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a b s t r a c t

The raging COVID-19 pandemic is arguably the most important threat to global health
presently. Although there Although there is currently a a a vaccine, preventive measures
have been proposed to reduce the spread of infection but the efficacy of these in-
terventions, and their likely impact on the number of COVID-19 infections is unknown. In
this study, we proposed the SEIQHRS model (susceptible-exposed-infectious-quarantine-
hospitalized-recovered-susceptible) model that predicts the trajectory of the epidemic to
help plan an effective control strategy for COVID-19 in Ghana. We provided a short-term
forecast of the early phase of the epidemic trajectory in Ghana using the generalized
growth model. We estimated the effective basic Reproductive number Re in real-time
using three different estimation procedures and simulated worse case epidemic sce-
narios and the impact of integrated individual and government interventions on the
epidemic in the long term using compartmental models. The maximum likelihood esti-
mates of Re and the corresponding 95% confidence interval was 2.04 [95% CI: 1.82e2.27;
12th March-7th April 2020]. The Re estimate using the exponential growth method was
2.11 [95% CI: 2.00e2.24] within the same period. The Re estimate using time-dependent
(TD) method showed a gradual decline of the Effective Reproductive Number since
March 12, 2020 when the first 2 index cases were recorded but the rate of transmission
remains high (TD: Re ¼ 2.52; 95% CI: [1.87e3.49]). The current estimate of Re based on the
TD method is 1.74 [95% CI: 1.41e2.10; (13th May 2020)] but with comprehensive inte-
grated government and individual level interventions, the Re could reduce to 0.5 which is
an indication of the epidemic dying out in the general population. Our results showed that
enhanced government and individual-level interventions and the intensity of media
coverage could have a substantial effect on suppressing transmission of new COVID-19
cases and reduced death rates in Ghana until such a time that a potent vaccine or drug
is discovered.
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1. Introduction

COVID-19 pandemic remains a major public health concern globally as the number of new cases and case fatalities keep
increasing every day. As of May 16, 2020 at 16.13GMT, there were 4,628,879 cases and 308,655 deaths with 1,759,729 re-
coveries confirmed worldwide (Worldometer, 2020). The global spread has been rapid, with 213 Countries and Territories
around the world now having reported at least one case (Worldometer, 2020). In Ghana, the first two index cases were
recorded on the March 12, 2020 and by 13thMay of 2020, the total number of cases was 4120 including 320 recoveries and 18
deaths.1

National governments have instituted measures in response to the pandemic. Such measures included lockdowns (partial
or full) and enhanced safety protocols to control transmission. As part of an integrated intervention, the Government of Ghana
adapted a partial lockdown in the two most affected cities, Greater Accra and Greater Kumasi for two weeks, which was
extended for a further one week. This was concurrence with individual control measures (social distancing, enhanced contact
tracing, handwashing and the use of hand sanitizers, and intensive media education), and government interventions (closure
of schools, provision of personal protective equipment (PPE) to health workers, quarantine, self-isolation, hospitalization, and
treatment). All the aforementioned interventions have been implemented in Ghana with the aim to prevent the spread of
COVID-19 but no studies to date have evaluated its long term impact on the expected number of cases and deaths to inform
policy decision.

The global nature of this pandemic with countries at difference levels of the epidemic curves, suggests that the crisis could
be long. Clearly, economies cannot immediately return to how things were prior to the pandemic. But it is equally clear that
the lockdown cannot persist indefinitely, because of its damaging impact on the economy and social life. We need to adapt
and minimise the harm it can do, and continue to suppress the spread of the virus while ensuring that children are educated,
that businesses can reopen, and that society can function. This will require continuous monitoring of transmission so that
remedial measures can be re-instituted should there be a resurgence.

Measurement of transmission intensity is important to describe the intensity of the disease outbreak, to assess the impact
of public health measures on transmission, to understand epidemiological patterns, and for planning intervention studies.
The single most important measure of transmission intensity is the basic Reproductive number, R0. The R0 describes the
number of cases, on average, an infected personwill cause during their infectious period. To contain the virus, the R0 must be
kept below 1, and this means minimising the risk of spreading the virus at every turn.When R0 is greater than 1, the virus will
spread. It is equally important to bring down the number of new cases per day. Lowering the number of new cases per day as
much as possible, together with an R0 below 1, will mean fewer cases and reduced harm.

The R0 for COVID-19 was recently estimated in the South Korea (Choi, Ki, & Health, 2020), China (Kucharski et al., 2020)
and other countries, but limited evidence supports the applicability of R0 outside the region for which the value was esti-
mated (Ridenhour, Kowalik, & Shay, 2018). Since Ro is a function of effective contact rate, any factor having the potential to
influence the contact rate, including individual behavioral changes, other human social behavior, and organization, including
population density (e.g., rural vs. urban), social organization (e.g., integrated vs. segregated), as well as the innate biological
characteristics of particular pathogens, and seasonality (e.g., wet vs. rainy season for vector-borne infections), will ultimately
affect Ro (Delamater, Street, Leslie, Yang, & Jacobsen, 2019).

In this study, we described the epidermic dynamics and estimated the R0 for COVID-19 in an entirely susceptible Ghanaian
population using a mathematical model. We provided estimates of the initial basic Reproductive number (at the beginning of
the outbreak) and the time-dependent Reproductive number at any time during the outbreak using four different estimation
procedures: next-generationmatrix (Odo Diekmann, Heesterbeek,& Roberts, 2010), exponential growthmethod (Wallinga&
Lipsitch, 2007), maximum likelihood (White et al., 2009), and time-dependent Reproductive number method (Wallinga and
Teunis (2004)). We also assessed the effects of individual and government level integrated interventions on cumulative
incidence and new cases per day in Ghana.
2. Methods

2.1. Model data

The outbreak data for Ghana were cumulative numbers of confirmed cases and deaths obtained from the Ghana Health
Service (GHS). The data from the GHS is a daily time series data of reported COVID-19 cases. These dataset do not include
hp.
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individual patient-level information, but aggregate number of total suspected and confirmed cases tested at the two main
laboratory facilities at the University of Ghana (UG), and the Kwame Nkrumah University of Science and Technology (KNUST).
At UG, the test is conducted at the Noguchi Memorial Institute of Medical Research, and at KNUST, the test is conducted at
Kumasi Center for Collaborative Research in Tropical Medicine. COVID-19 testing was performed using real-time polymerase
chain reaction (RT-PCR) with the DaAn RT-PCR SARS-CoV-2 detection kit (DaAn Gene Co. Ltd, Guangdong, China). The kit uses
a one-step RT-PCR technique that selectively amplifies the ORF1ab and N genes of the SARS-CoV-2 and includes an endog-
enous internal control for quality control purposes thus, ensuing false negatives are reduced.
2.2. Model formulation

Although researchers do not fully understand the transmission dynamics of COVID-19, we formulated the SEIQHRS model
(Fig. 1) based on the available information and the basic understanding of the biological mechanism through which infection
spreads in the population. We partitioned the Ghanaian population into five distinct classes (S ¼ susceptible, E ¼ Exposed,
I¼Infectious, Q ¼ Self-isolation/Quarantined, H¼Hospitalized, R ¼ Recovery). We defined susceptible populations as all
uninfected individuals at time t but there is the likelihood there may be infected at time tþt where t is the incremental
continuous-time point. We included newborn babies from all compartments into the susceptible class since there is not
enough evidence on vertical transmission of the virus from the pregnant woman to the unborn baby. After successful
transmission of COVID, the susceptible individuals S enter the exposed class Ewhere they are infected but not yet infectious to
others. They stay in the exposed class before they become infectious and move to the infectious class I or identified through
contact tracing and quarantined at class Q . The hospitalized class H is the proportion of the population who have been
infected but have been identified through contact tracing or self-report to health facilities and hospitalized. We specified
three modes of recovery based on the current understanding of the transmission dynamics. First, a fraction of the population
who are exposedmay recover from the infectionwithout necessarily infecting others and therefore do not transit through the
infectious category but enter directly into the recovery class R because of boosted immunity. Second, those who become
infectious may also recover and move to the recovery class (R) or die from COVID-19. Finally, those in the quarantine-based
hospitals and those in self-isolation may also recover and join the recovery class. Individuals who live in Ghana and those
arriving from other countries (Ghanaian citizens and non-citizens) who have not yet contracted COVID-19 were classified as
susceptible. Thus, the total population size, N, is N ¼ Sþ E þ I þ Q þ H þ R .

The experience we gather from the contact tracing being carried out by the Government of Ghana and commentary from
some infectious disease experts globally showed that some individuals have come into contact with SARS- CoV-2 positive
patients but were tested negative for SARS-CoV-2. We therefore assume that although people might have the infection, they
may not instantaneously be infectious to others. As such we have specified and distinguished the exposed or the latent in-
dividuals from those who are infectious to others based on the traditional definition of an exposed person in infectious
disease modeling. We agreed that there may be some exposed individuals capable of transmitting the infection but their
overall impact of the dynamics of infection is assumed to be negligible in this study. Furthermore, studies have shown that
individuals who recover from viral diseases usually would have either long-life immunity, short term immunity, or in some
cases there may be no immunity at all (Keeling & Rohani, 2011). Since enough is not known about COVID-19, this study
assumed that individuals who recover from COVID-19 may have short term immunity but once the immunity wanes; these
individuals will become susceptible to the same or a different viral strain of COVID-19 (Lan et al., 2020). For the purpose of
assessing government intervention, we define the quarantine-based hospitalized class to consists of all exposed and infec-
tious individuals who were identified through contact tracing, isolation, and hospitalization. We further assumed that in-
dividuals leave the hospitalize class only after they have fully recovered from COVID-19 or when they suffer from COVID-19
disease-induced death or die naturally.
Fig. 1. Schematic representation of the flow of the SEIQHRS model. The dashed arrow indicates the need for interaction with the infectious, quarantine, or
hospitalized compartments for disease transition to individuals in the susceptible class. M ðtÞ ¼ ðpbI I þ εQbQQ þ εHbHHÞ.
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2.3. Parameterization of the SEIQHRS model

To provide a detailed understanding of the transmission of COVID-19 and the control strategies required to mitigate its
spread and relative impact on the Ghanaian population and examine the epidemiology of the infection, we detailed the
parameterization of the SEIQHRS model from which useful public health guidance can be generated (Table 1). Our SEIQHRS
model has eleven parameters: the birth rate (w), natural death rate (xÞ, rate of transmission from being exposed to becoming
infectious within the infectious community (bI). The rate of transmission from the quarantine class is bQ and that of
Table 1
Epidemiological parameter estimates for the SEIQHRS compartmental model that fit the cumulative number of cases in Ghana.

Parameters Biological meaning Estimate Scenario
1

Scenario
2

Scenario
3

Scenario
4

Scenario
5

Reference

N The size of the total population in Ghana 30985230 √ √ √ √ √ a

x The rate at which the individual in the
susceptible, exposed, infectious, and
recover classes suffer natural death. In this
study, x also represents the population
crude birth rate.

Deaths
Person
Day

¼
7:218
1000
365

¼
1:978�
10�5 day�1

√ √ √ √ √ b

w Birth rate 1:978�
10�5 day�1

y y y y y Assume to be same as
the death rate

r The intensity of individual-level
intervention

0 � r � 1 � � � � 0.00001 Random selection for
the purpose of assessing
individual-level
integrated intervention

bI ; Community transmission rate: The rate at
which susceptible individuals become
infected through contact with an infectious
individual in the general population (bIÞ

0.168 day�1 √ √ √ √ √ Estimated

bH Hospital Transmission Rate: The rate at
which susceptible individuals become
infected through contact with a
hospitalized person

1
5
� 0:168 ¼ :0336

day�1
� √ √ √ √ Assumed

εH Measures put in place to reduce the
average contact rate at health facilities
example use of PPEs

0 � εH <1 1 1 0.95 √ √ Corresponding to 5%
reduction

bQ Quarantine/Self Isolation Transmission
Rate: The rate at which susceptible
individuals become infected through
contact with self-isolated or quarantine
person

1
5
� 0:168 ¼ :0336

day�1
� √ √ √ √ Assumed

εQ Measures put in place to reduce the
average contact rate at quarantine centers
eg example use of PPEs

0 � εQ � 1 1 1 0.95 √ √ Corresponding to 5%
reduction

u The rate at which an exposed person
becomes infectious. 1=u

represents the
average duration of the exposed or latent
period (that is the average amount of time
spent in the E class).

1
4:6

day�1 √ √ √ √ √

g The rate of recovery of an infectious person
who lives in the community. 1=g

is the
average infectious period or time from
Infection to recovery without
hospitalization

1
14

day�1 √ √ √ √ √ Chen, Xiong, Bao, and
Shi (2020)

a COVID-19 induced death rate
1
50

day�1 √ √ √ √ √ Narrative from the
Ghana Health Service

k Rate of COVID-19 waning immunity. The
rate at which those who recover from the
disease become susceptible again over
time

1
60

day�1 y y y y y Approximated value in
Ghana

t The rate at which those who are
hospitalized recovers. That is, the time of
hospitalization to recovery

1
t

1
120

day�1 � � � √ √ Extreme case scenario

n The rate at which quarantine or self-
isolated person recovers

1
120

day�1 � � � √ √ Assumed extreme case
scenario

d The rate at which an infectious person is
quarantined

1
120

day�1 � √ √ √ √ Assumed extreme case
scenario
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Table 1 (continued )

Parameters Biological meaning Estimate Scenario
1

Scenario
2

Scenario
3

Scenario
4

Scenario
5

Reference

s The rate at which quarantine or self-
isolated person is hospitalized

1
10

day�1 � √ √ √ √ Assumed extreme case
scenario

j The rate at which infectious individuals are
identified through contact tracing and
hospitalized

1
120

day�1 � √ √ √ √ Assumed extreme case
scenario

4 The rate at which an exposed person is
quarantined

1
120

day�1 � √ √ √ √

h The rate at which an exposed person
recovers without necessarily becoming
infectious or being quarantined-that is the
rate of self-recovery from COVID-19
without recover without medical
intervention-Self immunity boosting

1
14

day�1 √ √ √ √ √ General knowledge on
COVID-19

√: Parameter used in the projection; � ∶ Parameter set to zero; y: Not used.
a https://worldpopulationreview.com/countries/ghana-population/: Based on projections of the latest United Nations data as at May 13, 2020.
b https://www.macrotrends.net/countries/GHA/ghana/death-rate.
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transmission from the hospitalized class is denoted by bH. rðtÞ ¼ e�ðr�ε�tÞ is the time-dependent integrated individual-level
intervention and the intensity of media coverage which is parameterized by two non-negative rates r and ε ¼ ðEþIþQþHþDÞ

ðSþ EþIþQþHþDÞ.
ε is the proportion of COVID-19 positive cases and deaths in the population. r is the rate of intensity of adherence to pre-
vention guidelines by the individual and media coverage, We assume that the transmission rate also decreases with time as
suggested by Chowell, Hengartner, Castillo-Chavez, Fenimore, and Hyman (2004), and this assumption also seems plausible
because of the integrated interventions put out by the Government of Ghana. This assumption is similar to what was reported
during the SARS epidemic of 2002e2003 where many people began to wear face masks to try to prevent disease spread
through contact with airborne particles (Riley et al., 2003).

The parameter, r 2 ½0; 1� basically models the impact of behavioral change on reducing the effective reproduction
number, cumulative number of cases and deaths similar to previous studies that model the impact of behavioral change as a
result of intensivemedia education and increased rate social distancing based on the change in the daily cumulated number of
cases and deaths (Shen, Xiao, & Rong, 2015; Tuncer, Mohanakumar, Swanson, & Martcheva, 2018). r ¼ 0 indicates perfect
adherence to COVID-19 prevention protocols (positive behavioral change) and g represents the rate of recovery among the
infectious class, a is COVID-19 induced death rate, and k is the rate of COVID-19 waning immunity (rate of moving from
recovered class to the susceptible class). The rate at which an exposed individual recovers without necessarily becoming
infectious to others is denoted by h. The rate at which infectious and exposed individuals are removed from the exposed and
infectious classes respectively and quarantine is d and 4 respectively. The community infectious and quarantine classes are
hospitalized at a rate of j and s respectively. The quarantined and hospitalized individuals recover at a rate of n and t

respectively.
Furthermore, in determining the effective contact rate and the duration of infectiousness, this study assumed homogenous

population mixing and contact patterns where all population members are equally likely to come into contact with one
another because of the typical Ghanaian culture, social attributes, and settings. Admittedly, heterogeneous mixing, where
there is possible variation in contact patterns among age subgroups, social class, religious affiliations, or geographic regions
would have been appropriate but data available to estimate the parameter of interest for these different subgroups of the
population would have been near impossible. Furthermore, we assumed that the rate at which susceptible individuals are
quarantined is the same as the rate at which susceptible individuals will return to the susceptible class after laboratory results
have proved negative. We assumed unstructured populations, that is, we did not account for age or sex structure and
therefore assumed a fixed value for the transmission rate using available data from the cumulative number of cases. However,
our model can be adopted to include difference sociodemographic/economic classes, which would require splitting each
variable of the model into specific classes if data are available.

The following system of differential equations (1.1)-(1.6) describes the transmission dynamics of COVID-19 in Ghana. This
system of ODEs was solved numerically via the standard RungeeKutta method using the function ode from the package
deSolve (Soetaert, Petzoldt, & Setzer, 2010). r in equation (1.1)e(1.2) with the was substituted with the exponential term

e
�
�
r�t�

�
EþIþQþHþD

SþEþIþQþHþD

�
before solving the systems of differential equation.

dS
dt

¼wNþ kR� xS�
�
pbI I þ εQbQQ þ εHbHH

�
N

S (1.1)

dE
dt

¼
�
pbI I þ εQbQQ þ εHbHH

�
N

S� ðuþ hþ xþ4ÞE (1.2a)
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dI
dt

¼uE � ðdþgþ xþaþjÞI (1.3a)

dQ
dt

¼4Eþ dI � ðxþ nþ sÞQ (1.4a)

dH
dt

¼ sQ þ jI � ðtþ xþaÞH (1.5a)

dR
dt

¼ hE þ gI þ tH þ nQ � ðkþ xÞR (1.6)

With N ¼ Sþ Eþ Iþ Q þ Hþ R, this dynamic system has four infected states; E, I, Q and H and two uninfected states S and R.
For assessing the impact of the intervention, we kept track of the number of cumulative deaths and cases at time t. Thus dC

dt ¼
ðuþhþxþ4ÞE is the total number of cumulative cases at time t and let dD

dt ¼ aðIþHÞ represent the cumulative number of
COVID-19 induced deaths at time t. The effect of importation of COVID-19 infections was explored numerically through
simulations. The study only considered constant-valued parameters with the exception of the proportion of the population
adhering to the integrated government interventions.

2.4. Estimation of model parameters

Limited data and lack of clear understanding of the etiology of the disease spread place severe restrictions on the attempt
to model the dynamics of COVID-19. Nonetheless, this study relied on previous studies and the ongoing discussions from
experts at the Ghana Health Service and around the world to initialize the model parameters. The transmission rate bI in the
community was estimated from the observed number of cases using the non-linear least square estimation via Levenberg-
Marquardt algorithm that minimizes the sum of squared error between the observed cumulative number of cases and
predicted cumulative cases. Other parameters were carefully chosen to fit our definition of worst-case scenario. The systems
of differential equations were analysed using the “desolve” package in R (Soetaert et al., 2010) and the estimation of Re using
the method of maximum likelihood, time-dependent procedure and the exponential growth methods were done using the
“R0” package in R (Obadia, Haneef, Bo€elle, &making, 2012). The R0 estimate using the exponential growth and the maximum
likelihood methods is dependent on the choice of generation time and therefore sensitivity analysis was conducted to
determine the how R0 changes with generation time for exponential growth and the maximum likelihood methods.

2.5. Estimation of the basic reproductive number

2.5.1. The next generation matrix
We derived the effective basic Reproductive from our dynamic system in model 1.1e1.6. We used the next-generation

matrix K proposed by Diekmann, Heesterbeek, and Metz (1990); (Diekmann et al., 2010) to estimate the basic reproduc-
tive number which is the dominant eigenvalue of K. To compute R0, we created a sub-model that only considers the ‘disease’
compartments, a subset of the equations in the SEIQHRS model. The disease compartments are those that include individuals
that are in any stage of infection which, for the SEIQHRS model, includes both the exposed, infectious, and quarantine in-
dividuals. We only used the latent class as our transmission state of our dynamic models as that was the only state that
described the production of new COVID-19 infections and used both the latent, infectious, quarantine and hospitalized classes
to represent the transition states; that is changes in the state among infected individuals. The linearized infection subsystem
with four infected states is as follows:

E1 ¼
�
pbI I þ εQbQQ þ εHbHH

�
N

S� ðuþ hþ xþ4ÞE (1.2b)

I1 ¼uE � ðdþgþ xþaþjÞI (1.3b)
Q1 ¼4Eþ dI � ðxþ nþ sÞQ (1.4b)
H1 ¼sQ þ jI � ðtþ xþaÞH (1.5b)
The NGM is composed of two key components: The transmission F and the transition V�1.

F ¼
"
vFiðx0Þ
vxj

#
are the new infections while the V ¼

"
vViðx0Þ
vxj

#
transfer of infections from one compartment to another. x0 is the

disease-free equilibrium state.
386



D. Dwomoh, S. Iddi, B. Adu et al. Infectious Disease Modelling 6 (2021) 381e397
From these two equations, the Jacobian matrix at the DFE gives the characteristic equation.

F1 ¼
�
pbI I þ εQbQQ þ εHbHH

�
N

S

F2 ¼ F3 ¼ F4 ¼ 0 because no new infections enter the I, Q ; and H compartments but, rather they transition from the E
compartment into the I;Q ; and H compartments.

F ¼

2
64
F1
F2
F3
F4

3
75¼

2
6666664

�
pbI I þ εQbQQ þ εHbHH

�
S

N
0
0

0

3
7777775
; V ¼

2
64
V1
V2
V3
V4

3
75¼

2
64
�ðuþ hþ xþ 4ÞE
uE � ðdþ gþ xþ aþ jÞI
4E þ dI � ðxþ nþ sÞQ
sQ þ jI � ðtþ xþ aÞH

3
75

2
vF vF vF1 vF1

3

F ¼

666666666666664

1

vE

vF2
vE

1

vI

vF2
vI

vQ vH

vF2
vQ

vF2
vH

vF3
vE

vF3
vI

vF3
vQ

vF3
vH

vF4
vE

vF4
vI

vF4
vQ

vF4
vH

777777777777775

0FðxÞ ¼

0
BBBBBBBB@

0

0

pbIS
N

0

εQbQS
N

εHbHS
N

0 0

0 0 0 0

0 0 0 0

1
CCCCCCCCA
At DFE, S ¼ N and we have

FðxÞ¼

0
BB@

0
0

pbI
0

εQbQ εHbH
0 0

0 0 0 0
0 0 0 0

1
CCA

2
vV vV vV1 vV1

3

VðxÞ¼

666666666666664

1

vE

vV2

vE

1

vI

vV2

vI

vQ vH

vV2

vQ
vV2
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The dominant eigenvalue of the Next GenerationMatrix K ¼ �FV�1 is equal to R0 which we obtained by solving R0 ¼ rðΚÞ:
r is the spectral radius (i.e the eigenvalue with the largest magnitude) of Κ. We solved jK �lIj ¼ 0 to derive the basic
reproductive number. The effective reproductive number Re is given by

Re ¼ upbI
ðuþ hþ xþ 4Þðdþ gþ xþ aþ jÞþ

ða4þ duþ d4þ g4þ 4jþ 4xÞεQbQ
ðxþ nþ sÞðdþ gþ xþ aþ jÞðuþ hþ xþ 4Þ

þ ða4sþ unjþ dusþ d4sþ g4sþ ujsþ 4jsþ xuj þ x4sÞεHbH
ðtþ xþ aÞðxþ nþ sÞðuþ hþ xþ 4Þðdþ gþ xþ aþ jÞ
Simplified to:

Re ¼ upbI
ðuþ hþ xþ 4Þðdþ gþ xþ aþ jÞþ εQbQ

h 4

ðxþ nþ sÞðuþ hþ xþ 4Þþ
du

ðxþ nþ sÞðdþ gþ xþ aþ jÞðuþ hþ xþ 4Þ
i

þ εHbH

h 4s

ðtþ xþ aÞðxþ nþ sÞðuþ hþ xþ 4Þ þ
uj

ðtþ xþ aÞðuþ hþ xþ 4Þðdþ gþ xþ aþ jÞþ
dus

ðtþ xþ aÞðxþ nþ sÞðuþ hþ xþ 4Þðdþ gþ xþ aþ jÞ
i

Re ¼ ReI þ ReQ þ ReH is the contribution of infectious individuals in the general population, quarantine class, and hospital
infectives to the overall Re.

Re is defined as the number of secondary infections caused by a single infectious individual introduced into a completely
susceptible population in the presence of control measures (individual and government interventions) in place. Assuming
there is no intervention (quarantine, isolation, hospitalization, and treatment), then 4 ¼ j ¼ t ¼ s ¼ n ¼ d ¼ 0, and p ¼ 1;
the basic reproductive number R0 estimated before the implementation of all interventions is given by

R0 ¼
ubI

ðuþ hþ xÞðgþ xþ aÞ……:ð1:8Þ
2.5.2. The maximum likelihood estimates
We also estimated the effective basic reproductive number Re; and the generation time using the maximum likelihood-

based method proposed by Forsberg White and Pagano (2008). The generation time is the time lag between infection in a
primary case and a secondary case. The estimates were based on readily available daily reported case data. The estimation of
R0; and the generation time for COVID-19 based on the maximum likelihood is important since the estimate can be obtained
in real-time to quantify the impact of government intervention and inform an appropriate public health response to the
COVID-19. The generation time was assumed to follow a gamma distribution with mean 6.5 days (N. M. Ferguson, Laydon,
Nedjati Gilani, et al., 2020) and a standard deviation of 2 days. The number of new cases recorded per day was assumed to
follow the Poisson distribution. The maximum likelihood for R0; in terms of the generation, time is given byL ðR0;pÞ ¼YT
t¼1

e�mtmt
Nt

Nt!
; where mt ¼ R0

Pminðk;tÞ

j¼1
Nt�jpj, Nt represent the incident data, pj is the generation time with j ¼ 1;…;k, T is the

most recent time point of observation in the early epidemic growth stage of the disease (ForsbergWhite& Pagano, 2008). We
imputed unobserved cases at the beginning of the epidemic to correct for missing data.

2.5.3. Exponential growth estimate
This study employed the exponential growth method proposed by Wallinga and Lipsitch (2007) to estimate the initial

basic Reproductive number within the first 30 days of the epidemic in Ghana. The exponential growth rate, denoted by r, is
defined by the per capita change in the number of new cases per unit of time. Since incidence data are typical count data and
follows the Poisson distribution, Poisson regression model was used to estimate r:Wallinga and Lipsitch (2007) showed that
the basic reproductive number R0 ¼ 1

M ð�rÞ where M is the moment generating function of the (discretized) generation time
distribution. To determine a period in the epidemic curve over which growth is exponential, we employed a deviance based
R-squared statistic proposed by Obadia, Haneef, and Bo€elle (2012).

2.5.4. Time-dependent estimate
The study also estimated time-varying basic reproductive numbers for COVID-19 using the technique proposed by

Wallinga and Teunis (2004). The time-dependent Ro computes the basic Reproductive numbers by averaging over all
transmission networks compatible with observations. The effective reproductive number for case j is given by Rj ¼

P
ipij

where pij ¼ Niwðti�tkÞP
isj

Niwðti�tkÞ is the probability that case iwith onset at time ti was infected by case jwith onset at time tj. These are

averaged as Rt ¼ 1
Nt

P
ftj¼tg

Rj.

2.6. Forecasting early epidemic dynamics in Ghana

We employed a two-parameter generalized-growth model (GGM) (Viboud, Simonsen, & Chowell, 2016) to characterize
COVID-19 epidemic growth in Ghana. The change in the number of new cases per unit time is given by dCðtÞ

dt ¼ rCðtÞp where r is
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the intrinsic growth rate and p2½0;1� is the deceleration growth parameter. The solution to the differential equation dCðtÞ
dt

isCðtÞ, that is, the cumulative number of cases per unit time (days). We estimated both r and pusing the non-linear least
square estimation procedure in Stata 16 (StataCorp, College Station, TX, USA). This was achieved by fitting the model to
cumulative time series data between March 12, 2020 to April 7, 2020. The estimated parameters of the model were then used
to forecast the early growth of the epidemic in Ghana.

2.7. Interventions

This study developed and utilized a mathematical model that incorporates intervention strategies for COVID-19. Although
there is no vaccine yet for COVID-19, the Government of Ghana and other countries have initiated several interventions to
reduce new infections. Our study simulated two modes of interventions. The first is the individual level integrated inter-
ventionwhich includes social distancing, use of face mask, use of hand sanitizers, self-confinement, and use of running water
with soap to wash hands. The integrated government interventions include the provision of personal protective equipment,
contact tracing, self-isolation based on contact tracing of an index positive case, quarantining, and the intensity of media
coverage in selected areas. Key among these interventions in Ghanawas partial lockdownplacedwithin the Greater Accra and
the Greater Kumasi in the Ashanti Region, but we do not study its impact since it was lifted in less than three weeks and also
we do not foresee the government re-introducing the lockdown to other parts of the country as it is perceived to be highly
unsustainable in the country .2 The individual and government integrated interventions work instantaneously although the
process is complex, capital and labor-intensive, and requires a great deal of commitment. Almost all the interventions focus
on the susceptible population and the population of infectives as the interaction between the two subclasses would likely lead
to onward transmission of the virus to the larger population. Studies have shown that isolation is effective against any in-
fectious disease evenwhen the etiology of the disease is largely unknown (Keeling & Rohani, 2011). We model five scenarios
of the intervention to examine their likely impact on the dynamics of the epidemic. Specifically, by studying the different
scenarios we examine the likely impact of government and individual-level interventions on the worse-case scenario of
COVID-19 in Ghana.

Scenario 1: First, we modeled the worse-case scenario where we assume that there is no government or individual level
interventions and that the individual can only recover from COVID-19 through pure natural process (immune system
boosting). We defined this scenario as the normal-life situation.

Scenario 2: Second, wemodeled the impact of enhanced contact tracing onworst-case scenario 1 and further assume that
isolation and treatment centers can transmit the infection to the general public and medical staff at a rate that is one-five of
the community transmission rate.

Scenario 3: Third, we assessed the impact of enhanced contact tracing on worst-case scenario 1 and further assume that
the rate at which isolation and treatment centers will transmit the infection to the general public and medical staff will be
reduced by at most 10% (5% reduction from the isolation centers and 5% reduction from hospitals). This is achieved by
providing personal protective equipment to frontline line health workers and enforcing strict adherence to isolation protocols
to prevent transmission of infection at the centers.

Scenario 4: We modeled scenario 3 in addition to effective case management. That is, we introduced a gradual increase in
the rate of recovery among the quarantine and hospitalized classes.

Scenario 5: We modeled scenario 4 in addition to improved individual level interventions-social distancing, use of hand
sanitizers, use of face mask, washing hands with running water with soap, and avoidance of social gathering and intensive
media coverage.

3. Results

3.1. Distribution of COVID-19 cases

As of May 13th, 2020, Ghana had a total of 5530 confirmed cases of COVID-19 with 674 recoveries and a total of 24 COVID-
19 related deaths resulting in a case fatality rate of 0.43%. The Greater Accra region is currently the epicenter with 4204
confirmed cases. The highest daily number of new cases recorded is 367 (Fig. 2). The Regional distribution of cases can be
found at the official Ghana Health Service website (https://ghanahealthservice.org/covid19/).

3.2. Forecast of early epidemic in Ghana

The generalized growth model (GGM) (Chowell, Sattenspiel, Bansal, & Viboud, 2016) which is characterized by the initial
growth rate r;the deceleration parameter p were jointly estimated using nonlinear least square estimation procedure (R2 ¼
99:3; RMSE ¼ 70:52). The results of the GGM showed that the epidemic profile follows sub-exponential growth in the
cumulative number of cases with an average growth rate of 1.66 [95% CI: 1.32e1.99] and deceleration growth parameter of
0.56 [95%: 0.52e0.59] within the first 60 days of epidemic assuming that Ghana recorded 2 index cases at the start of the
2 https://www.bloombergquint.com/onweb/ghana-virus-lockdown-became-untenable-for-economy-minister-says.
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Fig. 2. The distribution of COVID-19 cases in Ghana.
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epidemic. The expected number of cases is projected to rise within the first 90 days of the epidemic with total case count of
13907 (9733e18079). The distribution of cases and the projection of a 90-day epidemic profile can be found in Fig. 3.

3.3. Estimation of the effective reproductive number

The Re estimates from all the threemethods (exponential growth, time dependent andmaximum likelihood) exceeded the
threshold figure of 1 indicating the possibility of a higher transmission potential of the infection in the communities if the
Government does not significantly improve the currently integrated intervention. The time dependent Ro rapidly declined
from 10.3 (95% CI: 8.3, 12.4) in the first disease generation to 2.2 (95% CI: 1.9, 2.8) in the second disease generation, assuming a
gamma-distributed generation interval with themean of 6.5 days and standard deviation of 2 days. The current estimate of Re
based on the time dependent method is 1.74 [95% CI: 1.41e2.10; (13th May 2020)]. The estimated Re from the four different
methods can be found in Table 2 below.

3.4. Sensitivity analysis of Reestimates

This study varied the generation time between 4 and 14 days with a standard deviation of 1 day. The graph of the basic
Reproductive number versus mean generation time in days showed that the Ro estimates increases with increasing mean
generation time for bothML and EG as expected (Nishiura, Castillo-Chavez, Safan,& Chowell, 2009) (Fig. 4). To obtain a correct
estimate of the average generation time and to make data-driven policy decisions, there is the urgent need for more data on
generation time (Peak et al., 2020).
Table 2
Estimation of the initial Reproductive number by three different methods.

Method Point estimate; R0 [95% CI

Maximum Likelihood 2.02 [1.84e2.20]
Maximum Likelihood with missing value bias corrected 1.97 [1.80e2.15]
Exponential Growth 2.11 [2.00e2.24]
Time dependent 2.52 [1.87e3.49]

Note: For the TDmethod, daily estimates were averaged over the first 38 days and confidence interval was obtained
using 1000 bootstrap simulations. The Bias corrected Maximum Likelihood (ML) method corrects the bias in the
Reproductive number estimate occurring inmethodMLwhen the epidemic curve is not observed from the first case
on (Obadia et al., 2012). The confidence limit of the next generationmatrix was obtained using Markov ChainMonte
Carlo.
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Fig. 3. Early forecast of epidemic growth using the generalized growth model with a growth rate of 1.66 and deceleration of growth parameter 0.56 and the
initialize at yð0Þ ¼ 2. Left part of the vertical line represents observed data set used in fitting the model. Right part of the vertical line is the projections based on
the model.

Fig. 4. Sensitivity analysis according to choice of generation time for Maximum Likelihood (ML) and Exponential Growth Methods (EG).

D. Dwomoh, S. Iddi, B. Adu et al. Infectious Disease Modelling 6 (2021) 381e397
3.5. Effects of integrated government interventions on cumulative incidence, deaths and effective reproductive number

3.5.1. Simulation results-SEIQHRS model
Five different scenarios were studied to understand the trajectory of the epidemic. We forecast a range of possible future

scenarios by assessing the impact of various individual and integrated government interventions. This section presents the
results of the different intervention scenarios and the expected impact on COVID-19 deaths and total cumulative cases.

Scenario 1: It represents the worse case scenario. We defined the worst-case scenario as the social-cultural and political
life of the individual and the country at large before the first two index cases of COVID-19 were reported in Ghana. That is
before the March 12, 2020, there were no government and individual-level interventions to address COVID-19. Had the
situation remained the same, we explorewhat would have been the total number of expected cases and deaths assuming that
the epidemic lasted a year-long (March 12, 2021). Theworse case scenario assumes that because of the immune system, some
individuals could have recovered from COVID-19 without being quarantined or hospitalized for special care. The expected
total cumulative number of cases, deaths and R0 assuming a worst-case scenario was 81009 [64002-98017], 10484
[8284e12685], 1.4 respectively (Table 3; Fig. 5).

Scenario 2: We assessed the impact of contact tracing assuming that individuals who are quarantine or hospitalize can also
transmit the infection to the general community. Enhanced contact tracing alone could reduce the expected number of cases
to 35959 [28236-43628] and the total expected death toll could reduce to 4776 [3751e5801] independent of the fact that
these centers could transmit infection. The effective reproduction number did not change from theworse-case scenario (Table
3, Fig. 6).

Scenario 3: This scenario includes all the intervention in scenario 2 but also considers the possibility of the Government
providing personal protective equipment to frontline workers and ensuring that people who are self-isolated or quarantine
adhere strictly to prevention guidelines to reduce transmission from these centers. Under these conditions, expected
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Table 3
Effects of integrated government interventions on cumulative incidence, deaths and basic reproductive number.

Scenario No. cumulative
cases

No. deaths R0;Re

1: Worse-case scenario. No government or individual level interventions but assuming individual can recover
when exposed with their normal immune system: normal-life situation

81009 [64002-
98017]

10484 [8284
e12685]

R0 ¼
1.4

2: Impact of enhanced contact tracing on worst-case scenario 1 and further assume that isolation and treatment
centers could transmit the infection to the general public andmedical staff but at a rate that is one-fifth of the
community transmission rate.

35959 [28236-
43682]

4776 [3751
e5801]

Re ¼
1:4

3. Impact of enhanced contact tracing on worst-case scenario 1 and further assume that the rate at which
isolation and treatment centers will transmit the infection to the general public and medical staff will be
reduced by 10% (5% reduction from the isolation centers and 5% reduction from hospitals). This is achieved by
providing PPEs to frontline line health workers and enforcing strict adherence to isolation protocols to
prevent transmission of infection at the centers.

14834 [11489-
18179]

2513 [1946
e3080]

Re ¼
1:4

4. Scenario 3 plus effective case management. That is we introduced a gradual increase in the rate of recovery
among the quarantine and hospitalized classes.

9941 [7650
e12232]

1605 [1234
e1976]

Re ¼
1:3

5. Scenario 4 plus improved individual level interventions-Social distancing, use of hand sanitizers, use of face
mask, washing hands with running water with soap, and avoidance of social gathering and intensive media
coverage

282 [178e386] 64 [40e88] Re ¼
0:5

The results in Table 3 were obtained from using parameter estimates from Table 1.
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cumulative cases and deaths would reduce to 14834 [11489-18179] and 2513 [1946e3080], respectively. The effective
reproduction number did not change from the worse-case scenario (Table 3, Fig. 7).

Scenario 4: This includes all the proposed interventions in scenario 3 but with improved case management at the quar-
antine and treatment centers. We measured case management by increasing the rate of recovery at the quarantine and
treatment centers. This reduces the cumulative number of cases to 9941 [7650e12232] and 1605 [1234e1976], respectively.
The effective reproductive number dropped marginally from 1.4 to 1.3 (Table 3, Fig. 8).
Fig. 5. Worst-case scenario: no government or individual interventions-red colour represents observed cases.
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Fig. 6. Impact of enhanced contact tracing by the Government.

D. Dwomoh, S. Iddi, B. Adu et al. Infectious Disease Modelling 6 (2021) 381e397
Scenario 5: In addition to scenario 4, we assessed the impact of integrated individual-level intervention such as social
distancing, use of face mask, using soap with running water to wash hands, the intensity of media education measured by a
media person’s willingness to constantly broadcast new cases and educate the general public on COVID-19. If all these
prevention guidelines are adhered to, the expected total cumulative cases and deaths may reduce to 282 [178e386] and 64
[40e88], respectively. The effective reproductive number dropped to 0.5 (Table 3, Fig. 9).
4. Discussions

The main focus of the study is to understand the dynamics of COVID-19 infection in Ghana using mathematical models
that incorporate waning immunity to COVID-19, natural birth and death rates, integrated individual and government in-
terventions and the fact that an exposed person may recover without necessarily been infectious to other due to boosted
immunity. The proposed model allow for possible transmission of infection from quarantine, isolation and treatment centers
similar to what was reported by Giordano et al. (2020). Our model further assume that individuals who recovered from
COVID-19 may become susceptible again which is in sharp contrast to (Giordano et al., 2020). We provide short and long
epidemic trajectory of COVID-19 infections in Ghana and simultaneously quantify the impact of integrated government and
individual-level interventions in the presence of individual level-boosted immunity. We provide an estimate of the effective
basic reproductive number using four different methods to comprehensively assess the variations in the estimates associated
with the different methods. The addition of birth and deaths making it more applicable to project future scenarios assuming
that COVID-19 extends beyond one-year. Incorporating self-boosted immunity represents a more natural setting of the dy-
namics of COVID-19 infection on what we know so far.
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Fig. 7. Impact of Government intervention: provision of personal protective equipments and adherence to strict prevention guidelines at quarantine and
treatment centers.
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Previous studies have used mathematical models to study the dynamics of COVID-19 (Giordano et al., 2020; Lin et al.,
2020; Munayco et al., 2020; Roosa et al., 2020) and the impact of individual and government interventions in the short
term. Contact tracing and isolation of cases is among the common government interventions for controlling COVID-19 disease
outbreaks and most studies have shown that they are effective (Giordano et al., 2020). However, most of these studies ignore
the fact that quarantine, isolation and treatment centers could possibly transmit the infection to the general public and
medical staff. The possibility of having high number of incident case infections because of increased transmission rate from
the quarantine and treatment centers should not be ignored. These parameters makes our model different from other models
reported in the medical literature to understand the dynamics of COVID-19 infections (Davies, Kucharski, Eggo, Gimma, &
Edmunds, 2020; Prem et al., 2020).

The basic reproductive number from the three different approaches ranges from 1.4 to 3.5 which is similar to what have
been reported in Li et al. (2020); Riou & Althaus (2020). The time-dependent basic Reproductive number showed that the
intensity of the infection has declined since the very early phase of the epidemic in Ghana as expected and this could be
explained by the early intervention put in place by the Government and increase in the level of individual awareness onways
of preventing infection through extensive media coverage. That notwithstanding, the overall time-dependent mean Re es-
timate remains greater than 1, suggesting the need to intensify integrated Government and individual-level interventions
towards bringing it below 1. The time-dependent basic reproductive number is sensitive to the choice of generation time of
the infection and therefore, our estimate is subject to change on condition that the generation time for infected individuals is
different fromwhat was reported in ( Ferguson, Laydon, Nedjati Gilani, et al., 2020). Therefore, caution must be applied when
one wants to duly rely on estimates of Refrom the early phase of the epidemic.

The Re estimates derived from the Next GenerationMatrix in the presence of intervention showed that collaborated efforts
from the individual, media and integrated Government interventions were the only way to reduce the effective Reproductive
number to a figure below 1 to eradicate COVID-19 in Ghana. Although the number of cumulative cases and deaths reduced
with respect to each intervention introduced, none of the isolated interventions could significantly reduce the Re to a figure
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Fig. 8. Impact of improved case management.
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below 1. This could partly be explained by the fact that we chose an extreme rate of contact tracing and quarantining to depict
a worse-case scenario. That notwithstanding, the model emphasized the need for a well-coordinated multiple interventions
to reduce the intensity of the spread of COVID-19 in Ghana. The projections showed that different interventions could play a
key role in reducing the expected number of cumulative cases and deaths in the next 365 days. Effective and enhanced
contact tracing, provision of PPEs, improved case management, social distancing, use of face mask, intensive media coverage,
personal hygiene, and immunity-boosting could all play a critical role in reducing the spread of infection in Ghana. The
effectiveness of these integrated interventions as found in this study have been reported elsewhere (Prem et al., 2020). We
have shown in this study that separate interventions could reduce the burden of COVID-19 but it was evident that we need
both the government and the individual level interventions to reduce the impact of COVID-19 to the barest minimum.

Although the model improved our basic understanding of the infectiousness and the intensity of the COVID-19 spread in
Ghana in terms of the projections and the effectiveness of individual and government interventions, our results should be
interpreted with caution. This study has some limitations. Ideally, parameter estimates for all projections should originate
from the country data but limited data prevented us from accurately estimating all parameters for the model. As with all
modeling studies, our predictions are based on reasonable assumptions which may not represent what happens in reality.
Several unmeasured factors could influence the dynamics of COVID-19 in Ghana and therefore caution should be takenwhen
relying onmathematical models to inform policy decision. Ideally, sensitivity analysis could have been carried out focusing on
the parameters that are policy related but this study did carry out such analysis as the focus was basically on worse case
scenario and how varying degree of government and individual level interventions could impact on the spread.

Nonetheless, evidence from this study can be used to inform policy decisions about the need for the government to
continue the enhance contact tracing, provision of personal protective equipment to frontline health workers and improved
case management. Such Government interventions could play a major role in reducing the intensity of infection. Similarly,
individual-level interventions such as social distancing, use of alcohol-based hand-sanitizers, wearing of face mask and
intensive media education are critical to reducing the rate of infection. The effectiveness of these government interventions
depends on howwell we prevent infections that originate from quarantine, treatment and isolation centers. We emphasized
395



Fig. 9. Impact of integrated Government and individual-level interventions.
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the need to effectively integrate both individual and government level interventions to reduce the spread of infection. Our
findings show that the over-reliance of government interventions alone may not reduce the spread of infection. Individuals
must adhere to the prevention protocols and the media must intensify its daily report on COVID-19 cases to improve
behavioral change, which have beneficial impact on the incidence cases.
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