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With the rise of machines to human-level performance
in complex recognition tasks, a growing amount of work
is directed toward comparing information processing in
humans and machines. These studies are an exciting
chance to learn about one system by studying the other.
Here, we propose ideas on how to design, conduct, and
interpret experiments such that they adequately support
the investigation of mechanisms when comparing
human and machine perception. We demonstrate and
apply these ideas through three case studies. The first
case study shows how human bias can affect the
interpretation of results and that several analytic tools
can help to overcome this human reference point. In the
second case study, we highlight the difference between
necessary and sufficient mechanisms in visual reasoning
tasks. Thereby, we show that contrary to previous
suggestions, feedback mechanisms might not be
necessary for the tasks in question. The third case study
highlights the importance of aligning experimental
conditions. We find that a previously observed

difference in object recognition does not hold when
adapting the experiment to make conditions more
equitable between humans and machines. In presenting
a checklist for comparative studies of visual reasoning in
humans and machines, we hope to highlight how to
overcome potential pitfalls in design and inference.

Introduction

Until recently, only biological systems could abstract
the visual information in our world and transform
it into a representation that supports understanding
and action. Researchers have been studying how to
implement such transformations in artificial systems
since at least the 1950s. One advantage of artificial
systems for understanding these computations is
that many analyses can be performed that would not
be possible in biological systems. For example, key
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Figure 1. i: The human system and a candidate machine system differ in a range of properties. Isolating a specific mechanism (for
example, feedback) can be challenging. ii: When designing an experiment, equivalent settings are important. iii: Even if a specific
mechanism was important for a task, it would not be clear if this mechanism is necessary, as there could be other mechanisms (that
might or might not be part of the human or machine system) that can allow a system to perform well. iv: Furthermore, the identified
mechanisms might depend on the specific experimental setting and not generalize to, for example, another task. v: Overall, our
human bias influences how we conduct and interpret our experiments. 1Brendel and Bethge (2019); 2DiCarlo et al. (2012); 3Geirhos,
Rubisch, et al. (2018); 4Kubilius et al. (2016); 5Golan et al. (2019); 6Dujmović et al. (2020).

components of visual processing, such as the role of
feedback connections, can be investigated, and methods
such as ablation studies gain new precision.

Traditional models of visual processing sought to
explicitly replicate the hypothesized computations
performed in biological visual systems. One famous
example is the hierarchical HMAX-model (Fukushima,
1980; Riesenhuber & Poggio, 1999). It instantiates
mechanisms hypothesized to occur in primate visual
systems, such as template matching and max operations,
whose goal is to achieve invariance to position, scale,
and translation. Crucially, though, these models never
got close to human performance in real-world tasks.

With the success of learned approaches in the past
decade, and particularly that of convolutional deep
neural networks (DNNs), we now have much more
powerful models. In fact, these models are able to
perform a range of constrained image understanding
tasks with human-like performance (Krizhevsky et al.,
2012; Eigen & Fergus, 2015; Long et al., 2015).

While matching machine performance with that of
the human visual system is a crucial step, the inner
workings of the two systems can still be very different.
We hence need to move beyond comparing accuracies
to understand how the systems’ mechanisms differ
(Geirhos et al., 2020; Chollet, 2019; Ma & Peters, 2020;
Firestone, 2020).

The range of frequently considered mechanisms
is broad. They not only concern the architectural

level (such as feedback vs. feed-forward connections,
lateral connections, foveated architectures or eye
movements, …), but also involve different learning
schemes (back-propagation vs. spike-timing-dependent
plasticity/Hebbian learning, …) as well as the
nature of the representations themselves (such as
reliance on texture rather than shape, global vs. local
processing, …). For an overview of comparison studies,
please see Appendix A.

Checklist for psychophysical
comparison studies

We present a checklist on how to design, conduct,
and interpret experiments of comparison studies that
investigate relevant mechanisms for visual perception.
The diagram in Figure 1 illustrates the core ideas that
we elaborate on below.

i. Isolating implementational or functional properties.
Naturally, the systems that are being compared
often differ in more than just one aspect, and hence
pinpointing one single reason for an observed
difference can be challenging. One approach is to
design an artificial network constrained such that
the mechanism of interest will show its effect as
clearly as possible. An example of such an attempt
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is Brendel and Bethge (2019), which constrained
models to process purely local information by
reducing their receptive field sizes. Unfortunately,
in many cases, it is almost impossible to exclude
potential side effects from other experimental
factors such as architecture or training procedure.
Therefore, making explicit if, how, and where
results depend on other experimental factors is
important.

ii. Aligning experimental conditions for both systems.
In comparative studies (whether humans and
machines, or different organisms in nature), it can
be exceedingly challenging to make experimental
conditions equivalent. When comparing the two
systems, any differences should be made as explicit
as possible and taken into account in the design
and analysis of the study. For example, the human
brain profits from lifelong experience, whereas a
machine algorithm is usually limited to learning
from specific stimuli of a particular task and
setting. Another example is the stimulus timing
used in psychophysical experiments, for which
there is no direct equivalent in stateless algorithms.
Comparisons of human and machine accuracies
must therefore be considered with the temporal
presentation characteristics of the experiment.
These characteristics could be chosen based on, for
example, a definition of the behavior of interest as
that occurring within a certain time after stimulus
onset (as for, e.g., “core object recognition”; DiCarlo
et al., 2012). Firestone (2020) highlights that as
aligning systems perfectly may not be possible due
to different “hardware” constraints such as memory
capacity, unequal performance of two systems might
still arise despite similar competencies.

iii. Differentiating between necessary and sufficient
mechanisms. It is possible that multiple mechanisms
allow good task performance — for example, DNNs
can use either shape or texture features to reach high
performance on ImageNet (Geirhos, Rubisch, et al.,
2018; Kubilius et al., 2016). Thus, observing good
performance for one mechanism does not imply
that this mechanism is strictly necessary or that it is
employed by the human visual system. As another
example, Watanabe et al. (2018) investigated whether
the rotating snakes illusion (Kitaoka & Ashida,
2003; Conway et al., 2005) could be replicated in
artificial neural networks. While they found that this
was indeed the case, we argue that the mechanisms
must be different from the ones used by humans, as
the illusion requires small eye movements or blinks
(Hisakata & Murakami, 2008; Kuriki et al., 2008),
while the artificial model does not emulate such
biological processes.

iv. Testing generalization of mechanisms. Having
identified an important mechanism, one needs to
make explicit for which particular conditions (class

of tasks, data sets, …) the conclusion is intended to
hold. A mechanism that is important for one setup
may or may not be important for another one. In
other words, whether a mechanism works under
generalized settings has to be explicitly tested. An
example of outstanding generalization for humans
is their visual robustness against various variations
in the input. In DNNs, a mechanism to improve
robustness is to “stylize” (Gatys et al., 2016) training
data. First presented as raising performance on
parametrically distorted images (Geirhos, Rubisch,
et al., 2018), this mechanism was later shown to
also improve performance on images suffering
from common corruptions (Michaelis et al., 2019)
but would be unlikely to help with adversarial
robustness. From a different perspective, the work
of Golan et al. (2019) on controversial stimuli is
an example where using stimuli outside of the
training distribution can be insightful. Controversial
stimuli are synthetic images that are designed to
trigger distinct responses for two machine models.
In their experimental setup, the use of these
out-of-distribution data allows the authors to reveal
whether the inductive bias of humans is similar to
one of the candidate models.

v. Resisting human bias. Human bias can affect not
only the design but also the conclusions we draw
from comparison experiments. In other words, our
human reference point can influence, for example,
how we interpret the behavior of other systems,
be they biological or artificial. An example is the
well-known Braitenberg vehicles (Braitenberg,
1986), which are defined by very simple rules. To
a human observer, however, the vehicles’ behavior
appears as arising from complex internal states such
as fear, aggression, or love. This phenomenon of
anthropomorphizing is well known in the field of
comparative psychology (Romanes, 1883; Köhler,
1925; Koehler, 1943; Haun et al., 2010; Boesch,
2007; Tomasello & Call, 2008). Buckner (2019)
specifically warns of human-centered interpretations
and recommends to apply the lessons learned in
comparative psychology to comparing DNNs
and humans. In addition, our human reference
point can influence how we design an experiment.
As an example, Dujmović et al. (2020) illustrate
that the selection of stimuli and labels can have
a big effect on finding similarities or differences
between humans and machines to adversarial
examples.

In the remainder of this article, we provide concrete
examples of the aspects discussed above using three
case studies1:

(1) Closed contour detection: The first case study
illustrates how tricky overcoming our human bias
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can be and that shedding light on an alternative
decision-making mechanism may require multiple
additional experiments.

(2) Synthetic Visual Reasoning Test: The second
case study highlights the challenge of isolating
mechanisms and of differentiating between
necessary and sufficient mechanisms. Thereby, we
discuss how human and machine model learning
differ and how changes in the model architecture
can affect the performance.

(3) Recognition gap: The third case study illustrates
the importance of aligning experimental
conditions.

Case study 1: Closed contour
detection

Closed contours play a special role in human visual
perception. According to the Gestalt principles of
prägnanz and good continuation, humans can group
distinct visual elements together so that they appear
as a “form” or “whole.” As such, closed contours
are thought to be prioritized by the human visual
system and to be important in perceptual organization
(Koffka, 2013; Elder & Zucker, 1993; Kovacs & Julesz,
1993; Tversky et al., 2004; Ringach & Shapley, 1996).
Specifically, to tell if a line closes up to form a closed
contour, humans are believed to implement a process
called “contour integration” that relies at least partially
on global information (Levi et al., 2007; Loffler et al.,
2003; Mathes & Fahle, 2007). Even many flanking, open
contours would hardly influence humans’ robust closed
contour detection abilities.

Our experiments

We hypothesize that, in contrast to humans, closed
contour detection is difficult for DNNs. The reason
is that this task would presumably require long-range
contour integration, but DNNs are believed to process
mainly local information (Geirhos, Rubisch, et al.,
2018; Brendel & Bethge, 2019). Here, we test how well
humans and neural networks can separate closed from
open contours. To this end, we create a custom data
set, test humans and DNNs on it, and investigate the
decision-making process of the DNNs.

DNNs and humans reach high performance

We created a data set with two classes of images:
The first class contained a closed contour; the second
one did not. In order to make sure that the statistical
properties of the two classes were similar, we included
a main contour for both classes. While this contour

line closed up for the first class, it remained open for
the second class. This main contour consisted of 3–9
straight-line segments. In order to make the task more
difficult, we added several flankers with either one or
two line segments that each had a length of at least 32
pixels (Figure 2A). The size of the images was 256 × 256
pixels. All lines were black and the background was
uniformly gray. Details on the stimulus generation can
be found in Appendix B.

Humans identified the closed contour stimulus
very reliably in a two-interval forced-choice task.
Their performance was 88.39% (SEM = 2.96%) on
stimuli whose generation procedure was identical to
the training set. For stimuli with white instead of
black lines, human participants reached a performance
of 90.52% (SEM = 1.58%). The psychophysical
experiment is described in Appendix B.

We fine-tuned a ResNet-50 (He et al., 2016)
pretrained on ImageNet (Deng et al., 2009) on the
closed contour data set. Similar to humans, it performed
very well and reached an accuracy of 99.95% (see
Figure 2A [i.i.d. to training]).

We found that both humans and our DNN reach
high accuracy on the closed contour detection task.
From a human-centered perspective, it is enticing to
infer that the model had learned the concept of open
and closed contours and possibly that it performs a
similar contour integration-like process as humans.
However, this would have been overhasty. To better
understand the degree of similarity, we investigated
how our model performs on variations of the data sets
that were not used during the training procedure.

Generalization tests reveal differences

Humans are expected to have no difficulties if the
number of flankers, the color, or the shape of lines
would differ. We here test our model’s robustness on
such variants of the data set. If our model used similar
decision-making processes as humans, it should be able
to generalize well without any further training on the
new images. This procedure is another perspective to
shed light on whether our model really understood the
concept of closedness or just picked up some statistical
cues in the training data set.

We tested our model on 15 variants of the data set
(out of distribution test sets) without fine-tuning on
these variations. As shown in Figure 2A, B, our trained
model generalized well to many but not all modified
stimulus sets.

On the following variations, our model achieved
high accuracy: Curvy contours (1, 3) were easily
distinguishable for our model, as long as the diameter
remained below 100 pixels. Also, adding a dashed,
closed flanker (2) did not lower its performance. The
classification ability of the model remained similarly
high for the no-flankers (4) and the asymmetric
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Figure 2. (A) Our ResNet-50-model generalized well to many data sets without further retraining, suggesting it would be able to
distinguish closed and open contours. (B) However, the poor performance on many other data sets showed that our model did not
learn the concept of closedness. (C) The heatmaps of our BagNet-33-based model show which parts of the image provided evidence
for closedness (blue, negative values) or openness (red, positive values). The patches on the sides show the most extremely,
nonoverlapping patches and their logit values. The logit distribution shows that most patches had logit values close to zero (y-axis
truncated) and that many more patches in the open stimulus contributed positive logit values. (D) Our BagNet- and ResNet-models
showed different performances on generalization sets, such as the asymmetric flankers. This indicates that the local decision-making
process of the substitute model BagNet is not used by the original model ResNet. Figure best viewed electronically.

flankers condition (6). When testing our model on main
contours that consisted of more edges than the ones
presented during training (5), the performance was also
hardly impaired. It remained high as well when multiple
curvy open contours were added as flankers (7).

The following variations were more difficult for
our model: If the size of the contour got too large, a
moderate drop in accuracy was found (8). For binarized
images, our model’s performance was also reduced (9).
And finally, (almost) chance performance was observed
when varying the line width (14, 10, 13), changing the
line color (11, 12), or using dashed curvy lines (15).

While humans would perform well on all variants of
the closed contour data set, the failure of our model
on some generalization tests suggests that it solves the
task differently from humans. On the other hand, it
is equally difficult to prove that the model does not
understand the concept. As described by Firestone
(2020), models can “perform differently despite similar
underlying competences.” In either way, we argue
that it is important to openly consider alternative
mechanisms to the human approach of global contour
integration.

Our closed contour detection task is partly
solvable with local features

In order to investigate an alternative mechanism
to global contour integration, we here design an
experiment to understand how well a decision-making
process based on purely local features can work. For this
purpose, we trained and tested BagNet-33 (Brendel &
Bethge, 2019), a model that has access to local features
only. It is a variation of ResNet-50 (He et al., 2016),
where most 3 × 3 kernels are replaced by 1 × 1 kernels
and therefore the receptive field size at the top-most
convolutional layer is restricted to 33 × 33 pixels.

We found that our restricted model still reached
close to 90% performance. In other words, contour
integration was not necessary to perform well on the
task.

To understand which local features the model relied
on mostly, we analyzed the contribution of each
patch to the final classification decision. To this end,
we used the log-likelihood values for each 33 × 33
pixels patch from BagNet-33 and visualized them as a
heatmap. Such a straightforward interpretation of the
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Figure 3. (A) For three of the 23 SVRT problems, two example images representing the two opposing classes are shown. In each
problem, the task was to find the rule that separated the images and to sort them accordingly. (B) Kim et al. (2018) trained a DNN on
each of the problems. They found that same-different tasks (red points), in contrast to spatial tasks (blue points), could not be solved
with their models. Our ResNet-50-based models reached high accuracies for all problems when using 28,000 training examples and
weights from pretraining on ImageNet.

contributions of single image patches is not possible
with standard DNNs like ResNet (He et al., 2016) due
to their large receptive field sizes in top layers.

The heatmaps of BagNet-33 (see Figure 2C) revealed
which local patches played an important role in the
decision-making process: An open contour was often
detected by the presence of an endpoint at a short
edge. Since all flankers in the training set had edges
larger than 33 pixels, the presence of this feature was an
indicator of an open contour. In turn, the absence of
this feature was an indicator of a closed contour.

Whether the ResNet-50-based model used the same
local feature as the substitute model was unclear.
To answer this question, we tested BagNet on the
previously mentioned generalization tests. We found
that the data sets on which it showed high performance
were sometimes different from the ones of ResNet (see
Figure 7 in the Appendix B). A striking example was
the failure of BagNet on the ”asymmetric flankers”
condition (see Figure 2D). For these images, the
flankers often consisted of shorter line segments and
thus obscured the local feature we assumed BagNet
to use. In contrast, ResNet performed well on this
variation. This suggests that the decision-making
strategy of ResNet did not heavily depend on the local
feature found with the substitute BagNet model.

In summary, the generalization tests, the high
performance of BagNet as well as the existence of
a distinctive local feature provide evidence that our
human-biased assumption was misleading. We saw that

other mechanisms for closed contour detection besides
global contour integration do exist (see Introduction,
“Differentiating between necessary and sufficient
mechanisms”). As humans, we can easily miss the many
statistical subtleties by which a task can be solved. In
this respect, BagNets proved to be a useful tool to test
a purportedly “global” visual task for the presence
of local artifacts. Overall, various experiments and
analyses can be beneficial to understand mechanisms
and to overcome our human reference point.

Case study 2: Synthetic Visual
Reasoning Test

In order to compare human and machine
performance at learning abstract relationships between
shapes, Fleuret et al. (2011) created the Synthetic Visual
Reasoning Test (SVRT) consisting of 23 problems
(see Figure 3A). They showed that humans need only
few examples to understand the underlying concepts.
Stabinger et al. (2016) as well as Kim et al. (2018)
assessed the performance of deep convolutional
neural networks on these problems. Both studies
found a dichotomy between two task categories:
While high accuracy was reached on spatial problems,
the performance on same-different problems was
poor. In order to compare the two types of tasks
more systematically, Kim et al. (2018) developed a
parameterized version of the SVRT data set called
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PSVRT. Using this data set, they found that for same-
different problems, an increase in the complexity of the
data set could quickly strain their models. In addition,
they showed that an attentive version of the model
did not exhibit the same deficits. From these results,
the authors concluded that feedback mechanisms as
present in the human visual system such as attention,
working memory, or perceptual grouping are probably
important components for abstract visual reasoning.
More generally, these studies have been perceived and
cited with the broader claim of feed-forward DNNs not
being able to learn same-different relationships between
visual objects (Serre, 2019; Schofield et al., 2018) – at
least not “efficiently” (Firestone, 2020).

We argue that the results of Kim et al. (2018) cannot
be taken as evidence for the importance of feedback
components for abstract visual reasoning:

(1) While their experiments showed that same-different
tasks are harder to learn for their models, this might
also be true for the human visual system. Normally
sighted humans have experienced lifelong visual
input; only looking at human performance with
this extensive learning experience cannot reveal
differences in learning difficulty.

(2) Even if there is a difference in learning complexity,
this difference is not necessarily due to differences
in the inference mechanism (e.g., feed-forward vs.
feedback)—the large variety of other differences
between biological and artificial vision systems
could be critical causal factors as well.

(3) In the same line, small modifications in the learning
algorithm or architecture can significantly change
learning complexity. For example, changing the
network depth or width can greatly improve learning
performance (Tan & Le, 2019).

(4) Just because an attentive version of the model
can learn both types of tasks does not prove that
feedback mechanisms are necessary for these tasks
(see Introduction, “Differentiating between necessary
and sufficient mechanisms”).

Determining the necessity of feedback mechanisms
is especially difficult because feedback mechanisms
are not clearly distinct from purely feed-forward
mechanisms. In fact, any finite-time recurrent network
can be unrolled into a feed-forward network (Liao &
Poggio, 2016; van Bergen & Kriegeskorte, 2020).

For these reasons, we argue that the importance of
feedback mechanisms for abstract visual reasoning
remains unclear.

In the following paragraph we present our own
experiments on the SVRT data set and show that
standard feed-forward DNNs can indeed perform well
on same-different tasks. This confirms that feedback
mechanisms are not strictly necessary for same-different
tasks, although they helped in the specific experimental

setting of Kim et al. (2018). Furthermore, this
experiment highlights that changes of the network
architecture and training procedure can have large
effects on the performance of artificial systems.

Our experiments

The findings of Kim et al. (2018) were based on
rather small neural networks, which consisted of up
to six layers. However, typical network architectures
used for object recognition consist of more layers and
have larger receptive fields. For this reason, we tested a
representative of such networks, namely, ResNet-50.
The experimental setup can be found in Appendix C.

We found that our feed-forward model can in fact
perform well on the same-different tasks of SVRT (see
Figure 3B; see also concurrent work of Messina et al.,
2019). This result was not due to an increase in the
number of training samples. In fact, we used fewer
images (28,000 images) than Kim et al. (2018) (1 million
images) and Messina et al. (2019) (400,000 images).
Of course, the results were obtained on the SVRT
data set and might not hold for other visual reasoning
data sets (see Introduction, “Testing generalization of
mechanisms”).

In the very low-data regime (1,000 samples), we
found a difference between the two types of tasks. In
particular, the overall performance on same-different
tasks was lower than on spatial reasoning tasks. As
for the previously mentioned studies, this cannot be
taken as evidence for systematic differences between
feed-forward neural networks and the human visual
system. In contrast to the neural networks used in
this experiment, the human visual system is naturally
pretrained on large amounts of visual reasoning tasks,
thus making the low-data regime an unfair testing
scenario from which it is almost impossible to draw
solid conclusions about differences in the internal
information processing. In other words, it might very
well be that the human visual system trained from
scratch on the two types of tasks would exhibit a
similar difference in sample efficiency as a ResNet-50.
Furthermore, the performance of a network in the
low-data regime is heavily influenced by many factors
other than architecture, including regularization
schemes or the optimizer, making it even more difficult
to reach conclusions about systematic differences in the
network structure between humans and machines.

Case study 3: Recognition gap
Ullman et al. (2016) investigated the minimally

necessary visual information required for object
recognition. To this end, they successively cropped
or reduced the resolution of a natural image until
more than 50% of all human participants failed to
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identify the object. The study revealed that recognition
performance drops sharply if the minimal recognizable
image crops are reduced any further. They referred
to this drop in performance as the “recognition gap.”
The gap is computed by subtracting the proportion of
people who correctly classify the largest unrecognizable
crop (e.g., 0.2) from that of the people who correctly
classify the smallest recognizable crop (e.g., 0.9). In
this example, the recognition gap would evaluate to
0.9 − 0.2 = 0.7. On the same human-selected image
crops, Ullman et al. (2016) found that the recognition
gap is much smaller for machine vision algorithms (0.14
± 0.24) than for humans (0.71 ± 0.05). The researchers
concluded that machine vision algorithms would not
be able to “explain [humans’] sensitivity to precise
feature configurations” and “that the human visual
system uses features and processes that are not used by
current models and that are critical for recognition.”
In a follow-up study, Srivastava et al. (2019) identified
“fragile recognition images” (FRIs) with an exhaustive
machine-based procedure whose results include a
subset of patches that adhere to the definition of
minimal recognizable configurations (MIRCs) by
Ullman et al. (2016). On these machine-selected FRIs, a
DNN experienced a moderately high recognition gap,
whereas humans experienced a low one. Because of the
differences between the selection procedures used in
Ullman et al. (2016) and Srivastava et al. (2019), the
question remained open whether machines would show
a high recognition gap on machine-selected minimal
images, if the selection procedure was similar to the one
used in Ullman et al. (2016).

Our experiment

Our goal was to investigate if the differences in
recognition gaps identified by Ullman et al. (2016)
would at least in part be explainable by differences in
the experimental procedures for humans and machines.
Crucially, we wanted to assess machine performance
on machine-selected, and not human-selected, image
crops. We therefore implemented the psychophysics
experiment in a machine setting to search the
smallest recognizable images (or MIRCs) and the
largest unrecognizable images (sub-MIRCs). In
the final step, we evaluated our machine model’s
recognition gap using the machine-selected MIRCs and
sub-MIRCs.

Methods
Our machine-based search algorithm used the deep

convolutional neural network BagNet-33 (Brendel &
Bethge, 2019), which allows us to straightforwardly
analyze images as small as 33 × 33 pixels. In the first
step, the classification accuracy was evaluated for
the whole image. If it was above 0.5, the image was

successively cropped and reduced in resolution. In
each step, the best-performing crop was taken as the
new parent. When the classification probability of all
children fell below 0.5, the parent was identified as the
MIRC, and all its children were considered sub-MIRCs.
In order to evaluate the recognition gap, we calculate
the difference in accuracy between the MIRC and the
best-performing sub-MIRC. This definition is more
conservative than the one from Ullman et al. (2016),
who evaluated the difference in accuracy between the
MIRC and the worst-performing sub-MIRC. For more
details on the search procedure, please see Appendix D.

Results
We evaluated the recognition gap on two data sets:

the original images from Ullman et al. (2016) and a
subset of the ImageNet validation images (Deng et al.,
2009). As shown in Figure 4A, our model has an average
recognition gap of 0.99 ± 0.01 on the machine-selected
crops of the data set from Ullman et al. (2016). On
the machine-selected crops of the ImageNet validation
subset, a large recognition gap occurs as well. Our
values are similar to the recognition gap in humans and
differ from the machines’ recognition gap (0.14 ± 0.24)
between human-selected MIRCs and sub-MIRCs as
identified by Ullman et al. (2016).

Discussion
Our findings contrast claims made by Ullman et

al. (2016). The latter study concluded that machine
algorithms are not as sensitive as humans to precise
feature configurations and that they are missing features
and processes that are “critical for recognition.” First,
our study shows that a machine algorithm is sensitive
to small image crops. It is only the precise minimal
features that differ between humans and machines.
Second, by the word “critical,” Ullman et al. (2016)
imply that object recognition would not be possible
without these human features and processes. Applying
the same reasoning to Srivastava et al. (2019), the
low human performance on machine-selected patches
should suggest that humans would miss “features and
processes critical for recognition.” This would be an
obviously overreaching conclusion. Furthermore, the
success of modern artificial object recognition speaks
against the conclusion that the purported processes are
“critical” for recognition, at least within this discretely
defined recognition task. Finally, what we can conclude
from the experiments of Ullman et al. (2016) and from
our own is that both the human and a machine visual
system can recognize small image crops and that there
is a sudden drop in recognizability when reducing the
amount of information.

In summary, these results highlight the importance
of testing humans and machines in as similar settings
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Figure 4. (A) BagNet-33’s probability of correct class for decreasing crops: The sharp drop when the image becomes too small or the
resolution too low is called the “recognition gap” (Ullman et al., 2016). It was computed by subtracting the model’s predicted
probability of the correct class for the sub-MIRC from the model’s predicted probability of the correct class for the MIRC. As an
example, the glasses stimulus was evaluated as 0.9999 − 0.0002 = 0.9997. The crop size on the x-axis corresponds to the size of the
original image in pixels. Steps of reduced resolution are not displayed such that the three sample stimuli can be displayed coherently.
(B) Recognition gaps for machine algorithms (vertical bars) and humans (gray horizontal bar). A recognition gap is identifiable for the
DNN BagNet-33 when testing machine-selected stimuli of the original images from Ullman et al. (2016) and a subset of the ImageNet
validation images (Deng et al., 2009). Error bars denote standard deviation.

as possible, and of avoiding a human bias in the
experiment design. All conditions, instructions, and
procedures should be as close as possible between
humans and machines in order to ensure that observed
differences are due to inherently different decision
strategies rather than differences in the testing
procedure.

Conclusion

Comparing human and machine visual perception
can be challenging. In this work, we presented a
checklist on how to perform such comparison studies in
a meaningful and robust way. For one, isolating a single
mechanism requires us to minimize or exclude the effect
of other differences between biological and artificial
and to align experimental conditions for both systems.
We further have to differentiate between necessary and
sufficient mechanisms and to circumscribe in which
tasks they are actually deployed. Finally, an overarching
challenge in comparison studies between humans and
machines is our strong internal human interpretation
bias.

Using three case studies, we illustrated the application
of the checklist. The first case study on closed contour
detection showed that human bias can impede the
objective interpretation of results and that investigating
which mechanisms could or could not be at work may
require several analytic tools. The second case study
highlighted the difficulty of drawing robust conclusions
about mechanisms from experiments. While previous
studies suggested that feedback mechanisms might be

important for visual reasoning tasks, our experiments
showed that they are not necessarily required. The
third case study clarified that aligning experimental
conditions for both systems is essential. When adapting
the experimental settings, we found that, unlike the
differences reported in a previous study, DNNs and
humans indeed show similar behavior on an object
recognition task.

Our checklist complements other recent proposals
about how to compare visual inference strategies
between humans and machines (Buckner, 2019; Chollet,
2019; Ma & Peters, 2020; Geirhos et al., 2020) and helps
to create more nuanced and robust insights into both
systems.
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Appendix A: Literature overview of
comparison studies

A growing body of work discusses comparisons of
humans and machines on a higher level. Majaj and Pelli
(2018) provide a broad overview how machine learning
can help vision scientists to study biological vision, while
Barrett et al. (2019) review methods on how to analyze
representations of biological and artificial networks.
From the perspective of cognitive science, Cichy and
Kaiser (2019) stress that deep learning models can serve
as scientific models that not only provide both helpful
predictions and explanations but that can also be used
for exploration. Furthermore, from the perspective of
psychology and philosophy, Buckner (2019) emphasizes
often-neglected caveats when comparing humans and
DNNs such as human-centered interpretations and calls
for discussions regarding how to properly align machine
and human performance. Chollet (2019) proposes a
general artificial intelligence benchmark and suggests
to rather evaluate intelligence as “skill-acquisition
efficiency” than to focus on skills at specific tasks.

In the following, we give a brief overview of studies
that compare human and machine perception. In order
to test if DNNs have similar cognitive abilities as
humans, a number of studies test DNNs on abstract
(visual) reasoning tasks (Barrett et al., 2018; Yan &
Zhou, 2017; Wu et al., 2019; Santoro et al., 2017;
Villalobos et al., 2020). Other comparison studies focus
on whether human visual phenomena such as illusions
(Gomez-Villa et al., 2019; Watanabe et al., 2018; Kim et
al., 2019) or crowding (Volokitin et al., 2017; Doerig et
al., 2019) can be reproduced in computational models.
In the attempt to probe intuition in machine models,
DNNs are compared to intuitive physics engines, that
is, probabilistic models that simulate physical events
(Zhang et al., 2016).

Other works investigate whether DNNs are sensible
models of human perceptual processing. To this
end, their prediction or internal representations are
compared to those of biological systems, for example,
to human and/or monkey behavioral representations
(Peterson et al., 2016; Schrimpf et al., 2018; Yamins
et al., 2014; Eberhardt et al., 2016; Golan et al.,
2019), human fMRI representations (Han et al., 2019;

Khaligh-Razavi & Kriegeskorte, 2014) or monkey cell
recordings (Schrimpf et al., 2018; Khaligh-Razavi &
Kriegeskorte, 2014; Yamins et al., 2014; Cadena et al.,
2019).

A great number of studies focus on manipulating
tasks and/or models. Researchers often use
generalization tests on data dissimilar to the training
set (Zhang et al., 2018; Wu et al., 2019) to test whether
machines understood the underlying concepts. In
other studies, the degradation of object classification
accuracy is measured with respect to image degradations
(Geirhos et al., 2018) or with respect to the type of
features that play an important role for human or
machine decision-making (Geirhos, Rubisch, et al.,
2018; Brendel & Bethge, 2019; Kubilius et al., 2016;
Ullman et al., 2016; Ritter et al., 2017). A lot of effort
is being put into investigating whether humans are
vulnerable to small, adversarial perturbations in images
(Elsayed et al., 2018; Zhou & Firestone, 2019; Han et
al., 2019; Dujmović et al., 2020), as DNNs are shown
to be (Szegedy et al., 2013). Similarly, in the field of
natural language processing, a trend is to manipulate
the data set itself by, for example, negating statements
to test whether a trained model gains an understanding
of natural language or whether it only picks up on
statistical regularities (Niven & Kao, 2019; McCoy et
al., 2019).

Further work takes inspiration from biology or uses
human knowledge explicitly in order to improve DNNs.
Spoerer et al. (2017) found that recurrent connections,
which are abundant in biological systems, allow for
higher object recognition performance, especially
in challenging situations such as in the presence of
occlusions—in contrast to pure feed-forward networks.
Furthermore, several researchers suggest (Zhang
et al., 2018; Kim et al., 2018) or show (Wu et al.,
2019; Barrett et al., 2018; Santoro et al., 2017) that
designing networks’ architecture or features with
human knowledge is key for machine algorithms to
successfully solve abstract (reasoning) tasks.

Appendix B: Closed contour
detection

Data set

Each image in the training set contained a main
contour, multiple flankers, and a background image.
The main contour and flankers were drawn into an
image of size 1, 028 × 1, 028 pixels. The main contour
and flankers could be straight or curvy lines, for which
the generation processes are respectively described
in the next two subsections. The lines had a default
thickness of 10 pixels. We then resized the image to
256 × 256 pixels using anti-aliasing to transform the
black and white pixels into smoother lines that had

https://doi.org/10.1007/978-3-030-03801-4_40


Journal of Vision (2021) 21(3):16, 1–23 Funke et al. 15

Figure 5. Closed contour data set. (A) Left: The main contour
was generated by connecting points from a random sampling
process of angles and radii. Right: Resulting line-drawing with
flankers. (B) Left: Generation process of curvy contours. Right:
Resulting line-drawing.

gray pixels at the borders. Thus, the lines in the resized
image had a thickness of 2.5 pixels. In the following, all
specifications of sizes refer to the resized image (i.e., a
line described of final length 10 pixels extended over 40
pixels when drawn into the 1, 028 × 1, 028-pixel image).
For the psychophysical experiments (see Appendix B,
Psychophysical experiment), we added a white margin
of 16 pixels on each side of the image to avoid illusory
contours at the borders of the image.

Varying contrast of background. An image from the
ImageNet data set was added as background to the
line drawing. We converted the image into LAB color
space and linearly rescaled the pixel intensities of the
image to produce a normalized contrast value between
0 (gray image with the RGB values [118, 118, 118]) and
1 (original image) (see Figure 8A). When adding the
image to the line drawing, we replaced all pixels of the
line drawing by the values of the background image for
which the background image had a higher grayscale
value than the line drawing. For the experiments in the
main body, the contrast of the background image was
always 0. The other contrast levels were used only for
the additional experiment described in Appendix B,
Additional experiment: Increasing the task difficulty by
adding a background image.

Generation of image pairs.. We aimed to reduce the
statistical properties that could be exploited to solve
the task without judging the closedness of the contour.
Therefore, we generated image pairs consisting of an
“open” and a “closed” version of the same image. The
two versions were designed to be almost identical and
had the same flankers. They differed only in the main
contour, which was either open or closed. Examples
of such image pairs are shown in Figure 5. During
training, either the closed or the open image of a pair
was used. However, for the validation and testing, both
versions were used. This allowed us to compare the
predictions and heatmaps for images that differed only
slightly but belonged to different classes.

Line-drawing with polygons as main contour
The data set used for training as well as some of

the generalization sets consisted of straight lines. The
main contour consisted of n ∈ {3, 4, 5, 6, 7, 8, 9}
line segments that formed either an open or a closed
contour. The generation process of the main contour is
depicted on the left side of Figure 5A. To get a contour
with n edges, we generated n points, which were defined
by a randomly sampled angle αn and a randomly
sampled radius rn (between 0 and 128 pixels). By
connecting the resulting points, we obtained the closed
contour. We used the python PIL library (PIL 5.4.1,
python3) to draw the lines that connect the endpoints.
For the corresponding open contour, we sampled two
radii for one of the angles such that they had a distance
of 20 to 50 pixels from each other. When connecting the
points, a gap was created between the points that share
the same angle. This generation procedure could allow
for very short lines with edges being very close to each
other. To avoid this, we excluded all shapes with corner
points closer to 10 pixels from nonadjacent lines.

The position of the main contour was random, but
we ensured that the contour did not extend over the
border of the image.

Besides the main contour, several flankers consisting
of either one or two line segments were added to each
stimulus. The exact number of flankers was uniformly
sampled from the range [10,25]. The length of each
line segment varied between 32 and 64 pixels. For
the flankers consisting of two line segments, both
lines had the same length, and the angle between the
line segments was at least 45◦. We added the flankers
successively to the image and thereby ensured a minimal
distance of 10 pixels between the line centers. To ensure
that the corresponding image pairs would have the
same flankers, the distances to both the closed and
open version of the main contour were accounted for
when re-sampling flankers. If a flanker did not fulfill
this criterion, a new flanker was sampled of the same
size and the same number of line segments, but it was
placed somewhere else. If a flanker extended over the
border of the image, the flanker was cropped.

Line-drawing with curvy lines as main contour
For some of the generalization sets, the contours

consisted of curvy instead of straight lines. These were
generated by modulating a circle of a given radius rc
with a radial frequency function that was defined by
two sinusoidal functions. The radius of the contour was
thus given by

r(φ) = A1 sin( f1(φ + θ1))
+A2 sin( f2(φ + θ2)) + rc, (1)

with the frequencies f1 and f2 (integers between 1 and
6), amplitudes A1 and A2 (random values between 15
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and 45), and phases θ1 and θ2 (between 0 and 2π ).
Unless stated otherwise, the diameter (diameter =
2 × rc) was a random value between 50 and 100 pixels,
and the contour was positioned in the center of the
image. The open contours were obtained by removing a
circular segment of size φo = π

3 at a random phase (see
Figure 5B).

For two of the generalization data sets, we used
dashed contours that were obtained by masking out
20 equally distributed circular segments each of size
φd = π

20 .

Details on generalization data sets
We constructed 15 variants of the data set to test

generalization performance. Nine variants consisted
of contours with straight lines. Six of these featured
varying line styles like changes in line width (10, 13,
14) and/or line color (11, 12). For one variant (5), we
increased the number of edges in the main contour.
Another variant (4) had no flankers, and yet another
variant (6) featured asymmetric flankers. For variant
9, the lines were binarized (only black or gray pixels
instead of different gray tones).

In another six variants, the contours as well as the
flankers were curved, meaning that we modulated a
circle with a radial frequency function. The first four
variants did not contain any flankers and the main
contour had a fixed size of 50 pixels (3), 100 pixels
(1), and 150 pixels (8). For another variant (15), the
contour was a dashed line. Finally, we tested the effect
of different flankers by adding one additional closed,
yet dashed contour (2) or one to four open contours (7).

Below, we provide more details on some of these data
sets:

Black-white-black lines (12). For all contours, black
lines enclosed a white one in the middle. Each of these
three lines had a thickness of 1.5 pixels, which resulted
in a total thickness of 4.5 pixels.

Asymmetric flankers (6). The two-line flankers
consisted of one long and one short line instead of two
equally long lines.

W/ dashed flanker (2). This data set with curvy
contours contained an additional dashed, yet closed
contour as a flanker. It was produced like the main
contour in the dashed main contour set. To avoid
overlap of the contours, the main contour and the
flanker could only appear at four determined positions
in the image, namely, the corners.

W/ multiple flankers (7). In addition to the curvy
main contour, between one and four open curvy
contours were added as flankers. The flankers were
generated by the same process as the main contour. The
circles that were modulated had a diameter of 50 pixels
and could appear at either one of the four corners of
the image or in the center.

Psychophysical experiment

To estimate how well humans would be able to
distinguish closed and open stimuli, we performed a
psychophysical experiment in which observers reported
which of two sequentially presented images contained
a closed contour (two-interval forced choice [2-IFC]
task).

Stimuli
The images of the closed contour data set were

used as stimuli for the psychophysical experiments.
Specifically, we used the images from the test sets that
were used to evaluate the performance of the models.
For our psychophysical experiments, we used two
different conditions: The images contained either black
(i.i.d. to the training set) or white contour lines. The
latter was one one of the generalization test sets.

Apparatus
Stimuli were displayed on a VIEWPixx 3D LCD

(VPIXX Technologies; spatial resolution 1, 920 ×
1, 080 pixels, temporal resolution 120 Hz, operating
with the scanning backlight turned off). Outside the
stimulus image, the monitor was set to mean gray.
Observers viewed the display from 60 cm (maintained
via a chinrest) in a darkened chamber. At this distance,
pixels subtended approximately 0.024◦ on average
(41 pixels per degree of visual angle). The monitor
was linearized (maximum luminance 260 cd/m2 using
a Konica-Minolta LS-100 photometer. Stimulus
presentation and data collection were controlled
via a desktop computer (Intel Core i5-4460 CPU,
AMD Radeon R9 380 GPU) running Ubuntu Linux
(16.04 LTS), using the Psychtoolbox Library (Pelli
& Vision, 1997; Kleiner et al., 2007; Brainard &
Vision, 1997, version 3.0.12) and the iShow library
(http://dx.doi.org/10.5281/zenodo.34217) under
MATLAB (The Mathworks, Inc., R2015b).

Participants
In total, 19 naïve observers (4 male, 15 female,

age: 25.05 years, SD = 3.52) participated in the
experiment. Observers were paid 10€ per hour for
participation. Before the experiment, all subjects had
given written informed consent for participating. All
subjects had normal or corrected-to-normal vision. All
procedures conformed to Standard 8 of the American
Psychological 405 Association’s “Ethical Principles of
Psychologists and Code of Conduct” (2010).

Procedure
On each trial, one closed and one open contour

stimulus were presented to the observer (see Figure 6A).

http://dx.doi.org/10.5281/zenodo.34217


Journal of Vision (2021) 21(3):16, 1–23 Funke et al. 17

Figure 6. (A) In a 2-IFC task, human observers had to tell which of two images contained a closed contour. (B) Accuracy of the 20 naïve
observers for the different conditions.

The images used for each trial were randomly picked,
but we ensured that the open and closed images shown
in the same trial were not the ones that were almost
identical to each other (see Appendix B, Generation
of image pairs). Thus, the number of edges of the
main contour could differ between the two images
shown in the same trial. Each image was shown for
100 ms, separated by a 300-ms interstimulus interval
(blank gray screen). We instructed the observer to
look at the fixation spot in the center of the screen.
The observer was asked to identify whether the image
containing a closed contour appeared first or second.
The observer had 1,200 ms to respond and was given
feedback after each trial. The intertrial interval was
1,000 ms. Each block consisted of 100 trials and
observers performed five blocks. Trials with different
line colors and varying background images (contrasts
including 0, 0.4, and 1) were blocked. Here, we only
report the results for black and white lines of contrast
0. Upon the first time that a block with a new line color
was shown, observers performed a practice session with
48 trials of the corresponding line color.

Training of ResNet-50 model

We fine-tuned a ResNet-50 (He et al., 2016)
pretrained on ImageNet (Deng et al., 2009) on
the closed contour task. We replaced the last fully
connected, 1,000-way classification layer by layer with
only one output neuron to perform binary classification
with a decision threshold of 0. The weights of all layers
were fine-tuned using the optimizer Adam (Kingma
& Ba, 2014) with a batch size of 64. All images were
preprocessed to have the same mean and standard
deviation and were randomly mirrored horizontally
and vertically for data augmentation. The model was
trained on 14,000 images for 10 epochs with a learning
rate of 0.0003. We used a validation set of 5,600 images.

Generalization tests. To determine the generalization
performance, we evaluated the model on the test sets

without any further training. Each of the test sets
contained 5,600 images. Poor accuracy could simply
result from a suboptimal decision criterion rather than
because the network would not be able to tell the stimuli
apart. To account for the distribution shift between the
original training images and the generalization tasks,
we optimized the decision threshold (a single scalar) for
each data set. To find the optimal threshold for each
data set, we subdivided the interval, in which 95% of all
logits lie, into 100 sub points and picked the threshold
that would lead to the highest performance.

Training of BagNet-33 model

To test an alternative decision-making mechanism
to global contour integration, we trained and tested
a BagNet-33 (Brendel & Bethge, 2019) on the closed
contour task. Like the ResNet-50 model, it was
pretrained on ImageNet (Deng et al., 2009) and
we replaced the last fully connected, 1,000-way
classification layer by layer with only one output
neuron. We fine-tuned the weights using the optimizer
AdaBound (Luo et al., 2019) with an initial and final
learning rate of 0.0001 and 0.1, respectively. The
training images were generated on-the-fly, which meant
that new images were produced for each epoch. In total,
the fine-tuning lasted 100 epochs, and we picked the
weights from the epoch with the highest performance.

Generalization tests. The generalization tests were
conducted equivalently to the ones with ResNet-50.
The results are shown in Figure 7.

Additional experiment: Increasing the task
difficulty by adding a background image

We performed an additional experiment, where we
tested if the model would become more robust and
thus generalized better if we trained on a more difficult
task. This was achieved by adding an image to the
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Figure 7. Generalization performances of BagNet-33.

Figure 8. (A) An image of varying contrast was added as background. (B) Generalization performances of our models trained on
random contrast levels and tested on single contrast levels.

background, such that the model had to learn how to
separate the lines from the task-irrelevant background.

In our experiment, we fine-tuned our ResNet-50-
based model on images with a background image of
a uniformly sampled contrast. For each data set, we
evaluated the model separately on six discrete contrast
levels {0, 0.2, 0.4, 0.6, 0.8, 1} (see Figure 8A). We found
that the generalization performance varied for some
data sets compared to the experiment in the main body
(see Figure 8B).

Appendix C: SVRT

Methods

Data set. We used the original C-code provided by
Fleuret et al. (2011) to generate the images of the SVRT
data set. The images had a size of 128 × 128 pixels. For
each problem, we used up to 28,000 images for training,
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Figure 9. Accuracy of the models for the individual problems. Problem 8 is a mixture of same-different task and spatial task. In
Figure 3, this problem was assigned to the spatial tasks. Bars replotted from Kim et al. (2018).

5,600 images for validation, and 11,200 images for
testing.

Experimental procedures. For each of the SVRT
problems, we fine-tuned a ResNet-50 that was
pretrained on ImageNet (Deng et al., 2009) (as
described in Appendix B, Training of ResNet-50
model). The same preprocessing, data augmentation,
optimizer, and batch size as for the closed contour task
were used.

For the different experiments, we varied the number
of training images. We used subsets containing 28,000,
1,000, or 100 images. The number of epochs depended
on the size of the training set: The model was fine-tuned
for respectively 10, 280, or 2800 epochs. For each
training set size and SVRT problem, we used the
best learning rate after a hyper-parameter search on
the validation set, where we tested the learning rates
[6 × 10−5, 1 × 10−4, 3 × 10−4].

As a control experiment, we also initialized the
model with random weights, and we again performed
a hyper-parameter search over the learning rates
[3 × 10−4, 6 × 10−4, 1 × 10−3].

Results

In Figure 9, we show the results for the individual
problems. When using 28,000 training images, we
reached above 90% accuracy for all SVRT problems,
including the ones that required same-different
judgments (see also Figure 3B). When using less
training images, the performance on the test set was
reduced. In particular, we found that the performance
on same-different tasks dropped more rapidly than on
spatial reasoning tasks. If the ResNet-50 was trained
from scratch (i.e., weights were randomly initialized
instead of loaded from pretraining on ImageNet),
the performance dropped only slightly on all but one
spatial reasoning task. Larger drops were found on
same-different tasks.

Appendix D: Recognition gap

Details on methods

Data set. We used two data sets for this experiment.
One consisted of 10 natural, color images whose
grayscale versions were also used in the original study
by Ullman et al. (2016). We discarded one image from
the original data set as it does not correspond to any
ImageNet class. For our ground truth class selection,
please see Table 1. The second data set consisted of
1,000 images from the ImageNet (Deng et al., 2009)
validation set. All images were preprocessed like in
standard training of ResNet (i.e., resizing to 256 ×
256 pixels, cropping centrally to 224 × 224 pixels and
normalizing).

Model. In order to evaluate the recognition gap, the
model had to be able to handle small input images.
Standard networks like ResNet (He et al., 2016) are
not equipped to handle small images. In contrast,
BagNet-33 (Brendel & Bethge, 2019) allows us to
straightforwardly analyze images as small as 33 ×
33 pixels and hence was our model of choice for this
experiment. It is a variation of ResNet-50 (He et al.,
2016), where most 3 × 3 kernels are replaced by 1 ×
1 kernels such that the receptive field size at the
top-most convolutional layer is restricted to 33 ×
33 pixels.

Machine-based search procedure for minimal
recognizable images. Similar to Ullman et al. (2016), we
defined minimal recognizable images or configurations
(MIRCs) as those patches of an image for which an
observer—by which we mean an ensemble of humans
or one or several machine algorithms—reaches ≥ 50%
accuracy, but any additional 20% cropping of the
corners or 20% reduction in resolution would lead
to an accuracy < 50%. MIRCs are thus inherently
observer-dependent. The original study only searched
for MIRCs in humans. We implemented the following
procedure to find MIRCs in our DNN: We passed
each preprocessed image through BagNet-33 and
selected the most predictive crop according to its
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Image WordNet Hierarchy ID WordNet Hierarchy description
Neuron number in ResNet-50

(indexing starts at 0)

fly n02190166 fly 308
ship n02687172 aircraft carrier, carrier, flattop, attack

aircraft carrier
403

n03095699 container ship, containership, container
vessel

510

n03344393 fireboat 554
n03662601 lifeboat 625
n03673027 liner, ocean liner 628

eagle n01608432 kite 21
n01614925 bald eagle, American eagle, Haliaeetus

leucocephalus
22

glasses n04355933 sunglass 836
n04356056 sunglasses, dark glasses, shades 837

bike n02835271 bicycle-built-for-two, tandem bicycle,
tandem

444

n03599486 jinrikisha, ricksha, rickshaw 612
n03785016 moped 665
n03792782 mountain bike, all-terrain bike, off-roader 671
n04482393 tricycle, trike, velocipede 870

suit n04350905 suit, suit of clothes 834
n04591157 windsor tie 906

plane n02690373 airliner 404
horse n02389026 sorrel 339

n03538406 horse cart, horse-cart 603
car n02701002 ambulance 407

n02814533 beach wagon, station wagon, wagon
estate car, beach waggon, station
waggon, waggon

436

n02930766 cab, hack, taxi, taxicab 468
n03100240 convertible 511
n03594945 jeep, landrover 609
n03670208 limousine, limo 627
n03769881 minibus 654
n03770679 minivan 656
n04037443 racer, race car, racing car 751
n04285008 sports car, sport car 817

Table 1. Selection of ImageNet classes for stimuli of Ullman et al. (2016).

probability. See Appendix D, Selecting best crop when
probabilities saturate on how to handle cases where
the probability saturates at 100% and Appendix D,
Analysis of different class selections and different
number of descendants for different treatments of
ground truth class selections. If this probability of the
full-size image for the ground-truth class was ≥ 50%,
we again searched for the 80% subpatch with the
highest probability. We repeated the search procedure
until the class probability for all subpatches fell below
50%. If the 80% subpatches would be smaller than
33 × 33 pixels, which is BagNet-33’s smallest natural
patch size, the crop was increased to 33 × 33 pixels

using bilinear sampling. We evaluated the recognition
gap as the difference in accuracy between the MIRC
and the best-performing sub-MIRC. This definition
was more conservative than the one from Ullman et
al. (2016), who considered the maximum difference
between a MIRC and its sub-MIRCs, that is, the
difference between the MIRC and the worst-performing
sub-MIRC. Please note that one difference between our
machine procedure and the psychophysics experiment
by Ullman et al. (2016) remained: The former was
greedy, whereas the latter corresponded to an exhaustive
search under certain assumptions.
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Figure 10. (A) Recognition gaps. The legend holds for all subplots. (B) Size of MIRCs. (C) Fraction of images that have MIRCS.

Analysis of different class selections and
different number of descendants

Treating the 10 stimuli from Ullman et al. (2016)
in our machine algorithm setting required two design
choices: We needed to both pick suitable ground truth
classes from ImageNet for each stimulus as well as
choose if and how to combine them. The former is
subjective, and using relationships from WordNet
Hierarchy (Miller, 1995) (as Ullman et al. [2016] did in
their psychophysics experiment) only provides limited
guidance. We picked classes to our best judgment (for
our final ground truth class choices, please see Table 1).
Regarding the aspect of handling several ground
truth classes, we extended our experiments: We tested
whether considering all classes as one (“joint classes,”

i.e., summing the probabilities) or separately (“separate
classes,” i.e., rerunning the stimuli for each ground
truth class) would have an effect on the recognition gap.
As another check, we investigated whether the number
of descendant options would alter the recognition
gap: Instead of only considering the four corner crops
as in the psychophysics experiment by Ullman et al.
(2016) (“Ullman4”), we looked at every crop shifted
by 1 pixel as a potential new parent (“stride-1”). The
results reported in the main body correspond to joint
classes and corner crops. Finally, besides analyzing the
recognition gap, we also analyzed the sizes of MIRCs
and the fractions of images that possess MIRCs for the
mentioned conditions.

Figure 10A shows that all options result in similar
values for the recognition gap. The trend of smaller
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MIRC sizes for stride-1 compared to four corner crops
shows that the search algorithm can find even smaller
MIRCs when all crops are possible descendants (see.
Figure 10B). The final analysis of how many images
possess MIRCs (see Figure 10C) shows that recognition
gaps only exist for fractions of the tested images: In
the case of the stimuli from Ullman et al. (2016), three
out of nine images, and in the case of ImageNet,
about 60% of the images have MIRCs. This means
that the recognition performance of the initial full-size
configurations was ≥ 50% for those fractions only.
Please note that we did not evaluate the recognition
gap over images that did not meet this criterion. In
contrast, Ullman et al. (2016) average only across
MIRCs that have a recognition rate above 65% and
sub-MIRCs that have a recognition rate below 20%
(personal communication, 2019). The reason why our
model could only reliably classify three out of the nine
stimuli from Ullman et al. (2016) can partly be traced
back to the oversimplification of single-class attribution
in ImageNet as well as to the overconfidence of deep
learning classification algorithms (Guo et al., 2017):
They often attribute a lot of evidence to one class, and
the remaining ones only share very little evidence.

Selecting best crop when probabilities saturate

We observed that several crops had very high
probabilities and therefore used the “logit” measure
logit(p), where p is the probability. It is defined as the
following: logit(p) = log( p

1−p ). Note that this measure
is different from what the deep learning community
usually refers to as “logits,” which are the values before
the softmax layer. In the following, we denote the latter
values as z. The logit logit(p) is monotonic w.r.t. to the
probability p, meaning that the higher the probability p,
the higher the logit logit(p). However, while p saturates
at 100%, logit(p) is unbounded. Therefore, it yields a
more sensitive discrimination measure between image
patches j that all have p(z j ) = 1, where the superscript
j denotes different patches.
In the following, we will provide a short derivation

for the logit logit(p). Consider a single patch with the
correct class c. We start with the probability pc of class
c, which can be obtained by plugging the logits zi into
the softmax formula, where i corresponds to the classes
[0, …, 1,000].

pc(z) = exp(zc)
exp(zc) + ∑

i �=c
exp(zi )

(2)

Since we are interested in the probability of the
correct class, it holds that pc(z) �= 0. Thus, in the regime

of interest, we can invert both sides of the equation.
After simplifying, we get

1
pc(z)

− 1 =

∑
i �=c

exp(zi )

exp(zc)
. (3)

When taking the negative logarithm on both sides,
we obtain

⇔ −log
(

1
pc(z)

− 1
)

= −log

⎛
⎜⎝

∑
i �=c

exp(zi)

exp(zc)

⎞
⎟⎠ (4)

⇔− log
(
1 − pc(z)
pc(z)

)
= −log

⎛
⎝∑

i �=c

exp(zi )

⎞
⎠

− (−log(exp(zc))) (5)

⇔ log
(

pc(z)
1 − pc(z)

)
= zc − log

⎛
⎝∑

i �=c

exp(zi)

⎞
⎠ (6)

The left-hand side of the equation is exactly the
definition of the logit logit(p). Intuitively, it measures
in log-space how much the network’s belief in the
correct class outweighs the belief in all other classes
taken together. The following reassembling operations
illustrate this:

logit(pc) = log
(

pc(z)
1 − pc(z)

)
= log(pc(z))︸ ︷︷ ︸

log probability of correct class

− log(1 − pc(z))︸ ︷︷ ︸
log probability of all incorrect classes

(7)

The above formulations regarding one correct class
hold when adjusting the experimental design to accept
several classes k as correct predictions. In brief, the logit
logit(pC (z)), where C stands for several classes, then
states

logit(pC (z)) = −log
(

1
pc1 (z) + pc2 (z) + ... + pck (z)

− 1
)

= −log

⎛
⎜⎝ 1∑

k
pk(z)

− 1

⎞
⎟⎠

= log

(∑
k

pk(z)

)
︸ ︷︷ ︸

log probability of all correct classes
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− log

(
1 −

∑
k

pk(z)

)
︸ ︷︷ ︸

log probability of all incorrect classes

= log

(∑
k

exp(zk)

)
− log

⎛
⎝∑

i �=k

exp(zi )

⎞
⎠ (8)

Selection of ImageNet classes for stimuli of
Ullman et al. (2016)

Note that our selection of classes is different from
the one used by Ullman et al. (2016). We went through
all classes for each image and selected the ones that we
considered sensible. The 10th image of the eye does not
have a sensible ImageNet class; hence, only nine stimuli
from Ullman et al. (2016) are listed in Table 1.


