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Using immunotherapy to treat cancers can be traced back to the 1890s, where a New York
physician William Coley used heat-killed bacteria to treat cancer patients, which became known as
“Coley’s toxin”. Of the almost 900 cancer patients he treated, some tumours regressed and some
patients were free from recurrence for a number of years [1]. However, the toxin component was
inconsistent, patients’ reactions were unpredictable and the anti-cancer mechanism was not known.
With the advancement of radiation therapy and chemotherapy in the 20th century, Coley’s toxin was
not used anymore.

In the past ten years, we have witnessed many revolutionary immunotherapies being approved
to use in the clinic for treating cancer patients. These immunotherapies include the first cancer vaccine,
Sipuleucel-T for advanced prostate cancer; checkpoint inhibitors such as ipilimumab, pembrolizumab
and nivolumab for the treatment of advanced melanoma and other solid cancers; oncolytic virus
T-Vec for melanoma; a bispecific cancer-directed T-cell engager, blinatumomab, for the treatment
of acute lymphoblastic leukemia, and chimeric antigen receptor (CAR) T cells for treating certain
lymphoma and leukemias [2,3]. Together, these immunotherapies have had a remarkable impact on
clinical outcomes.

This year, although the majority of the world is locked down in response to the coronavirus disease
(COVID-19) pandemic, a number of cancer immunotherapies were approved by the US Food and Drug
Administration (FDA). The newly approved treatments include atezolizumab for advanced melanoma,
brexucabtagene autoleucel (Tecartus) for mantle cell lymphoma, which is the third FDA-approved CAR
T-cell therapy, pembrolizumab as the first line of treatment for colorectal cancer and pembrolizumab
for cutaneous squamous cell carcinoma.

Although more and more treatment options are becoming available, challenges still remain.
Immune checkpoint inhibitors (ICIs) work for certain cancer types such as melanoma, but not all cancer
types respond. Even in melanoma, half of the patients do not achieve a significant beneficial response,
and a substantial number of responding patients experience cancer relapse after the initial response [4].
Unfortunately, these ICI therapeutics are also often associated with a high rate of toxicity, with severe
toxicities occurring in approximately 20–50% of patients [5]. Other immunotherapies can have similar
problems. Certain cancers such as pancreatic cancer have proven to be difficult to treat using all the
current available immunotherapies [6].

Building on the success of ICIs, numerous immunotherapies have been tested to be used in
combination with other immunotherapies or with some already existing treatments. For example,
anti-PD1 has been tested in combination with CAR T-cell therapy [7], oncolytic virus treatment [8,9],
cyclin-dependent kinase inhibitors [10]. Given the potency of the treatment components as
monotherapies, it is not surprising that a number of these combinations led to synergistic efficacy.
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With an abundance of combination immunotherapy trials ongoing, more and more factors that influence
the therapeutic success have been revealed and synergistic design of different combination therapies
may provide optimal benefit to the patients with different types of cancers.

Although yet to demonstrate efficacy in solid tumours, enormous efforts have been made in CAR
T-cell research. These include the discovery of new tumour antigen targets [11], more options for
combination therapy [7,12], creating T-cell products with a more desirable phenotype [13], improved
manufacturing protocols [14], and novel methods for enhancing in vivo expansion of the CAR T
cells [15–17]. Although most of the current immunotherapies have focused on T cells, other cellular
therapies such as those utilising NK cell cytotoxicity [18,19], dendritic cells [20] and macrophages [21]
are also under investigation.

Another extensively explored area lies in the understanding of immunosuppression of the
tumour microenvironment (TME) [22]. The TME consists of tumour cells, immune cells, stroma,
extracellular matrix and some soluble factors. This complex environment plays a fundamental role in
tumour progression, shapes the tumour immune response and eventually determines the efficacy of
immunotherapies [23–25]. A number of strategies have been developed in the past few years to shift
the TME to favour anti-tumour immunity, and clinical studies have validated several biomarkers of
the TME predicting tumour responsiveness to immunotherapies [26,27].

Much knowledge has accumulated in the past ten years, and the cancer immunotherapy field
is moving forward at a fast pace. Many current obstacles will likely be overcome through improved
knowledge, more advances in treatment technologies [28] and the identification of new cancer targets.
In addition, new combination treatments incorporating immunotherapies, and the identification of
predictive biomarkers for cancer immunotherapies, may lead to further effective treatments utilizing
the immune system for a wide range of cancers.
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