% (n) individuals  
carrying PA 

Odds Ratio 
(95%CI) P 

Population  
Attributable 

Risk 
%patient 

(n) 
%control 

(n) 
   

24 known HSCR risk 
genes 

18.6% 
(56) 

5.6% 
(761) 

3.87 
(2.87-5.22) 6.99x10-15 13.8% 

all 19 HSCR 
risk genes 

(identified in this study) 

20.9% 
(63) 

4.0% 
(550) 

6.31 
(4.72 - 8.43) 6.27x10-26 17.5% 

15 novel 
HSCR risk genes 

(identified in this study) 

9.6% 
(29) 

3.3% 
(452) 

3.11 
(2.10 - 4.62) 5.91x10-07 6.5% 

24 known and 
15 novel HSCR risk 

genes 

26.6% 
(80) 

8.7% 
(1186) 

3.81 
(2.93 - 4.95) 3.13x10-19 19.6% 

Table 3: Population attributable risk for HSCR risk gene sets of interest 
The number and percent of individuals carrying pathogenic variants (PA) in gene sets of interest, their 
corresponding P values and population attributable risks are shown here. 301 European cases and 13,654 PCA 
matched European controls extracted from the UK Biobank are used. The P value is calculated using Fisher’s 
exact test. Population attributable risk is calculated as described previously (Tilghman et al., 2019).   
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Gene set 

#PA per case 
(#total PA) 

%PA per case 
difference 

(female vs male) P loge OR male 
(n=213) 

female 
(n=88) 

24 known HSCR risk 
genes 

0.17  
(36) 

0.26  
(23) 55% 0.07 0.44 

all 19 HSCR 
risk genes 

(identified in this study) 

0.20  
(42) 

0.33  
(29) 67% 0.02 0.51 

15 novel 
HSCR risk genes 

(identified in this study) 

0.10  
(22) 

0.13  
(11) 21% 0.32 0.19 

24 known & 
15 novel HSCR risk 

genes 

0.27  
(58) 

0.39  
(34) 42% 0.05 0.35 

All Refseq genes 20.85  
(4441) 

21.65  
(1905) 4% 0.39 0.04 

Table 4: Per case pathogenic variant burden by sex for HSCR risk gene sets of interest 
The per case pathogenic variant (PA) and total number of PA by male and female cases in each gene set 
of interest are shown here. #PA per case difference is calculated as (#PA per female case - #PA per male 
case)/(#PA per male case). P values and odds ratios are calculated with a one-sided Poisson-test. 
Significant or marginally significant P values are in bold. 
 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 8, 2025. ; https://doi.org/10.1101/2025.01.07.25320162doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.07.25320162
http://creativecommons.org/licenses/by-nd/4.0/


32  

Supplementary Figures 
 

 
Figure S.1A: Observed relatedness (observed_S ) and expected relatedness scores (expected_S) for 
all non-identical individual pairs from 833 HSCR-AC samples 
Expected scores (S) of 0.816, 0.839, 0.862, 0.908 & 1 are for unrelated pairs, 3rd-degree relatives, 2nd-
degree relatives, 1st-degree relatives and identical pairs, respectively.  
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Figure S.1B: Ancestry distribution of cases (HSCR-AC) and controls (UK Biobank) by principal 
component analysis 
Data shows the ancestry distribution in HSCR-AC case probands and UKB controls. Meta-populations 
(EUR, EAS and AFR) are defined by mapping the ancestry components against 1000G data, based on 
common (MAF>10%), LD-pruned (r2<0.3), biallelic autosomal variants present in all samples. Software 
Plink (v1.9) and ADMIXTURE (Alexander & Lange, 2011) are used for the analyses. 
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Figure S.1C: Comparisons of per sample variant count for total variant, singleton and rare 
synonymous variant in cases and controls 
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Figure S.2: Human embryonic gut single cell expression (sc-RNAseq) of all RefSeq genes with 
known HSCR risk genes highlighted 
Human embryonic gut sc-RNAseq data is obtained from Elmentaite et al., 2021. HSCR risk genes in gene 
regulatory network (GRN) are highlighted in red. Cutoff line for gut-expressed genes: 5% expression in 
any of 17 cell clusters, out of which 2 are neuronal cell clusters.  
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A 

 

B 

 
Figure S.3: Comparison of significant and marginally significant genes discovered by three 
statistical methods (burden, bootstrapping and SKAT-O) in case-control analysis, separately for 
putative loss of function variants (LoF) and all pathogenic variants (PA) 
A. Venn-diagram shows genes statistically enriched with LoF variants identified by three methods 
(burden, bootstrapping & SKAT-O) in case control analysis. 
B. Venn-diagram shows genes statistically enriched with any PA identified by three methods (burden, 
bootstrapping & SKAT-O) in case control analysis. 
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Supplementary Tables 
 
A 

SNP-QC 
#bialleleic 

SNPs 
%dbSNP dbSNP_titv %novelSNP novelSNP_titv 

461,559 72.3 2.87 27.7 1.42 
INDEL-QC 

#total 
INDEL 

%dbSNP dbSNP 
INS_DEL 

Ratio 

novel 
INS_DEL Ratio 

 

38,116 26.4 0.59 0.81  
 
B 

Variant 
type 

Truth 
sample 

Call 
sample 

Variant 
Sensitivity 

Variant 
PPV 

Variant 
Specificity 

Genotype 
Concordance 

SNP HG001 NA12878 97.5% 99.6% 99.3% 97.5% 
INDEL HG001 NA12878 92.8% 96.5% 94.7% 92.9% 

Table S.1: VCF QC matrices of the final HSCR-AC sample call set mapped to hg38 
A. Data shows the QC of 833 samples from HSCR-AC. Metrics are obtained using GATK’s 
CollectVariantCallingMetrics 
B. Data shows the genotype concordance of the index sample (NA12878 = HG001) from the 1000 
Genomes Project. Metrics are obtained using GATK’s GenotypeConcordance 
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Gene 
Significant 

variant 
type 

Expressed 
in human 
embryonic 

gut 

% 
Neural 
crest 
cells 

% 
Enteric 
neurons 

Maximum % 
other cell clusters 

ZEB2 LoF yes 77 44 98 
RET LoF, PA yes 26 59 2 

EDNRB PA yes 89 31 48 
SOX10 LOF,PA yes 60 12 1 

CDRT15 LOF,PA  0 0 0 
IFNL2* LOF,PA  - - - 

PGLYRP4 LOF,PA  0 0 0 
PHGDH PA yes 67 25 89 

SERPINB2 PA  0 0 2 
SHISAL2A LOF,PA yes 1 5 3 
TMPRSS15 LOF,PA yes 1 5 0 

Table S.2: Human embryonic gut expression pattern of 11 genes significantly enriched with loss of 
function (LoF) variants, all pathogenic variants (PA), or both by case-control analysis 
Data shows the percentage of cells expressing the gene in each cell cluster for significant genes 
discovered by case control analysis. Human embryonic gut (week 6-week 11), single cell RNA 
sequencing (sc-RNAseq) data is obtained from Elmentaite et al., 2021. Gut expressed gene is defined as 
>5% expression in any cell cluster.  
*For IFNL2, sc-RNAseq data is not available.  
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Mutation 
type 

# DNMs in 
HSCR (case) trios 

per exome 
(n) 

# DNMs in 
ASD (control) trios 

per exome 
(n) 

P 
(Poisson) 

Synonymous 0.214 (15) 0.203 (289) 0.452 
Missense 0.114 (8) 0.106 (151) 0.465 

Loss of function 0.114 (8) 0.07 (104) 0.146 
Table S.3: Case-control comparison of ultra-rare de novo mutations (DNMs) in 70 HSCR simplex 
trios and 1423 ASD trios of unaffected siblings 
Comparison of all DNMs across all genes by mutation type in 70 case (HSCR-AC trios) and 1423 control 
(ASD-trios). P value is calculated with 1-sided Poisson test. 
 

DNM type DNM rate 
in case (n) 

DNM rate 
in control 

(n) 

Rate ratio 
(case vs control) 

P 
(Poisson) 

Synonymous (syn) 0.043 (6) 0.022 (63) 1.94 0.10 
Missense (mis) 0.021 (3) 0.014 (40) 1.53 0.32 
Loss of function 

(LoF) 0.021 (3) 0.007 (19) 3.21 0.07 

mis + LoF 0.043 (6) 0.021 (59) 2.07 0.08 
Table S.4: Case control comparison of ultra-rare de novo mutation (DNM) burden in gut expressed, 
constrained genes 
Cases are from 70 HSCR simplex trios. Controls are from 1423 unaffected sibling trios from an autism 
spectrum disorder (ASD) study (Iossifov et al., 2014). Constraint is defined as pLI > 0.9 by Lek et al., 
2016. Data shows the rate and count of DNMs by each mutation type in gut expressed constraint genes. 
Rate is calculated as DNM count over total number of trios. P value is obtained with 1-sided Poisson test. 
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Gene Methods 
HSCR  

risk 
gene 

Gut expressed/ 
HSCR candidate risk gene 

% 
Neural  
crest  

% 
Enteric  
neurons 

Max % 
other cells  

ZEB2 
DNM  

case control 
joint 

yes Gut expressed 
Known risk gene 77 44 98 

RET 
DNM  

case control 
joint 

yes Gut expressed 
Known risk gene 26 59 2 

EDNRB case control yes Gut expressed 
Known risk gene 89 31 48 

SOX10 case control yes Gut expressed 
Known risk gene 60 12 1 

PHGDH case control   Gut expressed 67 25 89 

SHISAL2A case control   Gut expressed 1 5 3 

TMPRSS15 case control   Gut expressed 1 5 0 

SUPT16H DNM   Gut expressed 57 44 71 

NES DNM   Gut expressed 52 40 64 

RPF1 DNM   Gut expressed 31 22 54 

GPN1 DNM   Gut expressed 30 26 48 

EFTUD2 DNM   Gut expressed 23 20 44 

YARS2 DNM   Gut expressed 21 20 42 

GIGYF1 DNM   Gut expressed 20 17 32 

FAT3 DNM   Gut expressed 4 9 33 

RPS6KA1 DNM   Gut expressed 2 2 37 

HSD17B6 DNM   Gut expressed 1 0 5 

S100A2 DNM 
joint   Gut expressed 0 0 5 

COLQ TADA   Gut expressed 1 2 8 

CDRT15 case control     0 0 0 

IFNL2 case control 
joint     - - - 

PGLYRP4 case control     0 0 0 

SERPINB2 case control     0 0 2 

SYCP2 DNM     1 1 3 

PNLIPRP3 DNM     0 0 0 

Table S.5: Summary of all genes discovered by various methods (i.e., DNM, case control & joint) 
and their human embryonic gut expression patterns 
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Gene 

301 cases 13,654 controls 

#unique 
PAs 

#unique 
cases 

(with PAs) 

average 
gnomAD-NFE 

AF 

#unique 
PAs 

#unique 
controls 

(with 
PAs) 

average 
gnomAD-NFE 

AF 

ZEB2 2 2  7 8 2.65x10-05 

RET 23 29 2.94x10-05 36 80 2.37x10-04 

EDNRB 4 5 4.42x10-05 3 3 5.89x10-05 

SOX10 2 2  6 11 9.49x10-05 

PHGDH 1 3 1.45x10-03 21 43 5.96x10-05 

SHISAL2A 1 2 4.70x10-04 1 1 2.94x10-05 

TMPRSS15 1 3 1.13x10-03 18 32 7.30x10-05 

SUPT16H 2 2  7 7 1.47x10-05 

NES 1 1  11 25 2.47x10-04 

RPF1 1 1  8 37 7.99x10-04 

GPN1 1 1  4 4 1.47x10-05 

EFTUD2 1 1  19 26 2.37x10-05 

YARS2 1 1 7.35x10-05 10 14 8.57x10-05 

GIGYF1 1 1 2.94x10-05 23 28 4.68x10-05 

FAT3 4 5 5.40x10-04 56 120 5.03x10-04 

RPS6KA1 2 2 1.11x10-04 9 12 5.39x10-05 

HSD17B6 1 1  12 25 1.37x10-04 

S100A2 1 2 3.38x10-04 5 14 1.59x10-04 

COLQ 4 8 2.48x10-04 24 71 3.00x10-04 
All 

risk genes 54 63 4.06x10-04 280 550 1.56x10-04 

All risk genes 
odds ratio  
(95%CI) 

5.16 
(3.13 - 8.51) 

6.31 
(4.72 - 8.43)   reference reference 

Novel 
risk genes 23 29 4.80x10-04 228 452 1.69x10-04 

Novel 
risk genes 
odds ratio  
(95%CI) 

2.47 
(1.33 - 4.59) 

3.11 
(2.10 - 4.62)   reference reference 

Table S.6: Comparison of number of unique pathogenic variants (PA), individuals carrying the PAs 
and average population (gnomAD NFE) allele frequency (AF) in cases (HSCR-AC) and controls 
(UK Biobank) for HSCR candidate risk genes 
Odds ratio and 95%CI are calculated using contingency tables, with OR = ad/bc, and std. dev. of loge(OR) 
= sqrt(1/a + 1/b + 1/c + 1/d). 
All case PAs are confirmed with bam files; all control PAs are checked with vcf files.  
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Gene GO_ID GO Description FDR 

COLQ  

GO:0042135 neurotransmitter catabolic process 0.05 
GO:0042133 neurotransmitter metabolic process 0.06 
GO:0051124 synaptic assembly at neuromuscular junction 0.05 
GO:0007528 neuromuscular junction development 0.07 
GO:0008582 regulation of synaptic assembly at neuromuscular junction 0.05 
GO:1904396 regulation of neuromuscular junction development 0.05 

FAT3  

GO:1904936 interneuron migration 0.06 
GO:0003407 neural retina development 0.09 
GO:2000171 negative regulation of dendrite development 0.05 

NES  
GO:2000179 positive regulation of neural precursor cell proliferation 0.08 
GO:2000177 regulation of neural precursor cell proliferation 0.10 

Table S.7A: Enriched neuronal pathways and genes in Gene Ontology database with 15 novel 
HSCR candidate risk genes 
Data shows enriched neuronal pathways (false discovery rate – FDR < 0.1) and the associated driving 
genes with pathway enrichment analysis (GO). A total of 15 novel HSCR risk genes are used, and only 
genes with enriched neuronal pathways are shown here. 
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Gene(s) GO_ID Description FDR 

RET 

GO:0035860 glial cell-derived neurotrophic factor receptor signaling 
pathway 0.03 

GO:0007158 neuron cell-cell adhesion 0.03 
GO:0060384 innervation 0.04 
GO:0021675 nerve development 0.07 
GO:0010976 positive regulation of neuron projection development 0.10 

SOX10 

GO:0022010 central nervous system myelination 0.04 
GO:0032291 axon ensheathment in central nervous system 0.04 
GO:0002052 positive regulation of neuroblast proliferation 0.04 
GO:0031646 positive regulation of nervous system process 0.04 
GO:1902692 regulation of neuroblast proliferation 0.04 
GO:0007405 neuroblast proliferation 0.06 
GO:0007272 ensheathment of neurons 0.09 
GO:0050768 negative regulation of neurogenesis 0.09 
GO:0051961 negative regulation of nervous system development 0.09 

COLQ 

GO:0008582 regulation of synaptic assembly at neuromuscular junction 0.03 
GO:1904396 regulation of neuromuscular junction development 0.03 
GO:0051124 synaptic assembly at neuromuscular junction 0.03 
GO:0042135 neurotransmitter catabolic process 0.03 
GO:0042133 neurotransmitter metabolic process 0.04 
GO:0007528 neuromuscular junction development 0.05 

NES GO:0043524 negative regulation of neuron apoptotic process 0.10 
PHGDH GO:0021915 neural tube development 0.10 

FAT3 
GO:1904936 interneuron migration 0.03 
GO:0003407 neural retina development 0.07 
GO:0010977 negative regulation of neuron projection development 0.09 

EDNRB/ 
SOX10 

GO:0007422 peripheral nervous system development 0.02 
GO:0031644 regulation of nervous system process 0.03 

RET/ 
FAT3 GO:0010975 regulation of neuron projection development 0.06 

RET/ 
EDNRB 

GO:0014041 regulation of neuron maturation 0.00 
GO:0042551 neuron maturation 0.01 
GO:0045664 regulation of neuron differentiation 0.03 

RET/ 
EDNRB/ 
SOX10 

GO:0048484 enteric nervous system development 0.00 
GO:0048483 autonomic nervous system development 0.00 
GO:0001755 neural crest cell migration 0.00 
GO:0014032 neural crest cell development 0.00 
GO:0014033 neural crest cell differentiation 0.00 

SOX10/ 
NES 

GO:2000179 positive regulation of neural precursor cell proliferation 0.01 
GO:2000177 regulation of neural precursor cell proliferation 0.03 
GO:0061351 neural precursor cell proliferation 0.03 

Table S.7B: Enriched neuronal pathways and genes in Gene Ontology database with all 19 HSCR 
candidate risk genes 
Data shows enriched neuronal pathways (false discovery rate – FDR < 0.1) and the associated driving 
genes with pathway enrichment analysis (GO). A total of 19 HSCR risk genes (15 novel and 4 known 
genes) are used. Only genes with enriched neuronal pathways are shown here. 
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Gene sets # neuronal 
pathways 

# transcription/translation/cell growth 
pathways 

unique to 
least severe group 56 19 

enriched or unique to 
the most severe group 40 1 

P (Fisher’s exact test) = 0.012 
OR (95%CI) = 0.074 (0.010-0.57) 

Table S.8: Comparison of enriched Gene Ontology biological process pathways by genes unique to 
the least severity group and genes enriched in or unique to the high severity group 
 
 

Gene P logeOR 95%CI %Maximum of all cell 
clusters 

EGFL6 0.0003 4.88 2.3-9.82 50.22 
GRPR 0.0001 5.16 2.61-10.1 0.37 

Table S.9: X chromosome genes significantly enriched with PAs in sex-specific analysis 
Data shows minimal P value (across burden test, bootstrap, SKAT-O and extTADA), natural log odds 
ratio and 95% confidence interval (from burden test), and maximum percentage of cells expressing the 
gene across all cell clusters in human embryonic gut (sc-RNAseq data).  
A gut expressed gene is defined with >5% gene expressing in any cell cluster. 
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